35
An inventory of coral reefs in Langkawi Archipelago, Malaysia – Assessment and impact study of sedimentation Dagmar Jonsson Arbetsgruppen för Tropisk Ekologi Minor Field Study 88 Committee of Tropical Ecology Uppsala University, Sweden March 2003 Uppsala

An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

An inventory of coral reefs inLangkawi Archipelago, Malaysia

– Assessment and impact study of sedimentation

Dagmar Jonsson

Arbetsgruppen för Tropisk Ekologi Minor Field Study 88Committee of Tropical EcologyUppsala University, Sweden

March 2003 Uppsala

Page 2: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

An inventory of coral reefs inLangkawi Archipelago, Malaysia

– Assessment and impact study of sedimentation

Dagmar Jonsson

Undergraduate thesis in BiologyExamensarbete i Biologi, 20p, HT 2002Department of Animal Ecology, Uppsala University, SwedenSupervisors: Göran Milbrink, Bo Tallmark, Muhamad Abdul Nasir Salam

Page 3: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

Abstract

An inventory study of four coral reefs was performed during December 2001 and January 2002in Langkawi archipelago and in Pulau Payar Marine Park, Malaysia. To get a general state ofthe reefs several parameters were investigated. Using Linear Intercept Transect (LIT) theamount and distribution of dead coral, living coral and corals covered by sediments, diversityand amount of rubble were studied. The level of sediments in the water was also estimated bymeasuring the turbidity in the water mass. Collected data were analysed with ANOVA,Kruskal-Wallis Test and Correlation tests. The results show that the area around Langkawi ishighly affected by sedimentation and that the reefs in the area are more disturbed compared tothe reef in Pulau Payar Marine Park. Since the 80’s Langkawi has been expanding as a newtourist destination and the exploitation of the island has resulted in a major outflow ofsediments into the water. When comparing the three investigated reefs in Langkawiarchipelago, a gradient of disturbance can be seen. The reef in Pulau Rebak Besar is locatedclosest to exploited areas and is in worst condition with the highest amount of dead corals andcorals covered by sediments. The reef in Pulau Singa Besar is the least disturbed reef and theone in Teluk Datai is disturbed to a level in between. The reef in Pulau Payar has the highestamount of living coral of all compared sites and is only slightly affected by sedimentation. Itseems that the coral diversity is not seriously affected by the disturbance. In all studied reefs inLangkawi similar number and types of genera were found compared to Pulau Payar moregenera were found in the sites in Langkawi archipelago. The low number of genera in PulauPayar is probably due to El Niño 1998, when most of the branching coral species bleached andeventually died. It is obvious that the sedimentation is a serious threat to the coral reefs as wellas the whole marine ecosystem in the Langkawi archipelago. Corals are dying and as a result ofthat fish population is decreasing. The beauty of a healthy marine ecosystem, which usuallyattracts lots of tourists, is nearly gone. To guarantee further income of fishing and tourism inthe future, the outflow of sediments from the islands must be put to an end.

Page 4: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

Foreword

This study is a part of “Vision of a blue environment: the Langkawi Archipelago” which is aproject initiated by the World Wide Fund for Nature in Malaysia. The main issues in thisproject involves the marine and coastal environments and the aim is to, with studies andresearch, encourage conservation planning and sustainable actions to secure the future for thenatural ecosystems in Langkawi Archipelago.

Page 5: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

Table of contents

1. Introduction 4Impacts on coastal ecosystems in Asia 4Coral reef ecology 4Economic values 5Stress and degradation of coral reefs 5Aims of the study 5

Previous work in Langkawi 52. A general description of the Langkawi Archipelago 6 Geology 6

Climate 6Population and economy 6Tourism 6

3. Study areas 7Teluk Datai 8Pulau Singa Besar 8Pulau Rebak Besar 9Pulau Payar Marine Park 9

4. Field methods 9Linear Intercept Transect (LIT) 9Measurements of environmental parameters 10

5. Statistical methods 116. Results 11

Substrate cover and biotic factors 11Living and dead coral 12Coral families and genera 13Diversity 16Sedimentation 17Turbidity 19Rubble 20Water quality measurements 21

7. Discussion 22Living corals 22Diversity 22Sedimentation 23Turbidity 24Rubble 24Relation of coral reef degradation to coral reef fishes 25Conclusions 25

8. Acknowledgements 269. References 27 Appendix I 29 Appendix II 31

Page 6: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

4

1. Introduction

Impacts on coastal ecosystems in AsiaAsia faces as many coastal management problems as other regions of the world: depletion ofcoastal fishery resources; reduction in catch; loss of income; degradation of habitat (e.g.mangroves, seagrasses, and corals) and deteriorating water quality. In addition, coastalpopulation densities are high and increasing due to migration from inland areas. Southeast Asiahas the highest percentage of human coastal population in the world; 80% of the populationlive in coastal areas (Nickerson-Tietze 2000) and exert enormous pressure on the coastalecosystems. The level of acceptable exploitation by fisheries has long ago been exceeded, aswell as harvest of mangroves and other types of ecosystems (Lundin & Lindén 1993).

The human population of Asia depends on fish, which is one of the cheapest sources of protein.In Malaysia 20% of the total animal protein supply comes from fish (FAO 1995). In Asia,fishing is perhaps the most common use of marine and coastal resources. Capture size dependson ecosystem health, and nowhere is this felt more than in small scale fishing communities(Nickerson-Tietze 2000).

There is considerable evidence for a clear correlation between the productivity of tropicalcoastal ecosystems (particularly in mangrove forests, seagrass beds and coral reefs), and theproductivity of the fisheries (Rogers 1990). The consequence of the degradation of mangrovesand coral reefs will inevitably result in a corresponding decrease in the fish stocks and a drop inthe catches. In many countries in Southeast Asia, fish catches have actually been dropping overthe last decade (Lundin & Lindén 1993).

In Southeast Asia where approximately 30% of the world’s coral reefs are found, about 60% ofthe reefs are destroyed or are on the verge of destruction (Wilkinson et al. 1993). Theremaining reefs are also threatened and it can be predicted that most of the reefs in the regionwill be eradicated within the next 40 years. The major causes for the destruction of the reefs inSoutheast Asia are directly or indirectly induced by humans: organic and inorganic pollution,sedimentation and overexploitation (Lundin & Lindén 1993). Sedimentation is associated withthe construction of hotels, condominiums, runways, roads and military installations and beachreplenishment (Jaap 1984 and Dahl 1985). Dredging near coral reefs and accelerated runoff oferoded soils increase turbidity, thereby cutting off light available for photosynthesis, as well asincreasing sediment load on corals. Sediments, which settle down on coral colonies and aresuspended in the water column, have sub-lethal and lethal effects (Rogers 1990).

Coral reef ecologyCoral reefs are unique among high-diversity and high-productivity marine communities(Richmond 1993). They are found in areas where the water is warm (>20 oC) and clear, often inshallow water to a depth of about 60 meters. The depth at which coral reefs can form is limitedby the depth to which sunlight can penetrate to power the vital process of photosynthesis(Karleskint 1998). Through evolution corals have become adapted to nutrient poorenvironments (Richmond 1993) and coral reefs develop in water that contains minimal amountsof plankton. This is not surprising, since corals require clear water so that there will be enoughlight to support their photosynthetic symbiosis.

The key to the high productivity of coral reefs is the symbiotic relationship between the coralpolyps and the photosynthetic zooxanthellae. The zooxanthellae provide the corals withnutrients essential for reef building and oxygen produced by the photosynthesis. In turn the

Page 7: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

5

zooxanthellae absorb amino acids, sugars, and other organic compounds directly from thehost’s tissues. Not only do corals provide a basis for the reef food web; their colonies alsoprovide shelter for a great number of resident organisms (Karleskint 1998). Killing or removingthe corals indirectly affect the biological environment by reducing refuges for mobile animals,increasing open space on which sessile species settle, altering the food supply of consumers orconcentrating the attacks of predators on the survivors (Connell 1997). Probably 30-40% of allfish species on earth are found on coral reefs (Stiling 1999).

Economic valuesIn addition to the biological values, the coral reefs hold a lot of economic and socio-economicvalues. They support the fisheries, draw tourists, afford recreational opportunities and producea diversity of natural products, which have proven to be of biomedical importance. The coralreefs also produce islands and protect the shore by buffering waves that would otherwise causeextensive coastal erosion. The protection is especially evident during typhoons and tropicalstorms (Richmond 1993).

Stress and degradation of coral reefsCoral reef organisms are usually very sensitive to environmental conditions, exhibiting arelatively narrow range of tolerances to environmental stress. Stress is a physiologicalcondition, which results from adverse or excessive environmental factors and in corals can bemeasured by decreasing growth rates, metabolic and biochemical changes. Small changes inenvironmental quality can affect critical biological processes, such as reproduction andrecruitment (Richmond 1993). Numerous studies have suggested a variety of indicators of thestatus of a reef. The most commonly used indicator is the abundance of various key organisms(e.g. a lowered abundance of corals or coral fish or too much algae), which might indicate thata coral reef has been degraded. Population structure or size-frequencies and speciescomposition (e.g. species richness, diversity, and evenness) may also provide clues of a reefunder stress. In addition, physical or chemical variables (e.g. salinity, turbidity, nutrients) areoften measured to describe environmental conditions on coral reefs, although these on theirown provide no direct evidence of any biologically significant impact (Ginsberg 1993, Hughes& Connell 1999).

Aims of the studyThe marine ecosystem in Langkawi Archipelago is suspected to be seriously affected by thesedimentation in the area and this study was made to assess the impact of the sedimentation.The aim of this study was: (1) to investigate the state of three coral reefs in the LangkawiArchipelago and one in Pulau Payar Marine Park by a study of the amount of dead and livingcoral and the amount of rubble and the number of genera, (2) to investigate the impact of thesedimentation and the turbidity in the water column and make a comparison of the impact ofsedimentation between the protected reef in Pulau Payar Marine Park and the reefs in theLangkawi Archipelago.

Previous work in LangkawiThere are few scientific studies which have been made on the marine environment in Langkawiin contrast to the well studied Pulau Payar Marine Park 30 km to the south. A biologicalassessment of the marine resources of the Langkawi Archipelago was made by Hendry andMcWilliams (2001). This study covers the coral reef habitats and coral fish populations andassesses the threats to the marine coastal resources. A study has also been made of the coralreef and the water quality in Teluk Datai on the north coast (Zulfigar 1996). Several reports

Page 8: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

6

concerning the state of the coral reefs in Pulau Payar Marine Park, the impact of tourism andthe management of the park have been published:

1. The Pulau Payar reef system (Rashid 1980)2. Coral reef survey of Pulau Payar/Segantang group of islands, Malaysia (De Silva &3. Abdul Rahaman 1982)4. Carrying capacity assessment of Pulau Payar Marine Park, Malaysia (Lim 1998)

2. A general description of the Langkawi Archipelago

GeologyThe Langkawi Archipelago (6o 18’ N, 099o 47’ E) is located in the Andaman Sea, 30 km westof the northern end of Peninsular Malaysia at the border between Malaysia and Thailand (seeFig.1.). The archipelago consists of 104 islands and the largest and most exploited island isLangkawi Island (478,5 km2). The bedrock of the islands is a mixture of limestone andsandstone, and the vegetation of the islands is dominated by rainforest. The coastal areasconsist of flat, alluvial plains, limestone ridges and mangrove forests (www.Langkawi-online.com).

ClimateLangkawi has a tropical monsoon climate with a high annual temperature (varying between24oC and 33oC) with an annual average rainfall of 2500 mm. The rainy season ranges betweenApril and October and the dry season begins in November and lasts until March(www.Langkawi.insights.com).

Population and economyOnly four of the 104 islands are inhabited – Pulau Langkawi, Pulau Tuba, Pulau Rebak andPulau Dayang Bunting with a total human population of 54 000 (www.Langkawi-online.com).About 35 per cent of the total land area in Langkawi is used for agriculture – rubber 40 percent,rice 30 percent, mixed crops 20 percent and coconut plantations 10 percent (www.Langkawi.insights.com). An agriculture-based economy based on rice and rubber cultivation and fisheriesis being overtaken by a tourism economy (www.Langkawi-online.com).

TourismIn 1987 the Federal Government gave the Langkawi Island a duty-free status, which has turnedLangkawi into a major tourist destination (www.mylangkawi.com). Hundreds of thousands ofMalaysian and foreign tourists visit the archipelago each year.

The majority of the hotels are located on the west coast, along the Pantai Chenang and PantaiTengah. Kuah is the main urban center of Langkawi and contains many hotels as well as themain ferry terminal. The north coast is relatively undeveloped except for the three hotelscatering for the upper end of the tourist market. The east coast is also mostly undeveloped,bordered with mangrove forests. Tourism activities occur all over the archipelago, includingchartered fishing boats in the north, mangrove tours in the east, island tours in the south andbeach based water sports in the west (Hendry & McWilliams 2001).

Several tour operators on Langkawi are taking lots of tourists on day trips to Pulau Payar. PulauPayar was originally established as a “Fisheries Protected Area” in 1987 and subsequently as amarine park in 1994 aiming to protect important marine resources including coral reefs, whichcontribute to biodiversity and fisheries production. The Marine Park lies about 35 km off the

Page 9: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

7

western coast of Peninsular Malaysia, and is located between the Pulau Pinang in the south andthe Langkawi Islands in the north. 68 000 km2 of marine waters and the four islands PulauPayar, Pulau Kaca, Pulau Lembu and Pulau Segantang lie within the boundaries of the park(Nickerson-Tietze 2000). The establishing of the marine park changed the main use of thewaters of Pulau Payar from fishing to tourism. Today fishing is prohibited within the park (DeSilva and Ridzwan 1982). Swimming, snorkelling and SCUBA diving are permitted. Parknumbers increased from 1373 visitors in 1988 to 90 307 in 1996 (Nickerson Tietze 2000). Theexpansion of the Pulau Payar Marine Park as a tourist destination is attributed largely to therapid development of the tourism sector of Pulau Langkawi, which is today the major touristcentre of the northern region of Peninsular Malaysia (Lim 1998).

Figure 1. Map of Peninsular Malaysia showing the location of Langkawi Archipelago and Pulau Payar Marine Park.

3. Study areas

To get a general view of the coral reefs in the Langkawi Archipelago, different reefs werescanned through snorkelling. Two characteristics were important for making the choice ofstudy sites; 1) the reefs had to be large enough for the transects and 2) the corals had to befairly evenly distributed to make data calculations possible. Test transect were done by bothobservers to standardise observations.

Four reefs with different amounts of disturbance were studied between December 13th, 2001and January 21st, 2002. Three of them are located in the Langkawi Archipelago; close to thebeach of Teluk Datai and just outside the islands Pulau Singa Besar and Pulau Rebak Besar and

Page 10: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

8

the fourth reef is located in Pulau Payar, the marine park south of the Langkawi Archipelago(Fig.2).

Figure 2. Map of the Langkawi Archipelago and Pulau Payar Marine Park. The black dots mark the study sites in Pulau Rebak Besar, Teluk Datai, Pulau Singa Besar and Pulau Payar, respectively.

Teluk DataiTeluk Datai is a bay in the northern part of Pulau Langkawi that opens towards the north. Thereef, which is approximately 600 metres long and 100 metres wide, is situated in the easternpart of the bay near a small island, Anak Pulau. Two streams flow into in the bay and alongthese streams the vegetation consists of mangrove. The rest of the vegetation around the bay israinforest.

There are several kinds of human activities on and around the reef. In the late eighties twohotels were built in the bay, The Datai and the Andaman. Hotel guests are snorkelling,kayaking and sailing in the area but these activities are limited because only hotel guests haveaccess to the beach. Sailing boats are anchoring on and close to the reef. Smaller fishing boatsconduct the fishing in the area and some remains of fishing gear such as nets and ropes can befound on the reef, especially on the outer part. In the strait outside the bay there is some trafficwith large ships going to Teluk Ewa, a bay where a cement factory is located.

East of the bay there is a golf course from which fertilizers and sediment are probably leakinginto the water but the amounts flowing into Teluk Datai are not known.

Pulau Singa BesarPulau Singa Besar is an island in the southern part of the archipelago. The reef is situated in abay, which faces towards the southeast in the southern part of the island. The vegetation aroundthe bay consists mainly of rainforest.

Page 11: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

9

Except fishing there is not much human activity in and around the bay. There are no buildingsnearby and a minimum of snorkelling activities going on. Some sailing boats are anchoring onor outside the reef. Small boats are fishing in the bay and there is also one fish trap on the reef.Some abandoned fishing gear have been left on the reef.

Pulau Rebak BesarPulau Rebak Besar is an island located just outside Langkawi Airport, and near one of the mostexploited coastlines on Langkawi, Pantai Chenang. The reef is approximately 300 metres longand 30 metres wide and is situated in the western part of the bay, which is facing to the north-west. The area around the airport is reclaimed land and there is a wave breaker to protect it. Onthe southern part of the island there is a hotel, a marina and a crystal factory. The vegetationaround the bay consists mostly of forest.

Fishing is the main human activity. There are several fishing boats in the area and some ofthem are anchoring on or close to the reef. Old fishing gear such as nets, ropes and anchorscould be found on the reef. There is also a small camp site on the beach, which is frequentlyvisited by fishermen and tourists.

Pulau PayarPulau Payar is one of the three islands in the Pulau Payar Marine Park located 19 nautical milessouth of Langkawi. The reef, approximately 200 metres long and 30 metres wide, is situated onthe eastern side of the Pulau Payar, 400 metres south of the jetty. The whole island is coveredby rainforest.

Fishing is forbidden within 2 nautical miles from the islands but there is some fishing equip-ment to be found on and around the reef such as ropes and nets. There are lots of touristactivities, such as snorkelling and diving, and ferries passing by, taking tourists to the islandsevery day.

4. Field methods

Linear Intercept Transect (LIT)The Linear Intercept Transect Method has been used to estimate the cover of an object or groupof objects within a specified area by calculating the fraction of the length of the line that isintercepted by each object (English et al. 1997). Some assumptions must be made when usingthis method to calculate the proportion of the total area covered by the object/objects. The sizeof the object should be small relative to the length of the line and the length of the transectshould be small relative to the area of interest. In this study this method was used to estimatethe cover of different substrates in the study areas by calculating the fraction of the length ofthe line that is intercepted by each coral genus (English et al. 1997).

In each of the four study areas 32 separate 20-metre transects were laid out at four differentdistances from the beach, i.e. eight transects at each distance level from the beach. The threetransect lines closest to the beach were laid on the reef flat and the fourth on the reef slope,approximately one metre below the reef crest.

Measuring tapes were laid out as transects and each end of the tapes was carefully attached tothe corals by means of strings. The measuring tapes were laid out randomly, avoiding overlaps,with the purpose that all parts of the reefs could be represented in the study. Plastic bottles were

Page 12: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

10

used as buoys to mark out both ends of each transect. All transects were laid out where at least50 per cent of the bottom was covered with some kind of coral structure. This 50 percentgeneral limit was used on each reef to define the border lines of the reefs. In order to attain thebest precision, the depth contours were followed by laying the tapes as close to the substratumas possible.

Along the 20-metre transects the observer noted every centimetre on the measuring tape wherethe substrate changed. Boards and paper were used to make notes under water. Sevencategories except for the coral genera were noted; Dead coral, dead coral covered with algae,rubble, sand, sediment covered coral, sponge and other substrate. To be classified as “deadcoral” the substrate had to have clearly visible structures of coral origin. Rubble means brokenpieces of dead coral. All categories of substrate were noted with codes (table 1.).

Table 1: Substrate categories noted during the transect studies in the LangkawiArchipelago. Fore each category a name code was used.Substrate categories code remarksAnemones ANEMCoral genera “GENERA”Dead coral DCDead coral covered by algae DCARubble RUB broken pieces of dead coralSand SANDSediment covered coral SEDSponge SPOther substrate OTHER For example: stones, cliffs, algae

Each transect was made within 20 to 90 minutes depending on depth, visibility, currents andvariability in substrates. In the Langkawi Archipelago the reefs are shallow enough forsnorkelling during the transect studies. The shallower transects were done during high tide andthe deeper ones during low tide. The maximum snorkelling depth was approximately fourmetres.

Measurements of environmental parametersSelected environmental parameters were noted characterising the conditions at the site the datawere collected. Measurements of the turbidity, temperature, salinity, oxygen concentration ofthe water were usually made twice a day, in the morning and in the afternoon when the tide hadchanged. Some days these measurements were made more than twice depending on how manytransects that were done. Turbidity was measured by collecting water samples near the bottomand at the surface and the level in between near the transects. These samples were immediatelymeasured in a turbidimeter (Portable Turbidimeter Model 2100P). The temperature, salinityand oxygen concentrations were measured one metre below the surface. Measurements weredone with a pH meter (YSI Model 85). For all transects the date, time and tide were noted anddepths, wind force, cloud-cover and sea state were estimated. The cloudiness was estimatedaccording to the number of eighths of the sky that was covered by clouds. The force of thewinds was estimated using three categories: light air, gentle breeze and moderate breeze,respectively. Three other categories were used to describe the state of the sea: calm, smoothand slight, respectively (English et al. 1997).

Page 13: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

11

5. Statistical methods

The field data were transferred to data sheets and each substrate value, counted in centimetres,were re-calculated as a percentage of each 20-metre transect and then used in the statisticalanalyses. The values of living and dead corals and the values of corals covered by sediment arecalculated as percentages of the total amount of sessile coral structure on the reef. The rubble iscalculated as a percentage of the total reef area. Depth recordings were also re-calculated to thelowest low-water level according to tidal tables.

Comparisons were made between different sites with respect to the mean values of the amountof dead coral, living coral, sediment covered coral, turbidity, rubble, number of genera found inthe site and values of Shannon-Wiener Diversity Index. The data on dead and living coralswere found to be normally distributed. ANOVA has therefore been used. The other parameterswere not normally distributed and therefore analysed with the Kruskal-Wallis Test.

In order to evaluate the differences between different areas within sites, some comparisonswere made for each site to see if the distance from the shoreline, i.e. the depth, is an importantfactor explaining the distribution of the different substrates. Since the transects on each reefwere arranged at four distance levels from the beach, comparisons could be made betweenthese transect levels. The same parameters, except turbidity, were used for the “within-reefs”study as for the “between-reefs” study, and ANOVA and Kruskal-Wallis Tests were used in thestatistical analyses of these parameters.

In order to study possible relationships between different variables calculations utilizingcorrelation tests were made. Depending on whether the actual data were normally distributed ornot, two different correlation tests were used: the Pearson’s Correlation Test and theSpearman’s Rank Correlation Test, respectively.

6. Results

Substrate cover and biotic factorsA view of the distribution of different substrates (see methods) at the four sites is given inFigure 3. Corals, dead or alive, varied between 60% and 85% of the total bottom substrate. Asthe amount of living coral decreases there is an increase in the amount of dead coral. A lot ofrubble was found on the reef in Teluk Datai, especially in the part near the shoreline. Patches ofsand of different sizes were distributed on the reefs. Big patches of sand were found in PulauPayar. The remaining percentage of substrate of the category “other” includes both dead andliving objects such as anemones, algae, stones and rocks.

Page 14: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

12

Figure 3. Substrate coverage in percentage based on transect data collected in three reefs in the Langkawi Archipelago and one in Pulau Payar Marine Park, Malaysia, December 2001 - January 2002.

Living and dead coralThe reefs in P. Rebak Besar and Teluk Datai have the least amount of living coral, P. Payar isthe site with the highest and P. Singa Besar is in between. Corresponding results can be seenwhen comparing the amounts of living coral with the amounts of dead corals. As expected P.Payar has the least amount of dead coral and P. Rebak Besar the highest (Fig.4). Statisticalanalysis show high significant differences between the sites, both with reference to the amountof living corals (ANOVA, F=61.66; df=3; P<0.001) and the amount of dead corals (ANOVA,F=61.66; df=3; P<0.001).

Figure 4. The mean values of the amount of living and dead coral in the four study areas in Langkawi Archipelago and Pulau Payar Marine Park, Malaysia, December 2001 - January 2002. The bars are representing standard error of the data set in each site.

Considering the amount of living corals, the differences in all pairwise comparisons, exceptwhen comparing Teluk Datai with Pulau Rebak Besar, are significant (Tab. 2). As a

0

20

40

60

80

100

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

study sites

livi

ng

an

d d

ead

co

ral (

%)

living coral

dead coral

0

20

40

60

80

100

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

study sites

sub

stra

te t

ype

(%)

other

rub

sand

dead coral

living coral

Page 15: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

13

consequence of the calculations the statistical analyses of the amount of dead coral show thesame results.

Table 2. Pairwise comparisons among levels of living coral. T- and P- values from statistical analyses with the Tukey Test.

At Teluk Datai and Pulau Singa Besar a clear trend of decreasing amounts of dead coral orincreasing amounts of living coral towards the reef slope could bee seen (Fig. 5). The reefs inPulau Rebak Besar and Pulau Payar has a nearly constant ratio of dead coral/living coral allover the reef. With reference to the amount of living corals, only the differences between levelone and four in Teluk Datai and Pulau Singa Besar and between level two and four in TelukDatai, are significantly different (Appendix, Tab.1). The statistical analyses of the amount ofdead coral show the same values.

a) b)

Figure 5a and b. The distribution of living (a) and dead (b)corals within each reef. The lines represent each site, respectively, and show the mean values in each transect level. Transect level number 1 is located closest to the shoreline and level number 4 furthest out on the reef. The study was performed during December 2001and January 2002 in the Langkawi Archipelago and Pulau Payar Marine Park, Malaysia. The bars are representing the standard error at each level.

A fairly strong correlation was found between the depth and the amounts of living coral(Pearson’s Correlation=0.376; P<0.001).

Coral families and generaCorals of totally 13 different families have been recorded in the study areas. In three of thesites, P. Rebak Besar, Teluk Datai and P. Singa Besar, 12 different families where found. These

Pulau Payar Pulau Rebak Besar Pulau Singa Besar

Teluk DataiP<0.001

(T=10.665)NS

(T=-1.980)P=0.0066(T=3.321)

Pulau PayarP<0.001

(T=-12.63)P<0.001

(T=-7.33)

Pulau Rebak BesarP<0,001

(T=5.300)

0

20

40

60

80

100

1 2 3 4transect level

dea

d c

ora

l (%

)

P.Rebak Besar Teluk DataiP.Singa Besar P.Payar

0

20

40

60

80

100

1 2 3 4

transect level

livi

ng

co

ral (

%)

P.Rebak Besar Teluk DataiP.Singa Besar P.Payar

Page 16: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

14

sites have almost the same composition of coral families. In the fourth site, P. Payar, only ninecoral families where found. Figure 6 show the distribution of the families. Generally the twofamilies, Poritidae and Faviidae, are the more dominating ones compared to the other families.

Figure 6. The distribution of the 13 different coral families recorded under the transect study, Langkawi archi- pelago and Pulau Payar Marine Park, Dec 2001-Jan 2002. Because of very low frequencies of occurrence, some of the families are not visible in the diagram.

A total amount of 31 different coral genera were found (Tab.3), 25 genera in P. Singa Besarand Teluk Datai, 24 in P. Rebak Besar and 14 genera in P. Payar. Except for a few genera, thecomposition of genera is similar in the first three sites. The fourth site, P. Payar, differs morefrom the other three by not having as many genera and by missing some genera that are verycommon in the other sites. This site differs also by having one very dominant genus, Porites,which make up almost 80 % of the total coral cover. This genus is dominating in Teluk Dataiand P. Singa Besar as well, but not to a great extent. In P. Rebak Besar Porites is not adominating genus. Two of the genera found in Pulau Payar, Halomitra and Pleurogyra, are notfound in the other sites. A closer view of similarities and differences in the genera distributionare given in figure 7, where only the four most common genera are visualised.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

P.Rebak Besar Datai Bay P.Singa Besar P.Payar

location

Fre

qu

ency

Acroporidae Agariciidae CaryophyllidaeDendrophyllidae Faviidae FungiidaeMerulinidae Mussidae OculinidaePectiniidae Pocilloporidae PoritidaeSiderastreidae

Page 17: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

15

Table 3. A list of coral families and genera recorded during the transect study of four reefs in the Langkawi Archipelago and Pulau Payar Marine Park, Dec.2001-Jan 2002. A code representing each genus was used in the transect study.

Family Genera Code name

Acorporidae Acropora ACROAsteropora ASTEROMontipora MONTI

Agariciidae Pachyseris PACHYPavona PAV

Caryophyllidae Euphyllia EUPHPleurogyra PLEURO

Dendrophyllidae Turbinaria TURBFaviidae Cyphastrea CYPH

Diploastrea DIPLOEchinophora ECHINOFavia FAVAFavites FAVTGoniastrea GONIASMontastrea MONTASTPlatygyra PLATY

Fungiidae Fungia FUNGHalomitra HALO

Merulinidae Hydnophora HYDNOMerulina MERU

Mussidae Lobopyllia LOBOSymphyllia SYM

Oculinidae Galaxea GALAXPectiniidae Mycedium MYCE

Oxypora OXYPectina PEC

Pocilloporidae Pocillophora POCILLOPoritidae Alveopora ALVEO

Goniopora GONIOPPorites POR

Siderastreidae Psammocora PSAM

Page 18: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

16

Figure 7. The composition of the four most common genera in P. Rebak Besar, Teluk Datai, P. Singa Besar and P. Payar, respectively, calculated as the percentage of the total coral cover.

DiversityPulau Payar has a very low Shannon diversity index value that differs clearly from the othersites (Fig. 8). Statistical analysis show that the difference in the diversity index is highlysignificant (ANOVA, F=37.02; df=3; P<0.001). Results from pairwise comparisons of the sitesshow that Pulau Payar is the only divergent site (Tab. 4).

Figure 8. Mean values of the Shannon Diversity Index in the four study sites in the Langkawi Archipelago and Pulau Payar Marine Park, Malaysia, December 2001 - January 2002. The bars are representing the standard error.

P.Singa Besar

other22%

Favites5%

Pachyseris5%

Porites43%

Goniastrea25%

P. Payarother3%

Montipora7% Pavona

9%Favites

1%

Porites80%

P.Rebak Besar

other30%

porites12% Goniastrea

33%

Favites16%

Favia9%

Teluk Datai

other36%

porites33%

Diploastrea8%

Goniastrea14%

Favites9%

0

0.5

1

1.5

2

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

study sites

div

.ind

ex

Page 19: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

17

Table 4. Pairwise comparisons between sites with different diversity indices. F- and P- values from the statistical analyses with Tukey test.

There are fairly strong correlations between the diversity index and the amounts of coralscovered by sediments (Spearman’s Rank Correlation=-0.292; P<0.001), the amounts of livingcorals (Spearman’s Rank Correlation=-0.230; P=0.009) and between diversity index and theturbidity (Spearman’s Rank Correlation= 0,458; P<0,001).

No significant differences in the number of genera were found within the reef in Pulau Payar.The three other reefs show a general trend of having higher amounts of living coral towards thereef slope (Fig. 9 and Appendix, Tab. 1).

Figure 9. Variation in number of genera depending on transect level within each reef. The lines represent each site, respectively. Transect level number 1 is located closest to the shoreline and level number 4 furthest out on the reef. December 2001 - January 2002 in the Langkawi Archipelago and Pulau Payar Marine Park, Malaysia. The bars are representing the standard error in each site.

SedimentationThe reef in P. Rebak Besar has the highest amounts of sediment covered coral, i.e. almost 70%of the total amount of coral structure are covered by sediments. In Teluk Datai 60% of thecorals are covered in sediments, in P. Singa Besar 50% and in P. Payar about 10% (Fig. 10).Generally the corals covered by sediments make up most of the dead corals on the reefs andalmost no dead coral can be found that is not covered by sediments (Fig. 11). The correlationtest show a very strong correlation between the level of sediment covered corals and theamount of dead corals (Spearman’s Rank Correlation=0,968; P<0,001).

Pulau Payar Pulau Rebak Besar Pulau Singa Besar

Teluk DataiP<0.001

(F=-7.574)NS

(F=2.394)NS

(F=-0.374)

Pulau PayarP<0.001

(F=9.968)P<0.001

(F=7.200)

Pulau Rebak BesarP=0.0321(F=-2.768)

0

5

10

15

20

1 2 3 4transect level

nu

mb

er o

f g

ener

a

P.Rebak Besar Tealuk Datai

P.Singa Besar P.Payar

Page 20: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

18

Figure 10. The mean values of the amounts of corals covered by sediments in the four study areas in the Langkawi archi- pelago and Pulau Payar Marine Park, Malaysia, December 2001- January 2002. The bars represent the standard error.

Figure 11. Sediment covered coral as a part of the amount of dead Coral. Langkawi Archipelago and Pulau Payar Marine Park, December 2001 - January 2002.

Differences between the sites with reference to the amounts of sediment covered corals arehighly significant (Kruskal-Wallis, H=73.98; df=3; P<0.001). All sites, except Teluk Datai andP. Rebak Besar, differ significantly from each other (Tab.5).

Table 5. Pairwise comparisons between levels of corals covered by sediments. H- and P- values from statistical analyses with the Kruskal-Wallis Test.

Pulau Payar Pulau Rebak Besar Pulau Singa BesarTeluk Datai P<0.001

(H=41.89)NS

(H=2.95)P=0.027(H=4.91)

Pulau Payar P<0.001(H=44.35)

P<0.001(H=39.49)

Pulau Rebak Besar P<0.001(H=18.81)

0

20

40

60

80

100

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

study sites

sed

imen

t co

vere

d c

ora

ls (

%)

0

20

40

60

80

100

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

location

per

cen

tag

e d

ead

co

ral/s

ed.c

ov.

cora

l

deadcoral

sed. cov.coral

Page 21: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

19

Generally the amounts of sediments are decreasing towards the reef slope (Fig. 12). In all thestudy sites except Pulau Rebak Besar, the statistical analysis show that there are significantdifferences between the transects closer to the shoreline and the transects further out on thereefs (Appendix, Tab. 3).

Figure 12. The distribution of the sediment covered corals in the four reefs. Transect level number 1 is located closest to the shoreline and level number 4 furthest out on the reef. December 2001 - January 2002 in the Langkawi Archipelago and Pulau Payar Marine Park, Malaysia. The bars are representing the standard error.

TurbidityThe turbidity values are clearly lower in Pulau Payar compared to the other sites (Fig.13)(Kruskal-Wallis, H=79.49; df=3; P< 0.001). When looking at the pairwise comparisons, onlythe turbidity values in Pulau Payar are significantly different from the other values (Tab. 6).

Figure 13. Mean values of turbidity in four study sites in the Langkawi Archipelago and Pulau Payar Marine Park, Malaysia, December 2001 - January 2002. The bars represent the standard error of the data.

0,00

0,50

1,00

1,50

2,00

2,50

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

study sites

turb

idit

y (N

TU

)

0

20

40

60

80

100

1 2 3 4transect level

sed

. co

vere

d c

ora

ls (

%)

P.Rebak Besar Teluk DataiP.Singa Besar P.Payar

Page 22: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

20

Table 6. Pairwise comparisons between turbidity values. H- and P- values from statistical analyses with the Kruskal-Wallis Test

A fairly strong correlation was found between the amounts of dead coral and the turbidity,(Spearman's Correlation = 0.366; P <0.001).

RubbleTeluk Datai has the greatest amounts of rubble; more than 20% of the bottom substrate on thereef. Pulau Rebak Besar and Pulau Payar are similar and have least amounts of rubble (Fig. 14).The statistical analysis shows though no significant differences in the amounts of rubblebetween sites (Kruskal-Wallis, H=6.85; df=3; P=0.077). In pairwise comparisons between allsites, only Pulau Rebak Besar and Teluk Datai are significantly different according the amountsof rubble (Kruskal-Wallis, H=5,36; df=3; 0,020).

Fig 14. The mean values of the amounts of rubble in the four study areas in the Langkawi Archipelago and Pulau Payar Marine Park, Malaysia. The study was performed between December 2001 and January 2002. The bars represent the standard error of the data set in each site.

The rubbles are generally located at the two levels closest to the shoreline and the amount ofrubble is decreasing towards the reef slope. All the transect levels in Pulau Payar showconstantly low amounts of rubble (Fig.15). Statistical analyses confirm that there are significantdifferences in all sites, except for Pulau Payar, between the transect levels (Appendix, Tab. 4).

Pulau Payar Pulau Rebak Besar Pulau Singa Besar

Teluk DataiP<0.001

(H=23.75)NS

(H=2.19)NS

(H=1.38)

Pulau PayarP<0.001

(H=28.58)P<0.001

(H=15.78)

Pulau Rebak BesarNS

(H=0.58)

0

10

20

30

40

50

P.RebakBesar

Teluk Datai P.SingaBesar

P.Payar

study sites

am

ou

nt

of

rub

ble

(%

)

Page 23: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

21

Figure 15. The distribution of rubble within the reefs. The lines represents each site, respectively, and show the mean values in each transect level. Transect level number 1 is located closest to the shoreline and level number 4 furthest out on the reef. December 2001- January 2002 in the Langkawi Archipelago and Pulau Payar Marine Park , Malaysia. The bars are representing the standard error of data.

Water quality measurementsMaximum and minimum values of the water quality parameters, i.e. temperature, salinity andoxygen concentration is shown in table 8.

Table 8. Maximum and minimum values of the water quality measurements in the four study sites. The study wasperformed in December 2001 and January 2002 in Langkawi Archipelago and Pulau Payar Marine Park, Malaysia.

Study area Temperature (oC) Salinity (‰) Oxygen concentration (mg/l)max 27,8 33,1 6,3Pulau Rebak Besarmin 26,9 32,6 5,4max 28,5 33,0 7,4Teluk Dataimin 27,3 32,4 5,8max 28,8 32,9 6,4Pulau Singa Besarmin 27,7 32,2 5,6max 29,5 32,6 6,8Pulau Payarmin 27,6 32,4 5,0

0

20

40

60

80

100

1 2 3 4transect level

ru

bb

le (

%)

P.Rebak Besar Teluk Datai

P.Singa Besar P.Payar

Page 24: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

22

7. Discussion

Living coralsThe results from the present study show that a gradient of reef degradation can be seen whencomparing the study sites with reference to the amounts of living and dead corals. Pulau Payaris the least degraded reef with the highest amount of living corals. In Langkawi ArchipelagoPulau Singa Besar is less affected than the reefs in Teluk Datai and Pulau Rebak Besar.Two of the sites in this study have been investigated earlier by Hendry and McWilliams (2001,unpublished). They recorded the mean values of living coral cover in Teluk Datai to be about50% on reef the slope and 29% on the flat. These values can be compared with the mean valueof about 39% living coral in the present study of Teluk Datai, were the percentage of livingcorals is increasing towards the reef slope. Also Hendry and McWilliams investigated the reefin Southern Singa Besar. 69% and 50% of living corals was recorded on the slope and on theflat, respectively, to be compared with 50% in the present study. As in Teluk Datai the livingcoral cover is increasing towards outer part of the reef. One of the studies made on the coralcover in Pulau Payar (Lim 1998) show a living coral cover of about 76%, to be compared with75% in the present study.

DiversitySurprisingly, a lot fewer genera were recorded in Pulau Payar compared to the reefs aroundLangkawi, where similar number of genera was recorded in the three sites. The most commongenus found in Pulau Payar, Porites, was dominating to a great extent (80% of the living coralcover). No genus was dominating to that extent in the other sites, where Porites, Goniastreaand Favites were the most common genera. No studies of coral life forms were made in detail,but it was obvious that massive and submassive life forms were generally the most dominatingones and that branching life forms were uncommon.

The low diversity and the great dominance of Porites in Pulau Payar can be due to severalreasons. First of all the geographical orientation of the island results in exposure to wind andwaves and sheltered-water forms of such corals as Acropora and Echinopora are not found ingreat abundance as would be the case if the island had been in a more sheltered locality (Rashid1980). According to earlier hard coral studies (De Silva & Ridzwan 1982, Rashid 1980) in thearea before the establishment of the park, the reef slopes had a high species richness composedof several genera with different growth forms. The reef flats was, in contrast to the presentstudy, primarily made up of branched Acropora and Montipora and small boulders of Porites.In the early 1980’s De Silva and Ridzwan recorded 35 hard coral genera in the area. In a moreresent study, made by Lim 1998, show that the reef flats consists predominantly of isolatedpatches of stunted Porites boulders, interspersed by sandy bottom and the reef slope areasconsists of Porites, branching Acropora and tabulate forms of Montipora.

A loss of genera can be the result of to much impact on the coral reefs after the establishmentof the Marine Park. Branching and foliose corals such as Acropora are more fragile and moreeasily damaged than massive ones such as Porites. These are therefore more likely be brokenby inexperienced or careless snorkellers and divers, anchors or boat propellers (Lim 1998). Astudy made by McClanahan and Obura suggest that the probability of coral damage is stronglyassociated with growth form (McClanahan & Obura 1997).

The reefs around Pulau Payar Marine Park have shown some signs of coral bleaching,especially at the Marine Park Centre House Reef and the Coral Pontoon House Reef. Bleachingwas first observed in Pulau Payar in 1995, with the most affected genera being Acropora and

Page 25: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

23

Porites in the shallow reef flats. Studies have shown high amounts of phosphate and nitrate inthe areas where corals had bleached in Pulau Payar Marine Park; excess amounts of the twonutrients are detrimental. These nutrients are believed to originate from Pulau Payar due to thelack of proper sewage treatment and disposal facilities on the island (Lim 1998).

Coral bleaching is often the first sign of stress, and if the conditions do not return to normalquickly, the corals will die after weeks or month depending on the sensitivity of the coralspecies and/or the severity of the stress (Wilkinson et al. 1999). Corals have been known tobleach in response to a number of stresses – elevated temperatures above normal maxima(which is the most common case), sudden decreases in temperature, UV radiation, lowsalinities, turbidity and/or reduced light levels, hypersaline water, exposure at abnormally lowtides and doldrums (Lim 1998). Bleaching is most pronounced in shallow water andparticularly affects branching and plate Acropora spp. and other fast-growing species(Echinopora sp., Montipora sp. and others). Slower growing species, like Porites sp. are moreresistant to bleaching and are often first to recover if they bleach (Wilkinson et al. 1999). Apossible explanation to the present situation of very few genera in Pulau Payar Marine Park andthe great dominance of Porites, is that the species of Acropora and other species most sensitiveto bleaching did not recover from the bleaching in 1995, died and the Porites survived andbecome the most dominant hard coral genera in Pulau Payar Marine Park. Yusuf and Aliexplain the altered coral composition to be mainly due to coral bleaching during the El Niño of1998. Most of the branching corals died due to the El Niño with only a few patches surviving.The other species remain relatively intact (Yusuf & Ali 2001).

The correlation tests made to find possible factors affecting the diversity did not give anystrong correlations: weak correlation between the diversity and the amount of living coral andmodest correlation according to the sedimentation and turbidity. These week correlations areprobably due to the low diversity but otherwise relatively healthy state of the reefs in PulauPayar Marine Park.

SedimentationSedimentation is clearly a serious problem around Langkawi and probably the biggest threat tothe coral reefs in the area. Compared to Pulau Payar, the three reefs in Langkawi Archipelagoare clearly more affected by sedimentation showing higher amounts of dead corals and coralscovered by sediments. The reef in Pulau Singa Besar is less affected than the reefs in TelukDatai and Pulau Rebak Besar, where the latter is the most degraded reef in this study. No datafrom earlier studies on sedimentation have been found from this area. That sedimentation is abig threat to the corals is confirmed when studying the part of the dead corals that are coveredin sediment. Almost 100% of the dead corals around Langkawi are covered with sediment,which suggests that the corals are dying because of the sedimentation. In reef zones with heavysedimentation one might hypothesise the following: (1) decreased hard coral cover due tometabolic costs of shedding sediments and competition with algae and other benthic species (2)decreased genus richness due to mortality of species vulnerable to competition and sedimentrelated stress (3) decreased diversity and increased dominance of certain coral species due toselective survivorship of resistant species (Rogers 1990, McClanahan & Obura 1997). Theinvestigated reefs around Langkawi are all to a large extent (50%-70% of the coral cover)covered with sediments, which are distributed all over the reefs but are decreasing towards thereef slopes. In Pulau Payar about 14% of the coral cover are covered in sediments.

No correlation is found between the diversity index and the amounts of corals covered insediments. McClanahan and Obura found no reduction in genus diversity during a study of

Page 26: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

24

reefs with increased sediment influence but found that coral genera differs in resistance tosediment (McClanahan & Obura, 1997). Porites is one of the dominating genera in all sites inthis study. Several studies indicate that species of this genus are relatively more tolerant to highlevels of sedimentation (McClanahan & Obura 1997, Rogers 1990). Cortes and Risk foundPorites astreoides to be one of the most abundant species in heavily sedimented areas.Goniastrea is a common genus in all sites except Pulau Payar. Brown (Rogers 1990) made astudy in shallow areas off Thailand and suggests that fusion of Goniastrea colonies to largercolonies could be a response to higher sedimentation rates. McClanahan and Obura suggest thatin conditions of high sedimentation, stabilisation of the coral community will appear withhigher abundance of sediment-tolerant coral genera (McClanahan & Obura 1997). The abilityto cope with sediments partly depends on the growth form of the coral. Flattened or plate-likegrowth forms are less efficient at removing sediments than more rounded ones (Rogers 1990).This can explain the fact that most of the corals around Langkawi have the massive growthform.

Heterotrophic invertebrates are more abundant on reefs more exposed to sediments(McClanahan & Obura 1997). No study have been made in detail on the abundance ofinvertebrates, but sea cucumbers, sea urchins and worms were found in all sites in differentabundances. Some algae were also observed on the reefs. Algae are generally the firstcolonisers of the new substrate created by physical destruction (Woodley et al. 1981, Rogers etal.1979).

TurbidityThe turbidity in the water differs between the reefs around Langkawi and the one in PulauPayar. Turbidity reduces the light available for photosynthesis by macroscopic and turf algaeand endosymbiotic zooxanthellae within the tissues of corals, anemones and other organisms,thereby affecting the overall metabolism of a coral reef (Rogers 1990). The turbidity valuesmeasured in Pulau Singa Besar varied a lot, probably because of the fluctuation in the weatherconditions during the measuring period. Another reason might be that the reef in Pulau SingaBesar is more unsheltered and opened towards the sea.

The weak correlation between the turbidity in the water and the amount of dead coral isprobably due to the great fluctuations in the turbidity values. Weather conditions, waves andtide affect the turbidity to a large extent and to get conclusive results turbidity measurementsshould be done over a longer time period. Due to the fact that the sediment outflow isdependent on the seasonal weather conditions and currents, long time measuring is needed tomonitor the grade of sedimentation (McClanahan & Obura 1997).

RubbleBroken surfaces of corals serve as a substratum for algae and fungi, which may also infect coraltissue. Large amounts of broken surfaces can therefore lead to extensive damage on the coralcolonies (Riegl & Velimirov 1991). In this study the reef in Teluk Datai have the largestamount of rubble on the reef close to the shoreline, as also found Zulfigar (1996). Rubble onthe reef can be due to human activities such as tourists trampling on the corals or boatanchoring on the reef. It can also be possible that the water currents transported the pieces ofcorals into the bay of Teluk Datai from other areas. The reef in Pulau Payar is greatly affectedby the tourist activities but still there was not much rubble recorded. This is probably due tochoosing a part of the reef with limited tourist activity. Compared to Teluk Datai, smallamounts of rubble were found in Pulau Rebak Besar. The reason for that could be the currentsor limited tourist and fishing activities.

Page 27: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

25

Relation of coral reef degradation to coral reef fishesExcessive sedimentation can affect the complex food web on the reef by killing not only corals,but also sponges or other organisms, which serve as food for commercially important fish andshellfish (Rogers 1990). With a decline in the number of crevices and hiding places, there is areduction in both the numbers of individuals of fish and the number of invertebrates that thereef can sustain. This decrease could be a function of a reduction in the amount of living coralcover as well as a decrease in the amount of shelter the reef can provide (Bell and Galzin1984). Many studies have been made on the correlation between the abundances of corals andfishes and it is obvious that many species are dependent on corals for food and shelter (Bell andGalzin 1984, Öhman and Rajasuriya 1998, Sano 1987). A coral reef fish study was made byAndersson (2002) at the same sites as the present coral study. Andersson found a positivecorrelation between the total abundance of fish and amount of living coral and negativecorrelation between the number of fish families and the amount of sediment covered, i.e. deadcorals on the reef. Pulau Payar, which is much less affected by the sedimentation compared tothe reefs around Langkawi, has clearly a higher abundance of coral reef fishes and number offish species and families (Andersson 2002).

ConclusionsThis study shows that the reefs around Langkawi are highly disturbed by sedimentation in thearea. The sediments that are flowing out in the sea are a consequence of the fast and far-reaching exploitation of the main island, Langkawi. During the last two decades, plans ofmaking Langkawi to a new tourist destination have resulted in construction of a great numberof hotels and roads, golf courses and an airport runaway with huge wave breakers. Pulau RebakBesar is the study site closest to the airport and one of the most exploited beaches. The fact thatthis site has the most degraded reef in this study, with more than 50 percent of the coralscovered in sediments, confirm that the exploitation of the coast is the biggest threat to thecorals in the area today. As the corals are dying the fish populations are decreasing. The wholeecosystem is affected and if this continues, the coral reefs will die forcing the surviving fishesto move away. A loss of attractive and economic valuable coral reef ecosystems in the area willin the end affect the human population on Langkawi, which today is dependent on the tourism,fishing and other economic benefits that the coral reefs still give.

Page 28: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

26

8. Acknowledgements

First of all I would like to thank Mr Muhamad Nasir Abdul Salam, Professor Göran Milbrinkand Dr Bo Tallmark for supervising me from start to finish. Thank you for stimulatingdiscussions and critical reviews. I will gratefully thank Mr Ng Fong Oon, Hymier Kamarudin,Julia Ng Su-Chen and the rest of the staff at WWF Malaysia for kindness and for one way or another helping me achieve my goal of going to Malaysia to study marine conservation biology.A special thanks to Gan Sien Ban for helping us with the field work when we needed it themost. Many persons have helped us during our stay in Langkawi. Among those, I wouldespecially like to thank Mr Irshad Mobarak and the staff at The Datai and Mr Mohd FirdausDev and the staff at The Andaman for helping out with practical arrangements, Mr WickySundram and the staff at the Royal Langkawi Yacht Club for letting us keep the boat in themarina, and Mr Danny Lim and his staff at the East Marine Dive Club for helping us withtransport to Pulau Payar. I would also like to thank Fisheries Department for letting us performthe study at the Pulau Payar Marine Park, Swedish International Development CooperationAgency (SIDA) and the Committee of Tropical Ecology at Uppsala University for the financialsupport. Thanks to friends, family and neighbours in Malaysia and in Sweden for support,stimulation and encouragement. At least, a gracious thank to my field work partner and friendKarin Andersson for support, ideas and for sharing an memorable and rewarding experience.

Page 29: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

27

References

Andersson, K. 2002. A Study of Coral Reef Fishes Along a Gradient of Disturbance in theLangkawi Archipelago, Malaysia. Undergraduate thesis, Uppsala University.

Bell, J. D. & Galzin, R. 1984. Influence of live coral cove on coral reef fish communities.Marine Ecology Progress Series 15: 265-274.

Chansang, H., Boonyanate, P., Charuchinda, M. 1981. Effect of Sedimentation from coastalmining on coral reefs on the northwestern coast of Phuket Island, Thailand. Proc. 4th int.Coral Reef. Symp. 1:129-136.

Connell, J.H. 1997. Disturbance and recovery of coral assemblages. Coral Reefs 16: 101-113.Cortes, J. and Risk, M.J. 1984. El arrecife coralino del Parque Nacional Cahuita, Costa Rica.

Revta. Biol. Trop. 32: 109-121.Dahl, A.L. 1985. Status and conservation of South Pacific coral reefs. Proc. 5th int. Coral reef

Congr. 6:509-513.De Silva, M.W.R.N. & Rahaman, R.A. 1982. Coral reef survey of Pulau Payar/Segantang

group of islands, Malaysia.English, S., Wilkinson, C. and Baker, V. 1997. Survey manual for tropical marine resources. 2

ed. Australian institute of marine science, Townsville.FAO. 1995. Food balance sheet. Food and Agriculture Organization of the United Nations,

Rome, Italy.Ginsberg, R.N. 1993. Proceedings of the colloquium on global hazards to coral reefs: Health,

hazards and history. RSMAS, University of Miami.Hendry, H.J. & McWilliams, J.P. 2001. Assessment of the coastal marine resources of the

Langkawi Archipelago. Unpublished report WWF, Malaysia.Hodgson, G., Dixon, J.A. 1988. Logging versus fisheries and tourism in Palawan. Occasional

papers of the East-West Environment and Policy Institute, Honolulu. Paper no. 7: 1-95.Hughes, T.P. & Connell, J.H. 1999. Limnology and Oceanography 44:3 part 2: 932-940.Jaap, W.C. 1984. The ecology of the south Florida coral reefs: a community profile. U.S. Fish

Wildl. Service. FWS/OBS-82/08: 1-138.Karleskint, G. Jr. 1998. Introduction to marine biology. Hardcourt Brace & company, Orlando.Lim, L.C. 1998. Carrying capacity assessment of Pulau Payar Marine Park, Malaysia. Bay of

Bengal Programme. Madras, IndiaLundin, C.G.& Lindén, O. 1993. Coastal Ecosystems: attempts to manage a threatened

resource. Ambio 22(7):468-473.McClanahan, T.R. & Obura, D. 1997. Sedimentation effects on shallow coral communities in

Kenya. Journal of Experimental Marine Biology and Ecology 209: 103-122.Nickerson-Tietze, D.J. 2000. Scientific characterization and monitoring: Its application to

integrated coastal management in Malaysia. Ecological Applications 10(2): 386-396.Öhman, M. C. & Rajasuriya, A. 1998. Relationships between habitat structure and fish

communities on coral and sandstone reefs. Environmental biology of fishes. 53:19-31Öhman, M.C., Rajasuriya, A. and Lindén, O. 1993. Human disturbance on coral reefs in Sri

Lanka: A case study. Ambio 22(7): 474-480.Rashid, R. 1980. The Pulau Payar reef ecosystem. Malaysia agriculture Journal, 52(3): 240-

249.Richmond, M.D. 1997. A guide to the seashores of eastern Africa and the Western Indian

Ocean islands. Sida/Department for Research Cooperation, SAREC.Richmond, R.H. 1993. Coral reefs: Present problems and future concerns resulting from

anthropogenic disturbance. American Zoologist 33:524-536.

Page 30: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

28

Riegl, B & Velimirov, B. 1991. How many damaged corals in Red Sea reef systems? Aquantitative survey. Hydrobiologia 216/217: 249-256.

Riegl, B. & Riegl, A. 1995. Studies on coral community structure and damage as a basis forzoning marine reserves. Biological conservation 77: 269-277.

Rogers, C.S. 1979. The effect of shading on coral reef structure and function. J. exp. mar. Biol.Ecol. 41: 269-288.

Rogers, C.S. 1990. Responses of coral reefs and reef organisms to sedimentation. MarineEcology Progress Series. 62:185-202.

Sano, M., Shimizu, M. & Nose, Y. 1987. Long term effects of destruction of hermatypic coralsby Anacaster planki infestation on reef fish communities at Iromote Islands, Japan. MarineEcology Progress Series 37:191-199.

Searle, A.G. 1956. An illustrated key to malayan hard corals. Malayan Nature Journal, 11 parts1 & 2: 1-28.

Smith, S.R. and Ogden, J.C. 1993. Status and recent history of coral reefs at the CARICOMPnetwork of Caribbean marine laboratories. Global Aspects of Corals: Health, Hazard andHistory. University of Miami

Stiling, P.D. 1999. Ecology: theories and applications. 3rd ed. Prentice Hall, New Jersey.Veron, J.E.N. 1986. Corals of Australia and the Indo-Pacific.

University of Hawaii Press, Honolulu. Wilkinson, C., Lindén, O., Cesar, H., Hodgson, G., Rubens, J. Strong, A.E. 1999. Ecological

and socio-economic impacts of 1998 coral mortality in the Indian Ocean: An ENSO impactand a warning of future change? Ambio 28(2): 188-196.

Wilkinson, C.R., Chou, L.M., Gomez, E., Ridzwan, A.R., Soekarno, S. and Sudra, S. 1993.Status of coral reefs in Southeast Asia: Threats and responses. Global Aspects of Corals:Health, Hazard and History. University of Miami.

Woodley, J.D. et al.(20 authors). 1981. Hurricane Allens impact on Jamaican coral reefs.Science 214: 749-755.

Yusuf, Y.B. & Ali, A.B. 2001. Coral reef fish community: comparative study between marinepark and non-protected area. Asian Wetland Symposium, 27-30 August 2001, Penang,Malaysia

Zulfigar, B.H.Y. 1996. Report on the effect of beach replenishment on the coral reefs at TelokDatai (Langkawi). Part 1. Centre For Marine and Coastal Studies Universiti Sains PenangMalaysia.

www.Langkawi-online.com, 020713.www.Langkawi.insights.com, 020713.www.mylangkawi.com 020713

Page 31: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

29

Appendix I.

Table 1. T- and P- values from statistical analyses with the Tukey Test. Pairwise comparisons between transect levels within each site, with reference to the amounts of living coral. 1,2,3 and 4 represent the transect levels from the shoreline towards the reef slope. R, D, S and P represents Pulau Rebak Besar, Teluk Datai, Pulau Singa Besar and Pulau Payar, respectively.

Transect levels 2 3 41 R: P=NS (T=-0,893)

D: P=NS (T=0,800)S: P=NS (T=0,429)P: P=NS(T=-1,172)

R: P=NS (T=0,124)D: P=NS (T=2,900)S: P=NS (T=2,521)P: P=NS (T=-1,099)

R: P=NS (T=0,190)D: P<0,001 (T=4,684)S: P=0,0236 (T=3,753)P: P=NS(T=0,634)

2 R: P=NS (T=1,017)D: P=NS (T=2,100)S: P=NS (T=2,092)P: P=NS (T=0,073)

R: P=NS (T=1,082)D: P=0,0154 (T=3,884)S: P=NS(T=3,325)P: P=NS (T=1,807)

3 R: P=NS (T=0,065)D: P=NS (T=1,784)S: P=NS (T=1,233)P: P=NS (T=1,733)

Table 2: T- and P- values from statistical analyses with the Tukey Test. Pairwise comparisons between transect levels have been made within each site with reference to the number of genera. 1,2,3 and 4 represents the transect levels from the shore line towards the reef slope. R, D, S and P represents Pulau Rebak Besar, Teluk Datai, Pulau Singa Besar and Pulau Payar, respectively.

Transect levels 2 3 41 R: P=NS (T=1,387)

D: P=NS(T=0,693)S: P=NS (T=-0,260)P: P=NS (T=-1,647)

R: P=0,0147 (T=3,900)D: P<0,001 (T=4,940)S: P=0,0012 (T=4,594)P: P=NS (T=-2,340)

R: P=0,0017 (T=4,507)D: P=0,0435 (T=3,554)S: P=0,0060 (T=4,160)P: P=NS (T=-2,080)

2 R: P=NS (T=2,513)D: P=0,0044 (T=4,247)S: P<0,001 (T=4,854)P: P=NS (T=-0,693)

R: P=NS (T=3,120)D: P=NS (T=2,860)S: P=0,0024 (T=4,420)P: P=NS (T=-0,433)

3 R: P=NS (T=0,607)D: P=NS (T=-1,387)S: P=NS (T=-0,433)P: P=NS (T=0,260)

Table 3. H- and P- values from statistical analyses using the Kruskal-Wallis Test. Pairwise comparisons between transect levels within each site, with reference to the amounts of corals covered by sediments. 1,2,3 and 4 represents the transect levels counting from the shore line to the reef slope. R, D, S and P represents Pulau Rebak Besar, Teluk Datai, Pulau Singa Besar and Pulau Payar, respectively.

Transect levels 2 3 41 R: P=NS (H=0,54)

D: P=NS (H=0,71)S: P=NS (H=0,10)P: P=NS (H=0,18)

R: P=NS (H=0,01)D: P=0,036 (H=4,41)S: P=0,006 (H=7,46)P: P=NS (H=0,00)

R: P=NS(H=0,01)D: P=0,005(H=8,04)S: P=0,001 (H=10,60)P: P=0,027 (H=4,86)

2 R: P=NS(H=1,10)D: P=NS (H=2,82)S: P=0,036 (H=4,41)P: P=NS (H=0,14)

R: NS (H=1,59)D: P=0,009 (H=6,89)S: P=0,006 (H=7,46)P: P=NS (H=2,65)

3 R: P=NS (H=0,07)D: P=0,046 (H=3,98)S: P=NS(H=1,33)P: P=0,024 (H=5,11)

Page 32: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

30

Table 4: H- and P-values from statistical analyses with the Kruskal-Wallis Test. Pairwise com- parisons between transect levels within each site with reference to the amounts of rubble. 1,2,3 and 4 represents the transect levels from the shoreline towards the reef slope. R, D, S and P represents Pulau Rebak Besar, Teluk Datai, Pulau Singa Besar and Pulau Payar, respectively.

Transect levels2 3 4

1 R: P=0,172(H=1,86)D: P=0,674 (H=0,18)S: P=0,753(H=0,10)P: P=0,834(H=0,04)

R: P=0,227 (H=1,46)D: P=0,006 (H=7,46)S: P=0,074 (H=3,019)P: P=0,834 (H=0,04)

R: P=0,010 (H=6,62)D: P=0,001 (H=10,60)S: P=0,001 (H=11,29)P: P=0,318 (H=1,00)

2 R: P=0,834 (H=0,04)D: P=0,093 (H=2,82)S: P=0,066 (H=3,38)P: P=0,834 (H=0,04)

R: P=0,208 (H=1,59)D: P=0,002 (H=9,93)S: P=0,003 (H=8,65)P: P=0,495 (H=0,47)

3 R: P=0,074 (H=3,19)D: P=0,248 (H=1,33)S: P=0,036 (H=4,41)P: P=0,227 (H=1,46)

Page 33: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

31

App

endi

x II

.T

rans

ect d

ata

for

ever

y tr

anse

ct in

eac

h st

udy

area

. D, S

, R a

nd P

rep

rese

nt e

ach

area

, res

pect

ivel

y, a

nd T

rep

rese

nt e

ach

tran

sect

leve

l. T

he v

alue

s sh

ow th

e am

ount

of

each

subs

trat

e ty

pe a

s a

per

cent

of

the

tota

l tra

nsec

t.

site

TA

CR

OA

LVE

OA

NE

MA

ST

ER

OC

YP

HD

CA

DC

DIP

LOE

CH

INO

EU

PH

FA

VA

FA

VT

FU

NG

GA

LAX

GO

NIO

PG

ON

IAS

HA

LOH

YD

NO

LOB

OM

ER

UM

ON

TA

ST

MO

NT

IM

YC

EO

TH

ER

OX

YP

AV

PA

CH

YP

EC

PLA

TY

PLE

UR

OP

OC

ILLO

D1

0,5

0,0

0,0

0,0

0,0

0,1

0,0

0,0

0,0

0,0

0,6

0,0

0,7

1,0

7,0

0,7

0,0

0,0

0,0

0,0

0,0

0,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,5

0,0

0,0

0,0

3,3

0,0

0,0

0,0

0,0

0,3

0,0

0,0

0,0

0,9

3,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,0

0,0

0,0

0,0

1,8

0,0

0,0

0,0

0,0

0,0

0,6

0,0

0,0

0,0

0,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,0

0,0

0,0

0,0

4,7

0,0

0,0

0,0

0,0

4,3

5,1

0,0

0,5

0,0

2,3

0,0

0,5

0,0

0,0

0,0

0,4

0,0

0,0

0,0

0,4

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,0

0,0

0,0

0,0

13,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,0

0,0

0,0

0,0

30,7

0,0

0,0

0,0

0,0

0,0

1,9

0,0

0,0

0,0

2,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,0

0,0

0,0

0,0

22,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D1

0,0

0,0

0,0

0,0

0,0

16,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,8

0,0

0,0

0,0

0,0

0,0

0,0

1,4

0,0

1,9

6,1

0,0

0,0

4,5

0,0

4,8

0,0

0,0

0,0

0,0

0,0

0,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,4

0,0

0,0

0,7

0,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

8,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

1,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2,2

0,0

0,4

0,0

0,0

0,0

1,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

3,2

2,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

7,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

15,4

1,6

0,0

0,0

0,0

3,3

7,2

0,0

1,6

0,0

6,2

0,0

1,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

21,3

0,0

0,9

0,0

0,0

0,2

7,7

0,0

0,0

0,0

6,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,6

0,0

0,0

D2

0,0

0,0

0,0

0,0

0,0

4,0

0,0

0,0

0,0

0,0

0,6

1,2

0,0

0,0

0,0

6,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

0,0

0,9

0,0

13,6

0,6

1,7

0,0

0,0

1,8

1,4

0,0

0,7

0,3

8,7

0,0

0,0

0,0

3,4

0,0

0,9

0,0

0,0

1,1

0,0

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

0,0

0,0

0,0

5,1

0,4

1,0

0,0

0,0

0,5

5,4

0,0

0,0

0,5

1,4

0,0

0,7

0,0

0,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

0,5

0,0

0,6

1,4

0,0

3,3

0,0

3,1

4,1

6,4

1,0

0,0

0,0

7,6

0,0

1,1

0,0

0,0

0,0

0,5

0,0

0,0

0,2

0,0

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

0,0

0,0

0,0

16,7

0,0

0,0

0,0

0,8

3,4

0,0

0,0

0,0

0,7

3,2

0,0

0,7

0,0

1,6

0,0

0,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

0,0

0,0

0,0

15,4

0,0

3,2

0,0

0,0

3,4

1,7

0,0

1,7

0,4

8,0

0,0

2,3

0,0

2,2

0,0

0,4

0,0

0,0

0,0

0,0

0,0

0,0

2,0

0,0

0,0

D3

0,0

0,0

0,0

0,0

3,4

0,0

0,0

0,0

0,0

0,0

0,7

1,0

0,0

0,0

0,0

1,1

0,0

0,0

0,0

0,8

0,0

0,0

0,0

0,0

0,0

2,6

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

0,0

0,0

7,3

2,6

0,3

2,1

0,0

0,0

0,0

0,0

0,0

0,0

0,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

7,0

0,0

0,0

0,0

0,0

0,0

D3

0,0

0,0

1,1

0,0

3,7

0,7

0,4

0,9

0,0

0,0

2,1

3,4

1,2

2,8

7,1

5,4

0,0

0,3

0,0

0,0

0,0

0,0

0,0

1,2

0,0

0,2

0,0

0,0

0,0

0,0

0,0

D4

0,4

0,0

0,0

0,0

0,0

2,1

0,0

0,3

0,0

0,0

0,8

4,7

0,0

0,0

0,0

1,4

0,0

0,8

0,0

0,0

0,0

0,0

0,0

0,2

0,0

1,5

0,0

0,0

0,0

0,0

0,0

D4

0,0

0,0

0,0

0,0

0,0

6,0

0,0

13,2

0,0

0,0

3,5

12,4

0,3

0,0

14,2

6,4

0,0

0,0

0,0

1,3

0,0

1,3

0,0

0,0

0,0

3,8

0,0

0,0

0,0

0,0

0,2

D4

0,0

0,0

0,0

0,0

0,0

16,9

0,0

21,0

0,0

0,0

14,3

2,7

0,0

0,0

5,3

11,5

0,0

0,4

0,5

8,2

0,0

0,8

0,0

0,0

0,4

0,4

0,0

0,0

0,0

0,0

0,0

D4

5,2

0,0

0,0

0,0

0,0

16,5

0,0

9,8

0,0

0,0

0,0

3,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,3

0,0

0,0

0,2

1,5

0,0

0,5

0,0

0,0

0,7

D4

0,0

0,0

0,0

0,0

0,0

4,5

0,0

6,9

0,0

0,0

3,7

5,7

0,0

0,0

0,0

0,0

0,0

1,2

0,0

0,0

0,0

3,8

0,0

0,0

0,0

1,5

0,0

0,0

1,7

0,0

1,5

D4

0,0

0,0

0,0

0,0

0,0

2,2

9,6

0,0

0,0

0,0

0,8

2,3

0,0

0,8

34,8

4,4

0,0

0,0

0,0

2,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,3

0,0

0,0

0,0

3,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,1

0,0

0,0

0,0

0,0

0,0

0,0

D4

0,0

0,0

0,3

0,0

0,0

8,0

1,5

1,2

0,0

0,0

0,5

4,3

0,0

0,7

0,4

4,8

0,0

1,3

0,0

8,5

0,0

1,9

0,0

0,0

1,9

1,9

0,0

0,0

7,1

0,0

0,0

S1

0,6

0,0

0,0

0,0

1,5

19,9

0,0

0,0

0,0

0,0

1,9

0,3

0,0

0,2

0,0

16,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

26,1

0,0

0,0

0,0

0,0

1,5

5,5

0,0

0,0

0,0

5,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

8,8

0,0

0,0

0,0

0,0

0,6

1,1

0,0

0,0

0,0

4,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

9,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

31,8

0,0

0,0

0,0

0,0

0,2

1,0

0,0

0,0

0,0

1,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,2

0,1

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

60,6

0,0

0,0

0,0

0,0

1,9

0,4

0,0

0,0

0,0

8,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

27,4

0,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

6,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

13,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

21,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S1

0,0

0,0

0,0

0,0

0,0

22,6

0,0

0,0

0,0

0,0

1,9

0,0

0,0

0,0

0,0

8,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

7,2

0,0

0,0

0,0

0,0

0,0

0,0

0,6

S2

0,0

0,0

0,0

0,0

0,0

14,1

0,0

0,0

0,0

0,0

0,3

2,9

0,0

0,5

5,2

9,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,5

19,1

0,2

0,0

0,0

0,0

0,2

1,3

0,2

0,0

0,3

6,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,0

34,1

0,3

0,0

0,0

0,0

0,3

4,8

0,0

0,0

0,0

14,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,0

21,0

0,0

0,0

0,0

0,0

0,8

0,8

0,0

0,0

0,0

4,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,0

57,5

0,0

0,0

0,0

0,0

0,0

2,4

0,0

0,0

0,0

10,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,0

49,8

0,0

0,0

0,0

0,0

0,0

3,0

0,0

0,0

0,0

6,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,0

10,4

0,3

0,0

0,0

0,0

0,6

0,0

0,0

0,0

0,0

14,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

S2

0,0

0,0

0,0

0,0

0,0

6,1

0,0

0,0

0,0

0,0

0,0

2,2

0,0

0,0

0,0

9,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

PO

RP

SA

MR

UB

SA

ND

SE

DS

PS

YM

TU

RB

TU

RF

T

3,4

0,0

2,0

63,2

20,7

0,0

0,0

0,0

0,0

1,5

0,0

37,6

43,7

8,7

0,0

0,0

0,0

0,0

0,2

0,0

71,0

26,3

0,0

0,0

0,0

0,0

0,0

1,4

0,0

38,1

18,9

23,0

0,8

0,0

0,0

0,0

0,0

0,0

42,8

31,0

12,4

0,0

0,0

0,0

0,0

9,2

0,0

42,8

9,4

3,8

0,0

0,0

0,0

0,0

5,3

0,0

27,1

13,2

27,2

0,0

0,0

0,0

0,0

0,1

0,0

56,8

6,0

20,1

0,5

0,0

0,0

0,0

7,3

0,0

3,3

9,8

43,4

8,9

7,3

0,0

0,0

1,5

0,0

75,5

10,1

11,5

0,0

0,0

0,0

0,0

0,0

0,0

76,5

11,6

3,0

0,0

0,0

0,0

0,0

1,6

0,0

70,2

14,9

7,7

0,0

0,0

0,0

0,0

6,5

0,0

16,2

52,3

11,3

0,9

0,0

0,0

0,0

2,0

0,0

8,3

28,7

24,3

0,6

0,0

0,0

0,0

7,7

0,0

4,9

12,8

38,0

0,0

0,0

0,0

0,0

8,7

0,0

16,8

20,7

41,3

0,0

0,0

0,0

0,0

3,9

0,0

0,0

6,4

47,0

1,7

6,3

0,0

0,0

1,3

0,0

31,4

27,0

4,1

19,8

1,3

0,0

0,0

1,3

0,0

26,1

6,8

28,5

4,6

3,5

0,0

0,0

3,2

0,0

31,8

11,5

18,0

4,0

3,5

0,6

0,0

1,6

0,0

3,6

29,5

18,5

6,3

0,0

0,0

0,0

17,7

0,8

0,0

2,1

70,0

0,0

0,0

0,0

0,0

31,2

1,2

0,0

0,0

48,4

0,0

0,0

0,0

0,0

23,3

0,0

0,0

0,0

42,8

0,0

3,7

0,0

0,0

36,8

0,0

0,0

0,0

51,3

0,0

0,0

0,0

0,0

22,8

0,0

0,0

0,0

13,7

1,2

0,0

0,0

0,0

0,8

0,0

0,0

0,0

17,2

0,0

0,0

0,0

0,0

3,3

0,0

0,0

4,1

53,2

0,0

0,0

0,0

0,0

16,6

0,0

0,0

24,1

27,2

0,0

1,8

0,0

0,0

3,2

0,7

5,5

0,0

31,5

1,7

0,0

0,0

0,0

56,7

0,0

0,0

0,0

38,6

0,0

0,0

0,0

0,0

4,5

0,0

1,7

10,5

27,7

3,3

8,8

0,0

0,0

18,9

0,0

24,0

6,0

9,9

0,0

0,2

0,0

0,0

28,8

0,0

5,8

10,2

17,0

0,0

0,0

0,0

0,0

5,9

0,0

4,0

41,3

24,6

0,0

0,0

0,0

0,0

19,0

0,0

18,0

17,2

11,0

0,0

0,0

0,0

0,0

10,9

0,0

13,8

2,4

1,9

0,0

0,0

0,0

0,0

12,6

0,0

30,9

17,7

3,0

0,0

0,0

0,0

0,0

8,8

0,0

21,2

28,6

3,7

0,0

0,0

0,0

0,0

12,0

0,0

17,6

23,5

6,1

0,0

0,0

0,0

0,0

7,7

0,0

47,3

4,8

7,8

0,0

0,0

0,0

0,0

3,3

0,0

65,6

1,3

1,2

0,0

0,0

0,0

0,0

16,5

0,0

7,4

2,0

20,0

0,0

0,0

0,0

0,0

16,9

0,0

40,6

7,8

7,6

0,0

0,0

0,0

0,0

13,2

0,0

2,2

10,7

3,8

0,0

0,0

0,0

0,0

10,6

0,0

13,2

9,0

8,1

0,0

0,0

0,0

0,0

22,0

1,5

28,1

12,7

10,0

0,0

0,0

0,0

0,0

20,2

0,0

0,0

3,0

59,1

0,0

0,0

0,0

0,0

Page 34: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

32

site

TA

CR

OA

LVE

OA

NE

MA

ST

ER

OC

YP

HD

CA

DC

DIP

LOE

CH

INO

EU

PH

FA

VA

FA

VT

FU

NG

GA

LAX

GO

NIO

PG

ON

IAS

HA

LOH

YD

NO

LOB

OM

ER

UM

ON

TA

ST

MO

NT

IM

YC

EO

TH

ER

OX

YP

AV

PA

CH

YP

EC

PLA

TY

PLE

UR

OP

OC

ILLO

S4

2,5

0,0

0,0

0,0

0,0

13,9

0,0

0,0

0,0

0,0

0,6

2,2

0,0

0,3

0,8

16,5

0,0

0,0

0,0

0,0

0,0

0,8

0,0

0,0

0,0

0,0

44,7

0,0

0,0

0,0

0,0

S4

0,0

0,0

0,0

0,0

1,5

5,8

0,0

0,0

0,0

0,0

1,2

2,2

0,0

0,0

0,4

22,2

0,0

0,2

0,0

1,3

0,0

0,7

0,8

0,0

0,0

0,3

0,0

1,0

1,1

0,0

0,0

S4

0,0

0,0

0,0

0,0

1,5

13,9

0,0

7,7

0,0

0,0

1,0

0,0

0,0

0,0

0,0

1,8

0,0

3,2

0,0

0,0

0,0

0,0

0,5

0,0

0,0

0,0

0,0

3,8

1,2

0,0

1,1

S4

0,0

0,0

0,0

0,0

1,3

13,0

0,0

1,3

0,0

0,0

0,5

5,6

0,0

0,4

9,4

15,5

0,0

0,0

0,0

0,6

0,0

0,6

0,0

0,0

0,0

6,7

0,0

2,7

0,0

0,0

0,4

S4

0,0

0,0

0,0

0,0

0,7

7,4

0,0

0,0

0,0

2,0

0,5

0,6

0,0

0,0

1,6

17,0

0,0

2,2

0,0

3,9

0,0

0,0

0,0

0,0

0,0

0,0

11,8

1,5

0,0

0,0

0,8

S4

1,3

0,0

0,0

0,0

5,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,5

2,8

0,0

0,0

0,0

0,0

0,0

0,0

3,4

0,0

0,1

0,0

0,0

0,0

0,0

0,0

0,0

S4

0,0

0,0

0,0

0,0

1,1

7,0

0,0

4,8

2,6

0,0

0,3

1,6

0,0

0,0

0,0

6,3

0,0

1,2

0,0

0,0

0,0

3,3

0,0

0,0

0,0

3,1

0,0

2,6

0,0

0,0

0,0

S4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

5,8

0,5

0,0

0,7

1,5

0,0

0,6

0,0

2,4

0,0

0,0

0,0

0,0

0,0

1,0

0,0

0,7

0,0

2,1

6,0

0,0

0,0

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

24,6

0,0

0,0

0,0

0,0

0,0

0,6

0,0

0,0

0,0

17,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

14,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

31,9

5,4

0,0

0,0

0,0

0,4

2,6

0,0

0,0

0,0

32,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

11,2

0,0

0,0

0,0

0,0

0,6

8,7

0,0

0,0

0,0

25,3

0,0

0,0

0,0

0,0

0,0

0,4

0,0

26,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R1

0,0

0,2

0,0

0,0

0,0

33,1

0,0

0,0

0,0

0,0

0,5

5,9

0,0

0,0

0,0

29,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

11,1

0,0

0,0

0,0

0,0

0,0

0,4

0,0

0,0

0,0

10,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

47,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

50,4

0,0

0,0

0,0

0,0

0,0

1,6

0,0

0,0

0,0

6,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,3

0,0

0,0

0,0

0,0

0,5

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

11,1

0,0

0,0

0,0

0,0

0,8

1,7

0,4

0,0

0,3

2,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R1

0,0

0,0

0,0

0,0

0,0

5,8

0,0

0,0

0,0

0,0

0,2

0,6

0,0

0,0

0,0

10,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R2

0,0

0,0

0,0

0,0

0,0

88,4

0,0

0,0

0,0

0,0

0,9

3,6

0,0

0,0

0,0

0,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,1

0,0

0,0

R2

0,0

0,5

0,0

0,0

0,0

7,8

0,0

1,4

0,0

0,0

3,5

8,7

0,0

0,0

3,3

9,5

0,0

1,7

0,0

0,9

0,0

4,6

0,0

0,0

1,3

0,0

0,0

0,0

0,0

0,0

1,0

R2

0,0

0,0

0,0

0,0

0,0

48,9

5,2

0,0

0,0

0,0

2,9

0,7

0,0

0,0

0,0

13,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R2

0,3

0,0

0,0

0,0

0,0

44,1

1,3

0,0

0,0

0,0

0,0

4,6

0,0

0,0

0,0

21,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

14,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R2

0,0

0,0

0,0

0,0

0,0

46,0

0,0

0,0

0,0

0,0

0,0

4,5

0,0

0,0

0,5

6,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R2

0,0

0,0

0,0

0,0

0,0

52,4

0,0

0,0

0,0

0,0

1,5

1,3

0,0

0,0

0,0

8,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R2

0,7

0,0

0,0

0,0

0,0

29,9

0,0

0,9

0,0

0,0

11,4

5,5

0,0

0,0

0,0

3,3

0,0

0,6

0,0

0,0

0,0

0,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R2

1,0

3,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,4

2,2

0,0

0,0

1,8

5,2

0,0

0,0

0,0

0,0

0,0

0,4

0,0

0,0

0,0

0,0

0,0

0,0

1,6

0,0

0,0

R3

0,0

0,0

0,0

0,0

0,6

60,1

0,0

1,3

0,0

0,0

3,5

4,8

0,0

0,2

0,0

3,2

0,0

0,0

0,0

0,0

0,9

0,9

0,0

0,0

0,0

1,4

0,0

0,0

0,0

0,0

0,0

R3

0,0

0,0

0,0

0,0

0,0

31,0

0,0

0,0

0,0

0,0

0,0

11,6

0,0

1,2

0,0

6,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R3

0,0

0,0

0,0

0,0

0,0

32,0

0,3

7,3

0,0

0,0

1,3

12,0

0,0

0,0

0,0

9,2

0,0

0,9

0,0

0,0

0,7

0,0

0,6

0,0

0,3

1,2

0,0

0,0

3,7

0,0

0,0

R3

0,7

0,0

0,0

0,0

0,8

39,1

0,0

0,0

0,0

0,0

3,5

9,7

0,0

0,2

0,5

16,6

0,0

1,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R3

1,7

0,0

0,0

0,0

0,0

35,4

0,0

0,0

0,0

0,0

1,0

2,4

0,0

0,2

0,6

5,8

0,0

6,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2,0

0,0

0,0

R3

1,4

0,0

0,0

0,0

0,0

17,2

0,0

1,5

0,0

0,0

0,8

0,4

0,0

0,3

0,1

1,2

0,0

1,9

0,0

0,0

0,0

0,0

0,0

0,0

1,7

0,0

0,0

0,0

1,2

0,0

0,0

R3

0,2

0,0

0,0

0,0

0,3

58,9

0,0

1,3

0,0

0,0

2,0

5,6

0,0

2,8

5,0

2,1

0,0

0,0

0,0

0,0

0,0

1,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R3

5,3

1,6

0,0

0,0

0,6

6,7

0,0

0,0

1,2

0,0

5,1

4,8

0,0

0,0

1,4

11,3

0,0

0,5

0,0

0,0

0,0

0,3

0,0

0,0

0,0

0,0

0,0

0,0

1,6

0,0

0,0

R4

0,0

1,0

0,0

0,0

0,0

0,0

0,0

2,5

0,4

0,0

3,8

6,4

0,0

0,1

0,9

6,0

0,0

0,9

0,0

3,2

0,0

0,6

0,0

0,0

0,5

0,0

0,0

0,0

0,0

0,0

0,0

R4

0,0

0,0

0,0

0,0

0,6

60,1

0,0

1,3

0,0

0,0

3,5

4,8

0,0

0,2

0,0

3,2

0,0

0,0

0,0

0,0

0,9

0,9

0,0

0,0

0,0

1,4

0,0

0,0

0,0

0,0

0,0

R4

0,0

0,1

0,0

0,0

0,0

2,1

0,0

0,0

0,0

0,0

3,7

0,4

0,0

0,1

6,7

0,0

0,0

0,8

0,0

0,0

0,0

3,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R4

1,8

0,0

0,0

0,0

0,0

5,8

0,0

0,0

0,0

0,0

8,6

3,8

0,0

0,0

12,9

2,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

R4

0,8

3,6

0,0

0,0

0,0

3,1

0,0

0,0

0,3

0,0

6,0

2,5

0,0

0,0

0,6

3,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,6

0,0

0,0

0,0

0,0

0,0

0,0

R4

6,0

0,0

0,0

0,0

1,7

58,6

0,0

0,0

0,0

0,0

4,5

3,6

0,0

0,0

0,0

4,0

0,0

1,2

0,0

0,0

0,0

1,1

1,0

0,0

0,0

0,0

0,0

0,0

0,3

0,0

0,0

R4

2,5

3,2

0,0

0,0

0,0

23,0

0,4

0,0

0,0

0,0

1,9

12,9

0,0

0,0

2,0

2,1

0,0

2,5

0,0

0,0

0,3

0,5

0,0

0,0

0,0

0,0

0,0

0,0

1,6

0,0

0,0

R4

0,8

1,1

0,0

0,0

4,0

33,0

1,3

0,0

0,0

0,0

2,1

3,7

0,0

0,0

4,7

3,1

0,0

5,9

0,0

0,0

1,0

0,6

0,0

0,0

0,0

0,0

0,0

0,0

1,2

0,0

0,0

P1

0,0

0,0

0,0

0,0

0,0

15,5

0,0

0,0

0,0

0,0

0,0

6,6

0,0

0,0

0,0

2,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

39,6

0,0

3,1

0,0

0,0

0,0

0,0

0,0

P1

0,0

1,4

0,0

0,0

0,7

2,1

8,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,7

0,0

0,0

0,0

0,0

0,0

0,6

0,0

12,3

0,0

32,1

0,0

0,0

0,0

0,0

0,0

P1

0,0

0,0

0,0

0,0

2,0

8,2

2,6

0,0

0,0

0,0

0,0

4,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,6

0,0

14,2

0,0

35,8

0,0

0,0

0,0

0,0

0,0

P1

0,0

0,0

2,3

0,0

0,0

18,8

0,4

0,0

0,0

0,0

0,0

0,9

0,0

0,0

0,0

0,3

0,0

0,0

0,0

0,0

0,0

10,2

0,0

24,2

0,0

6,6

0,0

0,0

0,0

0,0

0,0

P1

0,0

0,0

0,0

0,0

0,0

17,1

1,3

0,0

0,0

0,0

0,0

0,5

0,0

0,0

1,6

0,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

24,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P1

0,0

0,0

0,0

0,0

0,0

2,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4,4

0,0

50,7

0,0

3,8

0,0

0,0

0,0

0,0

0,0

P1

0,0

0,0

0,0

0,0

0,0

1,3

7,4

0,0

0,0

0,0

0,0

1,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

40,8

0,0

0,0

0,0

0,0

0,0

0,0

0,3

P1

0,0

0,0

0,0

0,0

0,0

10,7

2,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

9,9

0,0

1,9

0,0

0,0

0,0

0,0

0,6

PO

RP

SA

MR

UB

SA

ND

SE

DS

PS

YM

TU

RB

TU

RF

T

4,3

0,0

0,0

4,5

9,1

0,0

0,0

0,0

0,0

10,4

0,0

0,0

11,5

27,6

4,3

8,1

0,0

0,0

33,5

0,0

0,0

3,5

23,8

0,0

3,8

0,0

0,0

15,8

0,0

0,0

5,7

17,2

3,8

0,0

0,0

0,0

6,1

0,0

0,0

6,2

36,0

2,1

0,0

0,0

0,0

48,6

0,0

0,0

0,0

36,3

0,3

0,0

0,0

0,0

28,9

0,0

0,0

2,4

31,9

0,9

2,4

0,0

0,0

36,7

12,3

0,0

0,0

28,4

0,0

1,7

0,0

0,0

0,0

0,0

41,6

1,5

0,0

0,0

0,0

0,0

0,0

1,7

1,2

12,2

3,9

8,5

0,0

0,0

0,0

0,0

3,1

0,0

2,4

0,0

22,1

0,0

0,0

0,0

0,0

4,1

0,0

1,2

0,0

23,4

0,0

0,5

0,0

1,7

3,7

0,0

0,0

12,2

14,2

0,0

0,0

0,0

0,1

1,3

0,0

22,6

14,0

0,5

0,0

0,0

0,0

0,0

1,7

0,0

28,4

0,6

52,0

0,0

0,4

0,0

0,0

3,8

0,0

2,1

1,9

74,9

0,0

0,0

0,0

0,0

0,2

0,0

2,0

0,0

0,0

0,0

4,7

0,0

0,0

5,2

0,9

0,0

0,0

49,2

0,0

0,9

0,0

0,0

3,6

0,0

0,0

3,3

19,6

0,0

2,4

0,0

0,0

2,0

0,0

3,2

8,8

0,8

0,0

0,0

0,0

0,0

1,7

0,0

22,2

16,3

0,0

0,0

2,7

0,0

0,0

0,7

0,3

24,7

10,3

0,8

0,0

0,0

0,0

0,0

9,4

0,0

0,0

0,0

38,0

0,0

0,0

0,0

0,0

1,6

1,5

0,0

0,0

75,4

0,1

2,9

0,0

0,0

0,8

0,0

4,3

9,6

8,9

0,0

0,0

0,0

0,0

11,5

0,0

15,8

0,4

17,0

0,0

5,7

0,0

0,0

3,3

0,2

0,0

0,0

24,8

0,4

0,0

0,0

2,3

0,3

0,3

1,4

15,2

6,3

0,0

4,1

0,0

0,0

1,1

0,0

10,7

28,6

0,0

0,0

3,3

0,0

1,5

1,6

0,3

5,3

3,6

61,0

0,0

0,0

0,0

0,9

1,1

0,0

0,0

0,0

18,1

0,6

1,2

0,0

0,0

5,8

2,6

0,0

0,0

49,7

0,0

1,8

0,0

0,0

3,7

0,0

0,0

0,0

57,4

0,0

11,8

1,4

0,0

0,8

0,0

4,3

9,6

8,9

0,0

0,0

0,0

0,0

24,1

0,0

0,0

0,0

50,4

0,0

2,6

5,4

0,0

1,2

0,6

0,0

0,0

59,4

0,0

2,8

0,6

0,0

6,1

3,8

0,0

0,0

68,3

0,0

0,7

0,0

0,0

0,8

2,1

0,0

4,8

7,5

1,2

1,5

0,6

0,0

1,7

3,2

0,0

0,0

38,2

0,7

1,8

1,9

0,0

1,6

0,6

0,0

0,0

33,3

0,8

0,0

1,6

0,0

24,7

0,0

1,9

5,4

0,9

0,0

0,0

0,0

0,0

25,9

0,0

4,6

8,1

0,5

0,0

0,0

0,0

0,0

23,4

0,4

0,0

8,4

0,0

0,0

0,0

0,0

0,7

21,7

0,0

4,7

10,1

0,0

0,0

0,0

0,0

0,0

44,1

0,8

1,7

7,1

0,4

0,0

0,0

0,0

0,0

26,9

0,0

2,0

10,0

0,0

0,0

0,0

0,0

0,0

19,2

0,0

8,1

21,9

0,0

0,0

0,0

0,0

0,0

37,2

0,6

4,0

31,1

0,0

0,0

0,0

0,0

0,0

Page 35: An inventory of coral reefs in Langkawi Archipelago, Malaysia – …files.webb.uu.se/uploader/858/MFS-088jonsson-dagmar.pdf · 2015. 11. 20. · 2. A general description of the Langkawi

33

site

TA

CR

OA

LVE

OA

NE

MA

ST

ER

OC

YP

HD

CA

DC

DIP

LOE

CH

INO

EU

PH

FA

VA

FA

VT

FU

NG

GA

LAX

GO

NIO

PG

ON

IAS

HA

LOH

YD

NO

LOB

OM

ER

UM

ON

TA

ST

MO

NT

IM

YC

EO

TH

ER

OX

YP

AV

PA

CH

YP

EC

PLA

TY

PLE

UR

OP

OC

ILLO

P2

0,0

0,0

0,0

0,0

0,0

0,0

5,1

0,0

0,0

0,0

0,0

1,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

22,0

0,0

35,7

0,0

1,6

0,0

0,0

0,0

0,0

0,6

P2

0,0

0,0

0,0

0,0

0,0

1,1

17,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,5

0,0

0,0

0,0

0,0

0,0

9,5

0,0

13,7

0,0

15,0

0,0

0,0

0,0

0,0

0,0

P2

0,0

0,0

0,0

0,0

0,0

4,9

2,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

24,7

0,0

27,1

0,0

10,9

0,0

0,0

0,0

0,0

0,0

P2

0,0

0,0

0,0

0,0

0,0

19,5

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

5,4

0,0

5,2

0,0

0,0

0,0

0,0

0,0

P2

0,0

0,0

0,0

0,0

0,8

7,8

7,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P2

0,0

0,0

0,0

0,0

0,6

15,2

14,3

0,0

0,0

0,0

1,4

0,0

0,0

0,0

0,0

1,6

0,7

0,9

0,0

0,0

0,0

0,0

0,0

0,9

0,0

6,8

0,0

0,0

0,0

0,0

1,2

P2

0,0

1,9

0,0

0,0

0,0

6,1

32,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,5

0,0

0,0

0,0

0,0

0,0

P2

0,0

0,0

0,0

0,0

0,0

26,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

0,0

0,0

0,0

12,5

36,8

0,0

0,0

0,0

0,0

1,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

2,8

0,0

0,0

24,7

0,0

0,0

0,0

0,0

0,0

0,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

8,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

0,0

0,0

0,0

4,4

2,6

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

13,8

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,1

0,0

P3

0,0

0,0

0,0

0,0

0,0

3,7

7,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,5

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

0,0

0,0

0,0

16,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

0,0

0,0

0,0

13,1

3,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,6

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

1,2

0,0

0,0

18,9

7,4

0,0

0,0

0,0

0,0

1,3

0,0

0,0

1,0

4,3

0,4

0,0

0,0

0,0

0,0

0,0

0,0

1,2

0,0

0,9

0,0

0,0

0,0

0,0

0,0

P3

0,0

0,0

0,0

0,0

0,0

0,0

19,4

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

P4

0,0

0,0

0,0

0,0

0,0

4,0

8,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

9,7

0,0

0,0

0,0

0,4

0,0

0,0

0,0

0,0

0,7

P4

0,0

0,0

0,0

0,0

0,0

2,5

3,2

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2,5

0,0

8,8

0,0

0,0

0,0

0,0

0,0

P4

0,0

0,0

0,0

0,0

0,0

4,8

3,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,3

0,0

2,5

0,0

0,5

0,0

0,0

0,0

0,0

0,3

P4

0,0

0,0

0,0

0,0

0,9

2,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

3,6

0,0

0,0

0,0

2,9

0,0

P4

0,0

0,0

0,0

0,0

0,0

0,0

7,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,4

0,0

P4

0,0

0,0

0,0

0,0

0,0

2,4

12,1

0,0

0,0

0,0

0,0

0,0

0,0

0,0

4,2

1,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

1,9

0,0

0,0

0,0

2,1

0,5

P4

0,0

0,0

0,0

0,0

0,0

0,4

3,9

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,9

P4

0,0

0,0

0,0

0,0

0,6

8,3

22,7

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

2,3

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

0,0

PO

RP

SA

MR

UB

SA

ND

SE

DS

PS

YM

TU

RB

TU

RF

T

30,4

0,0

3,2

0,6

0,0

0,0

0,0

0,0

0,0

37,3

0,0

2,8

2,5

0,0

0,0

0,0

0,0

0,0

19,3

0,0

9,2

1,2

0,0

0,0

0,0

0,0

0,0

49,5

0,0

2,3

17,5

0,8

0,0

0,0

0,0

0,0

72,4

0,0

0,0

11,2

0,0

0,0

0,0

0,0

0,0

16,9

0,0

12,5

27,2

0,0

0,0

0,0

0,0

0,0

53,7

1,0

0,6

4,0

0,0

0,0

0,0

0,0

0,0

13,7

0,0

0,0

59,8

0,0

0,0

0,0

0,0

0,0

44,4

0,0

0,0

5,0

0,0

0,0

0,0

0,0

0,0

48,8

0,0

0,0

13,1

1,3

0,0

0,0

0,0

0,0

52,3

0,0

4,5

19,4

0,0

0,0

0,0

0,0

0,0

39,3

0,0

6,5

39,1

0,0

0,0

0,0

0,0

0,0

69,8

0,0

0,0

14,1

0,0

0,0

0,0

0,0

0,0

30,4

0,0

8,6

41,5

2,5

0,0

0,0

0,0

0,0

41,8

0,0

1,7

19,2

1,1

0,0

0,0

0,0

0,0

34,5

0,4

6,8

39,1

0,0

0,0

0,0

0,0

0,0

62,3

0,6

10,1

4,1

0,0

0,0

0,0

0,0

0,0

50,4

0,0

5,1

27,7

0,0

0,0

0,0

0,0

0,0

73,4

0,0

8,1

3,6

0,0

0,0

0,0

0,0

0,0

56,9

0,4

10,5

23,0

0,0

0,0

0,0

0,0

0,0

65,4

0,0

6,9

19,1

0,0

0,0

0,0

0,0

0,0

23,2

0,0

0,0

52,7

0,0

0,0

0,0

0,0

0,0

56,1

0,0

0,6

38,3

0,0

0,0

0,0

0,0

0,0

15,6

0,0

1,9

48,9

0,0

0,0

0,0

0,0

0,0