49
An Introduction to Time-Frequency Analysis Speaker: Po-Hong Wu Advisor: Jian-Jung Ding Digital Image and Signal Processing Lab GICE, National Taiwan University 1 NTU, GICE, MD531, DISP Lab

An Introduction to Time-Frequency Analysis

Embed Size (px)

DESCRIPTION

An Introduction to Time-Frequency Analysis. Speaker: Po-Hong Wu Advisor: Jian-Jung Ding Digital Image and Signal Processing Lab GICE, National Taiwan University. Outline. Introduction Short-Time Fourier Transform Gabor Transform Wigner Distribution Function Spectrogram S Tranform - PowerPoint PPT Presentation

Citation preview

1

An Introduction to Time-Frequency Analysis

Speaker: Po-Hong WuAdvisor: Jian-Jung Ding

Digital Image and Signal Processing LabGICE, National Taiwan University

NTU, GICE, MD531, DISP Lab

NTU, GICE, MD531, DISP Lab 2

Outline• Introduction• Short-Time Fourier Transform• Gabor Transform• Wigner Distribution Function• Spectrogram• S Tranform• Cohen’s Class Time-Frequency Distribution• Fractional Fourier Transform• Motion on Time-Frequency Distributions• Hilbert-Huang Transform• Conclusion• Reference

NTU, GICE, MD531, DISP Lab 3

Introduction

Fourier transform (FT) t varies from ∞~∞Time-Domain Frequency Domain

[A1]

Why do we need time-frequency transform?

2j f tX f x t e dt

0 5 10 15 20 25 30-1

-0.5

0

0.5

1

-5 0 5-2

-1

0

1

2f(t)

Fouriertransform

NTU, GICE, MD531, DISP Lab 4

Example: x(t) = cos( t) when t < 10, x(t) = cos(3 t) when 10 t < 20, x(t) = cos(2 t) when t 20

[B2]

0 5 10 15 20 25 30

-5

-4

-3

-2

-1

0

1

2

3

4

5

NTU, GICE, MD531, DISP Lab 5

Short Time Fourier Transform

w(t): mask function

也稱作 windowed Fourier transform

or

time-dependent Fourier transform

2, j fX t f w t x e d

NTU, GICE, MD531, DISP Lab 6

When w(t) is a rectangular functionw(t) = 1 for |t| B , w(t) = 0 , otherwise

[B3]

2,t B j f

t BX t f x e d

STFT

0 1 2 3 4 5 6 7 8 9 10 11

sec

0

2

4

6

8

10

12

14

Hz

NTU, GICE, MD531, DISP Lab 7

Advantage: less computation timeDisadvantage: worse representaionApplication: deal with large data Ex: real time processing

NTU, GICE, MD531, DISP Lab 8

Gabor TransformA specail case of the STFTwhere

Other definition

[B4]

2( ) 2, t j fxG t f e e x d

2( ) exp( )w t t

Gabor

0 1 2 3 4 5 6 7 8 9 10 11

sec

0

2

4

6

8

10

12

14

Hz

2( )

( )2 21

,2

t tj

xG t e e x d

NTU, GICE, MD531, DISP Lab 9

Why do we choose the Guassian function?Among all functions of w(t), the Gaussian

function has area in time-frequency distribution is minimal than other STFT.

Gaussian function is an eigenfunction of Fourier transform, so the Gabor transform has the same properties in time domain and in frequency domain.

NTU, GICE, MD531, DISP Lab 10

Approximation of the Gabor Transform

Because of when |a|>1.9143

Because of when |a|>4.7985

21.9143 ( ) 2

1.9143,

t t j fx t

G t f e e x d

2

0.00001ae

2( )

( )4.79852 2

,3 4.7985

1,

2

t tjt

x tG t e e x d

2 / 2 0.00001ae

NTU, GICE, MD531, DISP Lab 11

Generalization of the Gabor Transform

For larger σ: higher resolution in the time domain but lower resolution in the frequency domain

For smaller σ: higher resolution in the frequency domain but lower resolution in the time domain

2( ) 2, t j fxG t f e e x d

NTU, GICE, MD531, DISP Lab 12

Resolution• Using the generalized Gabor

transform with larger σ • Using other time unit instead of

second

NTU, GICE, MD531, DISP Lab 13

Wigner Distribution Function

Other definition

[B5]

* 2, / 2 / 2 j fxW t f x t x t e d

time (sec)

frequency

(H

z)

Wigner distribution

0 5 10 15 20 25 30-6

-4

-2

0

2

4

6

* 2( , ) ( / 2) ( / 2) jxW t f X f X f e d

NTU, GICE, MD531, DISP Lab 14

Signal auto-correlation function

Spectrum auto-correlation function

Ambiguity function (AF)

[B6]

, / 2 / 2xC t x t x t

, / 2 / 2xS f X f X f

* 2, / 2 / 2 j txA x t x t e dt

Ax(, )

IFTf FTt

IFTf FTt

Sx(, f )FTt IFTf

Cx(t, )

Wx(t, f )

NTU, GICE, MD531, DISP Lab 15

Modified Wigner DistributionWigner Ville DistributionFor compressing inner interference

Analytic signal ( ) ( ) ( )x t x t jx t

* 2( , ) ( / 2) ( / 2) j f

xW t f x t x t e d

NTU, GICE, MD531, DISP Lab 16

Pseudo Wigner DistributionFor surpressing outer interference

where

[B7]

* 2

*

( , ) ( / 2) ( / 2) ( / 2) ( / 2)

( , / 2) ( , / 2)

j fxW t f w w x t x t e d

Y t f Y t f d

2( , ) ( ) ( ) j fY t f w x t e d

Pseudo L-Wigner distribution

time (s)

freq

uenc

y (H

z)

0 5 10 15 20 25 30-6

-4

-2

0

2

4

6

NTU, GICE, MD531, DISP Lab 17

Gabor-Wigner Distribution

[B8]

( , ) ( ( , ), ( , )),f f fC t w p G t w W t w

-10 -5 0 5 10-10

-5

0

5

10

-10 -5 0 5 10-10

-5

0

5

10(a) (b)

( , )p x y xy 2( , ) min( , )p x y x y

NTU, GICE, MD531, DISP Lab 18

Spectrogram

Another form

[B9]

22( , ) ( ) ( ) j fSP t f x h t e d

( , ) ( , ) ( , )h xSP t f W t f W d d

Spectrogram

0 1 2 3 4 5 6 7 8 9 10 11

sec

0

2

4

6

8

10

12

14

Hz

NTU, GICE, MD531, DISP Lab 19

S-TransformOriginal S-Transform

Where w(t)=

[B10]

2 22( )

( , ) ( ) exp[ ]22

i ftf f tST f x t e dt

2 2( )exp[ ]

22

f f t

cos( ) 1 10

( ) cos(3 ) 10 20

cos(2 t) 20 30

t when t

x t t when t

when t

time (sec)

freq

uenc

y

S Transform

0 5 10 15 20 25 30-4

-3

-2

-1

0

1

2

3

4

NTU, GICE, MD531, DISP Lab 20

Generalized S-Transform

Another definition

Ristriction

2( , , ) ( ) ( , , ) i tGS f p x t w t f p e dt

2( , , ) ( ) ( , , ) iGS f p X f W f p e d

( , , ) 1w t f p d

NTU, GICE, MD531, DISP Lab 21

Novel S-Transform with the Special Varying Window

Restriction

When , it becomes the Gabor transform.When , it becomes the original S-trnasform.

2( ) ( )( )( , ) exp( )

22S

F f F f tw t f

( , ) 1sw t f d

2( ) 1/F f

2( )F f f

NTU, GICE, MD531, DISP Lab 22

Cohen’s Class Time-Frequency Distribution

Ambiguity function

[B11]

( , ) ( , ) ( , ) exp( 2 ( ))C t f A j t f d dx x

* 2( , ) ( / 2) ( / 2) j txA x t x x e dt

( , )xWD t f

( , )xC t

( / 2) ( / 2)x t x t ( , )xA

IFTf FTt

IFTf FTt

IFTf FTt

( , )xS f

NTU, GICE, MD531, DISP Lab 23

For the ambiguity functionThe auto terms are always near to

the origin.The cross terms are always from the

origin.

[B12]

24

Kernel function• Choi-Williams Distribution

[B13]

( , )

2, exp

tau (sec)

eta

Choi-Williams distribution

-15 -10 -5 0 5 10 15-10

-8

-6

-4

-2

0

2

4

6

8

10

NTU, GICE, MD531, DISP Lab

NTU, GICE, MD531, DISP Lab 25

• Cone-Shape Distribution22( , ) sin ( )e >0c

tau (sec)

eta

Cone Shape distribution

-15 -10 -5 0 5 10 15-10

-8

-6

-4

-2

0

2

4

6

8

10

26

Fractional Fourier Transform

How to rotate the time-frequency distribution by the angle other than /2, , and 3/2?

FT x t X f FT FT x t x t

FT FT FT x t X f IFT f t

FT FT FT FT x t x t

NTU, GICE, MD531, DISP Lab

NTU, GICE, MD531, DISP Lab 27

• Zero rotation: • Consistency with Fourier transform: = FT• Additivity of rotation:

• rotation:

0R I

/2R

R R R

2R I

NTU, GICE, MD531, DISP Lab 28

[A3]

-5 0 5-1

0

1

2

-5 0 5-1

0

1

2

-5 0 5-1

0

1

2

-5 0 5-1

0

1

2

-5 0 5-1

0

1

2

-5 0 5-1

0

1

2

f(t): rectangle

F(w): sinc function

22 2 csc cotcot1 cot

tj u j tj uX u j x t dte e e

NTU, GICE, MD531, DISP Lab 29

ApplicationDecomposition in the time-frequency distribution

-10 -5 0 5 10-0.5

0

0.5

1

1.5

-10 -5 0 5 10-1

0

1

2

-10 -5 0 5 10-1

0

1

2

-10 -5 0 5 10-0.5

0

0.5

1

1.5

Fourier transform of x(t) x(t) = signal + noise

fractional Fourier transform of x(t)

(separable)

(non-separable)

recovered signal

NTU, GICE, MD531, DISP Lab 30

f-axis

Signal noise

t-axis

FRFT FRFT

noise Signal

cutoff line

Signal

cutoff line

noise

NTU, GICE, MD531, DISP Lab 31

Modulation and Multiplexing

-20 0 20

-5

0

5

-20 0 20

-5

0

5

(c) WDF of G(u) (d) GWT of G(u)

unfilledT-F slot

NTU, GICE, MD531, DISP Lab 32

• Time domain Frequency domain fractional domain

• Modulation Shifting Modulation + Shifting

• Shifting Modulation Modulation + Shifting

• Differentiation j2f Differentiation and j2f

• −j2f Differentiation Differentiation and −j2f

NTU, GICE, MD531, DISP Lab 33

Motion on Time-Frequency Distributions

Horizontal Shifting

Vertical Shifting

2 0( ) ( , ) ,STFT, Gabor0 0

( , ) ,Wigner0

j f tx t t S t t f ex

W t t fx

2 0 ( ) ( , ) ,STFT,Gabor0

( , ) ,Wigner0

j f te x t S t f fx

W t f fx

NTU, GICE, MD531, DISP Lab 34

Dilation

Shearing

1( ) ( , ) ,STFT,Gabor

| |

( , ) ,WDF

t tx S afx

a a a

tW afx

a

2( ) ( )

( , ) ( , ) ,STFT,Gabor

( , ) ( , ) ,WDF

j atx t e y t

S t f S t f atx y

W t f W t f atx y

2

( ) ( )

( , ) ( , ) ,STFT,Gabor

( , ) ( , ) ,WDF

tjax t e y t

S t f S t af fx y

W t f W t af fx y

NTU, GICE, MD531, DISP Lab 35

RotationIf F{x(t)}=X(f), then F{X(t)}=x(-f).We can derive:

| ( , ) | | ( , ) | ,STFT

2( , ) ( , ) ,Gabor

( , ) ( , ) ,WDF

S t f S f txXj ftG t f G f t exX

W t f W f txX

NTU, GICE, MD531, DISP Lab 36

Hilbert-Huang Transform Introduction Most of distribution are designed for stationary and linear signals, but, In the real world, most of signals are non-stationary and non-linear.

HHT consists two parts:empirical mode decomposition (EMD)Hilbert spectral analysis (HSA)

NTU, GICE, MD531, DISP Lab 37

Empirical decomposition function Any complicated data can be decomposed into a

finite and small number of intrinsic mode functions (IMF) by sifting processing.

Intrinsic mode function(1)In the whole data set, the number of

extrema and the number of zero-crossing must either equal or differ at most by one.

(2)At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima is zero.

NTU, GICE, MD531, DISP Lab 38

Sifting Process(1) First, find all the local maxima extrema of x(t).

(2) Interpolate (cubic spline fitting) between all the maxima extrema ending up with some upper envelope .

max ( )e t

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

NTU, GICE, MD531, DISP Lab 39

(3) Find all the local minima extrema.

(4) Interpolate (cubic spline fitting) between all the minima extrema ending up with some lower envelope . min ( )e t

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

NTU, GICE, MD531, DISP Lab 40

(5) Compute the mean envelope between upper envelope and lower envelope.

(6) Compute the residue ( ) ( ) ( )h t x t m t

min max( ) ( )( )

2

e t e tm t

10 20 30 40 50 60 70 80 90 100 110 120

-2

-1

0

1

2

IMF 1; iteration 0

10 20 30 40 50 60 70 80 90 100 110 120

-1.5

-1

-0.5

0

0.5

1

1.5

residue

NTU, GICE, MD531, DISP Lab 41

(7) Repeat the above procedure (step (1) ~ step (6)) on the residue until the residue is a monotonic

function or constant.The original signal equals the sum of the various

IMFs plus the residual trend.

1

( ) ( ) ( )n

k nk

x t c t r t

NTU, GICE, MD531, DISP Lab 42

EX:

0 1 2 3 4 5 6

x 104

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.1

-0.05

0

0.05

0.1IMF1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.2

-0.1

0

0.1

0.2

Time

IMF2

NTU, GICE, MD531, DISP Lab 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.4

-0.2

0

0.2

0.4IMF3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.4

-0.2

0

0.2

0.4

Time

IMF4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.1

-0.05

0

0.05

0.1IMF5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.04

-0.02

0

0.02

0.04

Time

IMF6

NTU, GICE, MD531, DISP Lab 44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.01

-0.005

0

0.005

0.01IMF7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.01

-0.005

0

0.005

0.01

Time

IMF8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-5

0

5

10x 10

-3 IMF9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-5

0

5

10x 10

-3

Time

IMF10

NTU, GICE, MD531, DISP Lab 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-4

-2

0

2

4x 10

-3 IMF11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-1.5

-1

-0.5

0x 10

-3

Time

IMF12

NTU, GICE, MD531, DISP Lab 46

Hilbert Spectral Anaysis1 1 ( )

( ) { ( )} ( )x

y t H x t x t PV dt t

( )( ) ( ) ( ) ( ) i tz t x t iy t a t e

1 ( )( ) arg( ( )) tan ( )

( )

y tt z t

x t

1 1 ( )( ) ( )

2 2

d tf t t

dt

NTU, GICE, MD531, DISP Lab 47

Advantage Disadvantage

STFT

and

Gabor transform

1. Low computation

2. The range of the integration is limited

3. No cross term

4. Linear operation

1. Complex value

2. Low resolution

Wigner distribution

function

1. Real

2. High resolution

3. If the time/frequency limited, time/frequency of the

WDF is limited with the same range

1. High computation

2. Cross term

3. Non-linear operation

Cohen’s

class

distribution

1. Avoid the cross term

2. Higher clarity

1. High computation

2. Lack of well mathematical properties

Gabor-Wigner distribution

function

1. Combine the advantage of the WDF and the Gabor

transform

2. Higher clarity

3. No cross-term

1. High computation

NTU, GICE, MD531, DISP Lab 48

ConclusionWe introduce many distributions here and put most attention

on computation time and representations. We can find that the representation with higher clarity cost more computation time for all methods.

Resolution Computation time

The Hilbert-Huang transform is the most power method to deal with non-linear and non-stationary signals but lacks of physical background.

NTU, GICE, MD531, DISP Lab 49

Reference[1][A]J. J. Ding, “Time-Frequency Analysis and Wavelet Transform,” National

Taiwan University, 2009. [Online].Available: http://djj.ee.ntu.edu.tw/TFW.htm.

[2][B]W. F. Wang, “Time-Frequency Analyses and Their Fast Implementation Algorithm,” Master Thesis, National Taiwan University, June, 2009.

[3]Luis B. Almeida, Member, IEEE, “The Fractional Fourier Transform and Time-Frequency Representations,” IEEE Transaction On Signal Processing, vol. 42, no. 11, November 1994.

[4]M. R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill, 1990.

[5]N. E. Huang, Z. Shen and S. R. Long, et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time Series Analysis " , Proc. Royal Society, vol. 454, pp.903-995, London, 1998.