133
. . . . . . An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June, 2009 Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 1 / 22

An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

An Introduction to the Volume Conjecture, I

Hitoshi Murakami

Tokyo Institute of Technology

6th June, 2009

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 1 / 22

Page 2: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Outline

.. .1 Link invariant from a Yang–Baxter operator

.. .2 Volume conjecture

.. .3 Proof of the volume conjecture for the figure-eight knot

.. .4 Hyperbolic geometry

.. .5 Proof of the volume conjecture for the figure-eight knot - conclusion

.. .6 Final remarks

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 2 / 22

Page 3: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid presentation of a link

.Theorem (J.W. Alexander).... ..

.

.

Any knot or link can be presented as the closure of a braid.

closure−−−−→ =

n-braid group has

generators: σi (i = 1, 2, . . . , n − 1):1 2 i+1i n 1 n

relations: σiσj = σjσi (|i − j | > 1), =

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 3 / 22

Page 4: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid presentation of a link.Theorem (J.W. Alexander).... ..

.

.

Any knot or link can be presented as the closure of a braid.

closure−−−−→ =

n-braid group has

generators: σi (i = 1, 2, . . . , n − 1):1 2 i+1i n 1 n

relations: σiσj = σjσi (|i − j | > 1), =

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 3 / 22

Page 5: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid presentation of a link.Theorem (J.W. Alexander).... ..

.

.

Any knot or link can be presented as the closure of a braid.

closure−−−−→ =

n-braid group has

generators: σi (i = 1, 2, . . . , n − 1):1 2 i+1i n 1 n

relations: σiσj = σjσi (|i − j | > 1), =

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 3 / 22

Page 6: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid presentation of a link.Theorem (J.W. Alexander).... ..

.

.

Any knot or link can be presented as the closure of a braid.

closure−−−−→ =

n-braid group has

generators: σi (i = 1, 2, . . . , n − 1):1 2 i+1i n 1 n

relations: σiσj = σjσi (|i − j | > 1), =

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 3 / 22

Page 7: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid presentation of a link.Theorem (J.W. Alexander).... ..

.

.

Any knot or link can be presented as the closure of a braid.

closure−−−−→ =

n-braid group has

generators: σi (i = 1, 2, . . . , n − 1):1 2 i+1i n 1 n

relations: σiσj = σjσi (|i − j | > 1), =

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 3 / 22

Page 8: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid presentation of a link.Theorem (J.W. Alexander).... ..

.

.

Any knot or link can be presented as the closure of a braid.

closure−−−−→ =

n-braid group has

generators: σi (i = 1, 2, . . . , n − 1):1 2 i+1i n 1 n

relations: σiσj = σjσi (|i − j | > 1), =

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 3 / 22

Page 9: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Markov’s theorem

.Theorem (A.A. Markov)..

.

. ..

.

.

β and β′ give equivalent links

⇔ β and β′ are related by

conjugation (αβ ⇔ βα):

β

α

⇔α

β

stabilization (β ⇔ βσ±1n ):

β

⇔β

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 4 / 22

Page 10: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Markov’s theorem.Theorem (A.A. Markov)..

.

. ..

.

.

β and β′ give equivalent links ⇔ β and β′ are related by

conjugation (αβ ⇔ βα):

β

α

⇔α

β

stabilization (β ⇔ βσ±1n ):

β

⇔β

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 4 / 22

Page 11: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Markov’s theorem.Theorem (A.A. Markov)..

.

. ..

.

.

β and β′ give equivalent links ⇔ β and β′ are related by

conjugation (αβ ⇔ βα):

β

α

⇔α

β

stabilization (β ⇔ βσ±1n ):

β

⇔β

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 4 / 22

Page 12: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Markov’s theorem.Theorem (A.A. Markov)..

.

. ..

.

.

β and β′ give equivalent links ⇔ β and β′ are related by

conjugation (αβ ⇔ βα):

β

α

⇔α

β

stabilization (β ⇔ βσ±1n ):

β

⇔β

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 4 / 22

Page 13: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 14: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 15: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 16: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 17: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 18: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 19: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 20: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 21: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Yang–Baxter operator

V : a N-dimensional vector space over C.

R : V ⊗ V → V ⊗ V (R-matrix), µ : V → V : isomorphisms,

a, b: non-zero complex numbers.

.Definition (V. Turaev)..

.

. ..

.

.

(R, µ, a, b) is called an enhanced Yang–Baxter operator if it satisfies

(R ⊗ IdV )(IdV ⊗R)(R ⊗ IdV ) = (IdV ⊗R)(R ⊗ IdV )(IdV ⊗R),(Yang–Baxter equation)

R(µ ⊗ µ) = (µ ⊗ µ)R,

Tr2(R±(IdV ⊗µ)

)= a±1b IdV .

Tr2 : V ⊗ V → V is the operator trace. (For M ∈ End(V ⊗ V ) given by amatrix M ij

kl , Tr2(M) is given by∑

m M imkm.)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 5 / 22

Page 22: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace

with R

V V

V V

, and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 23: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace with

R

V V

V V

, and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 24: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace with R

V V

V V

,

and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 25: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace with R

V V

V V

, and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 26: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace with R

V V

V V

, and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 27: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace with R

V V

V V

, and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 28: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Braid ⇒ endomorphism

Replace with R

V V

V V

, and with

V V

R

V V

.

n-braid β ⇒ homomorphism Φ(β) : V⊗n → V⊗n

⇒R

R

R

R

V V V

V V V

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 6 / 22

Page 29: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Definition of an invariant.Definition..

.

. ..

.

.

n-braid β ⇒ a link L.

T(R,µ,a,b)(L) := a−w(β)b−n Tr1(Tr2

(· · · (Trn (Φ(β)µ⊗n)) · · ·

)),

where Trk : V⊗k → V⊗(k−1) is defined similarly.

⇒R

R

R

R

µ µ µ

a-w(β)b-n

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 7 / 22

Page 30: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Definition of an invariant.Definition..

.

. ..

.

.

n-braid β ⇒ a link L.

T(R,µ,a,b)(L) :=

a−w(β)b−n Tr1(Tr2

(· · · (Trn (Φ(β)µ⊗n)) · · ·

)),

where Trk : V⊗k → V⊗(k−1) is defined similarly.

⇒R

R

R

R

µ µ µ

a-w(β)b-n

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 7 / 22

Page 31: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Definition of an invariant.Definition..

.

. ..

.

.

n-braid β ⇒ a link L.

T(R,µ,a,b)(L) := a−w(β)b−n Tr1(Tr2

(· · · (Trn (Φ(β)µ⊗n)) · · ·

)),

where Trk : V⊗k → V⊗(k−1) is defined similarly.

⇒R

R

R

R

µ µ µ

a-w(β)b-n

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 7 / 22

Page 32: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Definition of an invariant.Definition..

.

. ..

.

.

n-braid β ⇒ a link L.

T(R,µ,a,b)(L) := a−w(β)b−n Tr1(Tr2

(· · · (Trn (Φ(β)µ⊗n)) · · ·

)),

where Trk : V⊗k → V⊗(k−1) is defined similarly.

⇒R

R

R

R

µ µ µ

a-w(β)b-n

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 7 / 22

Page 33: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 34: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 35: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 36: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 37: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 38: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 39: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 40: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under braid relation andconjugation

Invariance under the braid relation σiσi+1σi = σi+1σi = σi+1.

=

braid relation

⇔R

R

V V V

V V V

R =

R

R

V V V

V V V

R

Yang–Baxter equation

invariance under conjugation

Φ(β)

µ µ µ

Φ(α)

=Trk is invariant

under conjugation

Φ(β)

µ µ µ

Φ(α)

=(µ⊗µ)R=R(µ⊗µ) Φ(α)

µ µ µ

Φ(β)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 8 / 22

Page 41: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under stabilization

.Theorem (Turaev)..

.

. ..

.

.

T(R,µ,a,b) is a link invariant.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 9 / 22

Page 42: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under stabilization

invariance under stabilization

µ µ µ

Φ(β)

R

µ

.Theorem (Turaev)..

.

. ..

.

.

T(R,µ,a,b) is a link invariant.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 9 / 22

Page 43: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under stabilization

invariance under stabilization

µ µ µ

Φ(β)

R

µ

.Theorem (Turaev)..

.

. ..

.

.

T(R,µ,a,b) is a link invariant.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 9 / 22

Page 44: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under stabilization

invariance under stabilization

µ µ µ

Φ(β)

R

µ

=Tr2

(R(IdV ⊗µ

)=ab IdV

abµ µ µ

Φ(β)

.Theorem (Turaev)..

.

. ..

.

.

T(R,µ,a,b) is a link invariant.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 9 / 22

Page 45: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Invariance of T(R,µ,a,b)(L) under stabilization

invariance under stabilization

µ µ µ

Φ(β)

R

µ

=Tr2

(R(IdV ⊗µ

)=ab IdV

abµ µ µ

Φ(β)

.Theorem (Turaev)..

.

. ..

.

.

T(R,µ,a,b) is a link invariant.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 9 / 22

Page 46: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 47: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 48: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).

⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 49: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant.

.Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 50: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 51: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 52: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 53: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Quantum (g, V ) invariant

g: a Lie algebra,

V : its representation

⇒an enhanced Yang–Baxter operator (R, µ, a, b).⇒quantum (g, V ) invariant..Definition..

.

. ..

.

.

The quantum (sl(2, C), VN) invariant is called the N-dimensional coloredJones polynomial JN(L; q). (q is a complex parameter.)

VN : N-dimensional irreducible representation of sl(2, C).

J2(L; q) is the ordinary Jones polynomial.

JN(unknot; q) = 1.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 10 / 22

Page 54: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.µi

j := δi ,jq(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator..Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 55: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.µi

j := δi ,jq(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator..Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 56: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.

µij := δi ,jq

(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator..Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 57: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.µi

j := δi ,jq(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator..Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 58: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.µi

j := δi ,jq(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator..Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 59: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.µi

j := δi ,jq(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator.

.Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 60: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Link invariant from a Yang–Baxter operator

Precise definition of the colored Jones polynomial

V := CN .

R ijkl :=

min(N−1−i ,j)∑m=0

δl ,i+mδk,j−m{l}!{N − 1 − k}!

{i}!{m}!{N − 1 − j}!

× q

(i−(N−1)/2

)(j−(N−1)/2

)−m(i−j)/2−m(m+1)/4,

with {m} := qm/2 − q−m/2 and {m}! := {1}{2} · · · {m}.µi

j := δi ,jq(2i−N+1)/2.

R(ek ⊗ el) :=N−1∑i ,j=0

R ijklei ⊗ ej and µ(ej) :=

N−1∑i=0

µijei .

⇒(R, µ, q(N2−1)/4, 1) gives an enhanced Yang–Baxter operator..Definition..

.

. ..

.

.

JN(L; q) := T(R,µ,q(N2−1)/4,1)

(K ) × {1}{N} : colored Jones polynomial.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 11 / 22

Page 61: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Volume conjecture.Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)..

.

. ..

.

.

K: knot

2π limN→∞

log |JN(K ; exp(2π√−1/N))|

N= Vol(S3 \ K ).

.Definition (Simplicial volume (Gromov norm))..

.

. ..

.

.

Vol(S3 \ K ) :=∑

Hi :hyperbolic piece

Hyperbolic Volume of Hi .

.Definition (Jaco–Shalen–Johannson decomposition)..

.

. ..

.

.

S3 \ K can be uniquely decomposed as

S3 \ K =(⊔

Hi

)⊔

(⊔Ej

)with Hi hyperbolic and Ej Seifert-fibered.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 12 / 22

Page 62: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Volume conjecture.Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)..

.

. ..

.

.

K: knot

2π limN→∞

log |JN(K ; exp(2π√−1/N))|

N= Vol(S3 \ K ).

.Definition (Simplicial volume (Gromov norm))..

.

. ..

.

.

Vol(S3 \ K ) :=∑

Hi :hyperbolic piece

Hyperbolic Volume of Hi .

.Definition (Jaco–Shalen–Johannson decomposition)..

.

. ..

.

.

S3 \ K can be uniquely decomposed as

S3 \ K =(⊔

Hi

)⊔

(⊔Ej

)with Hi hyperbolic and Ej Seifert-fibered.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 12 / 22

Page 63: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Volume conjecture.Conjecture (Volume Conjecture, R. Kashaev, J. Murakami+H.M.)..

.

. ..

.

.

K: knot

2π limN→∞

log |JN(K ; exp(2π√−1/N))|

N= Vol(S3 \ K ).

.Definition (Simplicial volume (Gromov norm))..

.

. ..

.

.

Vol(S3 \ K ) :=∑

Hi :hyperbolic piece

Hyperbolic Volume of Hi .

.Definition (Jaco–Shalen–Johannson decomposition)..

.

. ..

.

.

S3 \ K can be uniquely decomposed as

S3 \ K =(⊔

Hi

)⊔

(⊔Ej

)with Hi hyperbolic and Ej Seifert-fibered.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 12 / 22

Page 64: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Example of JSJ decomposition

= ⊔ .

hyperbolic Seifert fibered

Vol

= Vol

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 13 / 22

Page 65: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Example of JSJ decomposition

= ⊔ .

hyperbolic Seifert fibered

Vol

= Vol

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 13 / 22

Page 66: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Example of JSJ decomposition

= ⊔ .

hyperbolic

Seifert fibered

Vol

= Vol

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 13 / 22

Page 67: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Example of JSJ decomposition

= ⊔ .

hyperbolic Seifert fibered

Vol

= Vol

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 13 / 22

Page 68: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Volume conjecture

Example of JSJ decomposition

= ⊔ .

hyperbolic Seifert fibered

Vol

= Vol

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 13 / 22

Page 69: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Colored Jones polynomial of

Proof of the VC for is given by T. Ekholm.

.Theorem (K. Habiro, T. Le)..

.

. ..

.

.

JN

(; q

)=

N−1∑j=0

j∏k=1

(q(N−k)/2 − q−(N−k)/2

)(q(N+k)/2 − q−(N+k)/2

).

q 7→ exp(2π√−1/N)

JN

(; exp(2π

√−1/N)

)=

N−1∑j=0

j∏k=1

f (N; k)

with f (N; k) := 4 sin2(kπ/N).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 14 / 22

Page 70: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Colored Jones polynomial of

Proof of the VC for is given by T. Ekholm.

.Theorem (K. Habiro, T. Le)..

.

. ..

.

.

JN

(; q

)=

N−1∑j=0

j∏k=1

(q(N−k)/2 − q−(N−k)/2

)(q(N+k)/2 − q−(N+k)/2

).

q 7→ exp(2π√−1/N)

JN

(; exp(2π

√−1/N)

)=

N−1∑j=0

j∏k=1

f (N; k)

with f (N; k) := 4 sin2(kπ/N).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 14 / 22

Page 71: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Colored Jones polynomial of

Proof of the VC for is given by T. Ekholm.

.Theorem (K. Habiro, T. Le)..

.

. ..

.

.

JN

(; q

)=

N−1∑j=0

j∏k=1

(q(N−k)/2 − q−(N−k)/2

)(q(N+k)/2 − q−(N+k)/2

).

q 7→ exp(2π√−1/N)

JN

(; exp(2π

√−1/N)

)=

N−1∑j=0

j∏k=1

f (N; k)

with f (N; k) := 4 sin2(kπ/N).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 14 / 22

Page 72: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 73: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 74: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 75: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 76: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 77: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 78: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Find the maximum of the summands

JN

(; e2π

√−1/N

)=

N−1∑j=0

j∏k=1

f (N; k) with f (N; k) := 4 sin2(kπ/N).

Graph of f (N; k)

1

4

j

f(N;k)

0

5N/6N/6

Put g(N; j) :=∏j

k=1 f (N; k).

j 0 · · · N/6 · · · 5N/6 · · · 1

f (N; k) < 1 1 > 1 1 < 1

g(N; j) 1 ↘ ↗ maximum ↘

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 15 / 22

Page 79: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 80: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 81: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 82: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 83: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 84: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 85: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 86: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 87: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 88: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Limit of the sum is the limit of the maximum

Maximum of {g(N; j)}0≤j≤N−1 is g(N; 5N/6).

JN

(; exp(2π

√−1/N)

)=

∑N−1j=0 g(N; j).

g(N; 5N/6) ≤ JN

(; exp(2π

√−1/N)

)≤ N × g(N; 5N/6)

⇓log g(N;5N/6)

N ≤ log JNN ≤ log N

N + log g(N;5N/6)N

⇓lim

N→∞

log g(N; 5N/6)

N≤ lim

N→∞

log JN

N≤ lim

N→∞

log N

N+ lim

N→∞

log g(N; 5N/6)

N⇓

limN→∞

log JN

N= lim

N→∞

log g(N; 5N/6)

N

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 16 / 22

Page 89: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 90: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 91: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k)

= 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 92: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)

=2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 93: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx

= − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 94: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6)

= 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 95: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 96: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 97: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Calculation of the limit of the maximum

limN→∞

log JN

(; exp(2π

√−1/N)

)N

= limN→∞

log g(N; 5N/6)

N

= limN→∞

1

N

5N/6∑k=1

log f (N; k) = 2 limN→∞

1

N

5N/6∑k=1

log(2 sin(kπ/N)

)=

2

π

∫ 5π/6

0log

(2 sin x

)dx = − 2

πΛ(5π/6) = 0.323066 . . . ,

where Λ(θ) := −∫ θ0 log |2 sin x | dx is the Lobachevsky function.

What is Λ(5π/6)?

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 17 / 22

Page 98: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)

Some properties of Λ := −∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 99: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 100: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 101: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2).

(Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 102: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 103: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.

To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 104: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 105: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 106: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.

So we haveΛ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 107: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 108: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 109: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot

Lobachevsky function Λ(θ)Some properties of Λ := −

∫ θ0 log |2 sin x | dx .

Λ is an odd function and has period π.

Λ(2θ) = 2Λ(θ) + 2Λ(θ + π/2). (Λ(nθ) = n∑n−1

k=1 Λ(θ + kπ/n) ingeneral.)

The first property is easy.To prove the second, we use the double angle formula of sine:

sin(2x) = 2 sin x cos x .

⇒ log |2 sin(2x)| = log |2 sin x | + log |2 sin(x + π/2)|.So we have

Λ(5π/6) = −Λ(π/6)

Λ(π/3) = 2Λ(π/6) + 2Λ(2π/3) = 2Λ(π/6) − 2Λ(π/3)

⇒ Λ(5π/6) = −3

2Λ(π/3).

⇒ 2π limN→∞

log JN

(; exp(2π

√−1/N)

)/N = 6Λ(π/3)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 18 / 22

Page 110: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Decomposition of S3 \ into two tetrahedra

What is 6Λ(π/3)?.Theorem (W. Thurston)..

.

. ..

.

.

=

A

BC

Da

b

c

d

∪A=A′,B=B′,C=C ′,D=D′

A’

B’D’C’

e

fg

h

We can regard both pieces in the right hand side as regular idealhyperbolic tetrahedra.

⇒ S3 \ possesses a complete hyperbolic structure.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 19 / 22

Page 111: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Decomposition of S3 \ into two tetrahedra

What is 6Λ(π/3)?

.Theorem (W. Thurston)..

.

. ..

.

.

=

A

BC

Da

b

c

d

∪A=A′,B=B′,C=C ′,D=D′

A’

B’D’C’

e

fg

h

We can regard both pieces in the right hand side as regular idealhyperbolic tetrahedra.

⇒ S3 \ possesses a complete hyperbolic structure.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 19 / 22

Page 112: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Decomposition of S3 \ into two tetrahedra

What is 6Λ(π/3)?.Theorem (W. Thurston)..

.

. ..

.

.

=

A

BC

Da

b

c

d

∪A=A′,B=B′,C=C ′,D=D′

A’

B’D’C’

e

fg

h

We can regard both pieces in the right hand side as regular idealhyperbolic tetrahedra.

⇒ S3 \ possesses a complete hyperbolic structure.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 19 / 22

Page 113: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Decomposition of S3 \ into two tetrahedra

What is 6Λ(π/3)?.Theorem (W. Thurston)..

.

. ..

.

.

=

A

BC

Da

b

c

d

∪A=A′,B=B′,C=C ′,D=D′

A’

B’D’C’

e

fg

h

We can regard both pieces in the right hand side as regular idealhyperbolic tetrahedra.

⇒ S3 \ possesses a complete hyperbolic structure.

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 19 / 22

Page 114: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 115: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .

Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 116: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.

We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 117: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 118: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 119: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 120: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Hyperbolic geometry

Ideal hyperbolic tetrahedron

H3 := {(x , y , z) | z > 0}: with hyperbolic metric ds :=

√dx2+dy2+dz2

z .Ideal hyperbolic tetrahedron : tetrahedron with geodesic faces withfour vertices in the boundary at infinity.We may assumeI One vertex is at (∞,∞,∞).I The other three are on xy -plane.

Ideal hyperbolictetrahedron∆(α, β, γ)

αβ

γ

Top view

α

β

γ

Ideal hyperbolic tetrahedron isdefined (up to isometry) by thesimilarity class of this triangle.

Vol(∆(α, β, γ)) = Λ(α)+Λ(β)+Λ(γ).

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 20 / 22

Page 121: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot - conclusion

Proof of VC - conclusion

2πJN

(; exp(2π

√−1/N)

)= 6Λ(π/3)

= 2 Vol(regular ideal hyperbolic tetrahedron)

= Vol(S3 \

)⇒ Volume Conjecture for .

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 21 / 22

Page 122: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot - conclusion

Proof of VC - conclusion

2πJN

(; exp(2π

√−1/N)

)= 6Λ(π/3)

= 2 Vol(regular ideal hyperbolic tetrahedron)

= Vol(S3 \

)⇒ Volume Conjecture for .

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 21 / 22

Page 123: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot - conclusion

Proof of VC - conclusion

2πJN

(; exp(2π

√−1/N)

)= 6Λ(π/3)

= 2 Vol(regular ideal hyperbolic tetrahedron)

= Vol(S3 \

)⇒ Volume Conjecture for .

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 21 / 22

Page 124: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot - conclusion

Proof of VC - conclusion

2πJN

(; exp(2π

√−1/N)

)= 6Λ(π/3)

= 2 Vol(regular ideal hyperbolic tetrahedron)

= Vol(S3 \

)

⇒ Volume Conjecture for .

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 21 / 22

Page 125: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Proof of the volume conjecture for the figure-eight knot - conclusion

Proof of VC - conclusion

2πJN

(; exp(2π

√−1/N)

)= 6Λ(π/3)

= 2 Vol(regular ideal hyperbolic tetrahedron)

= Vol(S3 \

)⇒ Volume Conjecture for .

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 21 / 22

Page 126: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 127: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 128: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 129: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 130: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 131: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 132: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22

Page 133: An Introduction to the Volume Conjecture, Ivolconf09/notes/murakami/workshop...An Introduction to the Volume Conjecture, I Hitoshi Murakami Tokyo Institute of Technology 6th June,

. . . . . .

Final remarks

So far the Volume Conjecture is proved for

torus knots (Kashaev and Tirkkonen)

torus links of type (2, 2m) (Hikami)

figure-eight knot (Ekholm)

52 knot (hyperbolic) (Kashaev and Yokota)

Whitehead doubles of torus knots (Zheng)

twisted Whitehead links (Zheng)

Borromean rings (Garoufalidis and Le)

Whitehead chains (van der Veen)

Hitoshi Murakami (Tokyo Institute of Technology) An Introduction to the Volume Conjecture, I 6th June, 2009 22 / 22