53
Developer School for HPC applications in Earth Sciences November 10th – 12th, 2014 The Abdus Salam International Centre for Theoretical Physics An Introduction To Numerical Modelling in Seismology Peter Moczo Jozef Kristek, Martin Gális Comenius University in Bratislava, Slovakia Geophysical Institute, Slovak Academy of Sciences, Bratislava, Slovakia KAUST, Saudi Arabia

An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

  • Upload
    others

  • View
    18

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

Developer Schoolfor HPC applications in Earth Sciences

November 10th – 12th, 2014The Abdus Salam International Centre for Theoretical Physics

An IntroductionTo Numerical Modelling in Seismology

Peter MoczoJozef Kristek, Martin Gális

Comenius University in Bratislava, Slovakia

Geophysical Institute, Slovak Academy of Sciences, Bratislava, Slovakia

KAUST, Saudi Arabia

Page 2: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

• long-term preparation of an earthquake

• spontaneous rupture initiation

• spontaneous rupture propagation

• generation of seismic waves

• propagation of seismic waves

• earthquake motion at the Earth‘s free surface

• earthquake ground motion in local surface structures

(sedimentary bodies, topographic features)

(normal) tectonic earthquake

slow to silent earthquakes

body waves (P and S) 0.01 – 50 secsurface waves (Love and Rayleigh) 10 – 350 sec

Page 3: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

• explosive sources

• vibratory sources (vibroseis system)

artificially generated seismic waves in seismic exploration

~ 1 – 1000 Hz, typical frequency: ~ 100 Hz

both types of source

produce primarily P waves

Page 4: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

• ocean waves; 0.1-0.3 Hz

• variations of atmospheric pressure

• wind

• water flows

• magma movements

• ...

seismic noise – continuous mechanical vibration of the ground(typical amplitudes 0.1 to 10 μm/s)

natural sources ; <@ 1 Hz

• transportation (undeground, surface, air)

• mechanical machines

• all kinds of vibratory machinery

• ...

man-made sources ; > 1 Hz

Page 5: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

non-volcanic tremors – unusual tectonic seismic events

• long durations

(from several minutes to hours)

• low amplitudes

• lack of P- and S- wave arrivals

• frequency content

(often studied between 1 and 15 Hz)

• deeper origin compared to regular earthquakes

in the fault zones

Page 6: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

Earth‘s free oscillations

generated by the largest earthquakes

350 – 3600 sec

Page 7: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

nuclear explosions

produce primarily P waves

comparable in released energy with moderate earthquakes

Page 8: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

seismological processes in the Earth

induced seismicity – small tectonic events

induced by / triggered by / due to

• water reservoir

• deep well

• fluid extraction

• mining

• volcanic eruption

• underground nuclear explosion

• tides

Page 9: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

scalar seismic moment of tectonic events

fault

23

5

2

101010

NmNmNm-

»

»

»

Chile 1960

microearthquakemicrofracturein an laboratory sample

area of the ruptured partof the fault

0

2 2

M A D

Nm Nm m m

AD

-

= ⋅ ⋅

é ù= ⋅ ⋅ë û

ruptured area

torsion modulus

average slip

Page 10: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

models of the Earth‘ interior

• geological

• physical

• discrete (grid)

spatial distribution of all material parametersdetermining rupture and/or seismic wave propagation

for a considered rheological model

physical model

models

Page 11: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

basic physical models of the Earth‘ interior

global spherically symmetric static (chemical) model

Page 12: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

basic physical models of the Earth‘ interior

global spherically symmetric model:P-wave and S-wave velocities, density

(Q factors not so well determined)The Preliminary Reference Earth Model (PREM) of Dziewonski and Anderson (1981)

Page 13: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

LLNL-G3Dv3 (Simmons et al. 2012)a global-scale model of the crust and mantle P-wave velocity

Page 14: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

basic physical models of the Earth‘ interior

regional velocity model down to depth of 30 km:cross-section of the Kos-Yali-Nisyros-Tilos volcanic field

University of Hamburg (UHIG), GeoPro and NOAIG

0 10 20 30 40 50 60 70 80 90 100 110 120 130 km

0

5

10

15

20

25

30

1.6 1.9 2.4 2.7 3.5 4.3 4.9 5.1 5.4 5.9 6.0 6.1 6.7 7.1 7.2 7.6 7.7 7.8 7.9 km/s

Page 15: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

model of a small (~ 15 km long, ~ 5 km wide)Mygdonian sedimentary basin near Thessaloniki, Greece

E2VP – Euroseistest Verification and Validation project

Page 16: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

model features to be accounted for

rheologyo solid continuum

• elastic• viscoelastic• elastoplastic• elasto viscoplastic

o fluid• non-viscous• viscous

o two-phase continuum• poroelastic• poroviscoelastic

free surfaceo Earth‘s surface curvatureo local-scale topographyo planar

Page 17: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

model features to be accounted for

rheologyo solid continuum

• elastic• viscoelastic• elastoplastic• elasto viscoplastic

o fluid• non-viscous• viscous

o two-phase continuum• poroelastic• poroviscoelastic

free surfaceo Earth‘s surface curvatureo local-scale topographyo planar

material heterogeneityo material interface

• 0th-order• 1st-order

o smooth heterogeneity (gradient)

isotropy/anisotropy physical (computational) domain

o Earth• natural free-surface boundary

o part of the Earth:• artificial boundary• natural free-surface boundary

Page 18: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

we will restrict the presentation nowto the problem of

seismic wave propagationin viscoelastic continuum

Page 19: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

governing equationsfor elastic and viscoelastic continuum

Page 20: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

governing equations for elastic and viscoelastic continuum

2

2 0ii

i j

j

u fxt

2

2i i

i i i j i iV V j S

u wf w dV dV w dSt x

T

requires continuity of displacement and the weight functions

requires continuity of displacement and its first spatial derivatives

strong form

weak form

ii j jT n

at any point in V

at any point of S

material volume of a smooth continuumbounded by surface

body force acts in volume external traction acts at surface

VS

T

SVf

f

Page 21: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

governing equations for elastic and viscoelastic continuum

material volume of a smooth continuumbounded by surface

body force acts in volume external traction acts at surface

VS

T

SVf

2

2i ji

i i i i j j iV Sj

u f w dV T n wx

dSt

continuity of the first spatial derivative of displacement

integral strong form

Page 22: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

governing equations for other media

surface waves at periods > 150 sare affected by the Earth’s rotation

Rayleigh wavesare affected by self-gravitation

(perturbations in the gravitational fieldinduced by wave propagation)

Page 23: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

constitutive relationsfor elastic and viscoelastic continuum

Page 24: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

constitutive law for elastic and viscoelastic continuum

i j i jkl klc

i jkl ji kl i jkl kl jic c c c i jkl ji lkc c

1

32

i j i j kk

i j kk i j

t t

t t

123

ti j i j kk

ti j kk i j

t t d

t d

stress-strain relation in an anisotropic elastic continuum- Cauchy‘s generalization of the original Hooke‘s law

symmetries of elastic constants

21 independent constants in the most general anisotropic medium

stress-strain relation in an isotropic elastic continuum

stress-strain relation in an isotropic viscoelastic continuum

12i j

ji

j i

uux x

Page 25: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

strong-form formulations coupling gov. eq. and const. law

displacement-stress

displacement-velocity-stress

velocity-stress

2

3

2

12

i j

i j kk

ii

i j i j kk i j

j

u fxt

132

,i j

i j

i ii

kk i j i j kk

i

i

j

j

v uf vt x t

123

i j

i j kk i j

ii

j

kki j i j

v ft x

t t t t

12

i j ji

j i

vvx xt

Page 26: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

boundary and initialconditions

Page 27: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

boundary conditions for elastic/viscoelastic continuum

free surface: zero traction

welded interface: continuity of displacement and traction

in most applications it is sufficientto replace air above the Earth’s surface by vacuum

consequently, the real Earth's surfacecan be considered the traction-free surface

( ) 0T n 0i j jn

0i z

i iu u

i j i jj jn n

that is at a general surface S

at a planar surface perpendicular to -axis z

Page 28: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

initial conditions

it is usually assumed that the medium at an initial time is at rest

displacement-velocity-stress

velocity-stress

displacement, displacement-stress

0, 0ji tu x 2

2 0, 0ijt xu

t

0, 0ji tv x

0, 0i j kt x

0, 0ji tu x

0, 0ji tv x

0, 0ji tf x

in all cases

Page 29: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

there are

analytical or semi-analytical solutions

for relatively very simple/canonical elastic models

of the Earth‘s interior

exact and approximate methods

these solutions are

far from the possibility to explain

the range of wave phenomena

in structurally complex

viscoelastic, anisotropic or poroelastic

models of the Earth‘s interior

Page 30: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

approximate methods

only approximate methodsare able to account for

the geometrical and rheological complexityof the sufficiently realistic models

the most important aspects of each methodare

accuracy and computational efficiency(in terms of computer memory and time)

these two aspects are in most cases contradictory

the reasonable balancebetween the accuracy and computational efficiency

(in case of complex realistic structures)makes the numerical-modelling methods,

and more specifically, so-called domain (in the spatial sense) methodsdominant among all approximate methods

Page 31: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

approximate methods

a variety of the domain numerical methodshas been developed during the last few decades

the best known arethe (time-domain) finite-difference, finite-element,

Fourier pseudo-spectral, spectral-elementand discontinuous Galerkin methods

both the theoretical analyses and numerical experienceshow that

none of these methodscan be chosen as the universally best method

(in term of accuracy and computational efficiency)for all important medium-wavefield configurations

each method has its advantages and disadvantagesthat often depend on the particular application

Page 32: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

FDM - Finite-Difference Method

Page 33: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

construction of a discrete FD model of the problemo coverage of the computational domain by a space-time grid

• uniform, non-uniform, discontinuous grids• structured, unstructured grids• space-time location of field variables

o FD approximations of derivatives, functions,initial and/or boundary condition at the grid points• spatial derivative

∙ number of spatial grid positions∙ number of time levels∙ centred/backward/forward/combination∙ order of approximation∙ uniformity/non-uniformity of approx. in diff. spatial directions

• temporal derivative∙ number of time levels∙ number of spatial positions∙ centred/forward∙ replacement of higher derivatives by spatial derivatives

o discrete (grid) representation of material propertiescrucial for accuracy with respect to material heterogeneity

o construction of a system of algebraic equations;we may call them FD equations or FD scheme

Page 34: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology
Page 35: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

analysis of the FD modelo consistency and order of the

approximationo stability and grid dispersiono convergenceo local error

numerical computations

analysis of the FD model and numerical computationsmay lead to redefinition of the grid and FD approximations

if the numerical behaviour of the developed FD schemeis not satisfactory

Page 36: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

FEM (Finite-Element Method)and

SEM (Spectral-Element Method)

Page 37: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

displacement formulation of equation of motion - D-EqM

choose an element with n nodes

e.g. tetrahedron with 8 nodes (FEM)hexahedron with 64 nodes (SEM)

node

choose a shape function and approximation to displacementin the element

; 1,...,k ki j j iu x s x U k n

- unique displacements at nodeskiU

we have to assure continuity of displacement at a contact of elements

iu

, , ( , , )i i j j i j i j k k i j j iu u u u

Page 38: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

integrate over an element

integrate the r.h.s. by parts

,e ek k

i ij ju s dV s dV

localmassmatrix

local vectorof nodalaccelerations local stiffness matrix

e e e e surface-tractionboundary term

M u K u

multiply D-EqM by the shape functions

, ; 1,...,k ki ij ju s s k n

local vectorof nodal displacements

,e e ek k k

i ij j iu s dV s dV T s dS

Page 39: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

assemble all elements covering volume closed by surface

DirichletFS

the theoretical boundary term vanishes• at a contact of two elements - due to traction continuity• at the free surface - due to zero traction

globalmassmatrix

global vectorof nodalaccelerations

global stiffness matrix

global vectorof nodaldisplacements

in fact, however, the final discretization does not give exactly• the traction continuity at a contact of two elements• zero traction at the free surfaceand thus the zero boundary term in the global equation

they are just (possibly low-order) approximated

0 M u Ku

e e e e surface-tractionboundary term

M u K u

Page 40: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

general noteson implementation of FEM/SEM

shape of an element, number of nodesand their positions in an element are related to the shape functions

integrals in previous formulasare usually evaluated numerically using different quadratures

though different combinations ofshape functions and quadrature are possible,each combination affects propertiesof the resulting scheme/method

Page 41: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

FEM SEM

(usually) Lagrange polynomials

shape functions

Legendre polynomials

integration / numerical quadrature

usually Gauss quadraturefor its efficiency;in principle any quadraturewith required/desired accuracy

Gauss-Lobatto-Legendre quadraturewith integration pointscoinciding with node positions;leads to a diagonal mass matrix

shape of an element

wide range of shapes,e.g.,tetrahedra, hexahedra, pyramids…

usually hexahedral elements in 3D,quadrilateral elements in 2D

shape functions and quadrature are independent

shape functions and quadrature are closely related; the approach minimizesnumerical dispersion and dissipation

Page 42: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

ADER-DGM(Arbitrarily high-order DERivativeDiscontinuous Galerkin Method)

Page 43: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

velocity-stress formulation of equation of motion - VS-EqM

, ( , , ) 0

, 0ij k k ij i j j i

i ij j

v v v

v

define a vector of unknown variables

, , , , , , , ,T

xx yy zz xy yz zx x y zQ v v v

VS-EqM in the matrix form

, , , 0p pq q x pq q y pq q zQ A Q B Q C Q

tetrahedral element (e.g.)

, ,A B C space-dependent matrices include material properties

ˆ( ) ( ) ( )h p pk k jQ Q t x

polynomial basis functions of an optional degree

Page 44: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

multiply VS-EqM by a test function and integrate over an element volume

integrate the 2nd integral by parts

, , ,

0

e e

e

p k k x pq k y pq k z pq q

k p

Q dV A B C Q dV

F dS

numerical flux introducedbecause may be discontinuousat an element boundary

hQ

Riemann problem – an evolution physically continuous problemwith initial discontinuous approximation of unknownsacross an interface

to find a flux such thatcontinuity of particle velocity and tractionat an element boundary is assured

, , , 0e ep k pq q x pq q y pq q z kQ dV A Q B Q C Q dV

Page 45: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

2D illustration of solution of the Riemann problem

the Riemann problem is exactly solved by the Godunov state

x

y

- +S

S – interface of two triangular elementsperpendicular to the x-axis

GP P PQ Q S Q S

for example :

3

5

12

12

G Gxy xy xy y y

S

G G Sy xy xy y y

Q v vc

cQ v v v

Page 46: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

  FDM  SEM  ADER‐DGM   

brief characterization 

the most intuitive and thus relatively easy; the name represents a large variety of formulations and schemes of very different properties (accuracy and efficiency) 

combines accuracy of global pseudospectral method with flexibility of FEM; usually uses hexahedral elements 

relatively universal with respect to model geometrical and rheological complexity, optional level of accuracy (equal in space and time), p and h adaptivity; uses tetrahedral elements 

aspect              computational domain       

whole Earth  not yet well applicable (problems with gridding and free surface) 

the most successful so far compared to other methods 

presently not applicable (too large computational demands) 

region (tens to hundreds of km) 

relatively applicable  very suitable  relatively applicable 

local structure (hundreds of m to km) 

intensively applied, efficient  well applicable with comp. demands strongly depending on material heterogeneity and meshing seismic exploration models 

(hundreds of m to km)        free surface  not trivial  implicit and natural        

smooth heterogeneity  feasible – depends on discrete representation of material properties  possible – strongly depends on polynomial degree 

material interface 

efficient with very good level of accuracy if material properties are properly represented in a grid; does not need conforming grids 

if element boundaries do not follow an interface, there is a problem with accuracy; the following  of an interface (honouring geometry) can significantly increase computational demands and is not easy with hexahedral elements 

if element boundaries do not follow an interface, there is a problem with accuracy; the following  of an interface (honouring geometry) can significantly increase computational demands 

       viscoelasticity  easy, increases mainly demands on computer memory poroelasticity  applicable  applicable, very good level of accuracy        

anisotropy  uneasy for schemes other than on a collocated grid  easy 

Page 47: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

Lessons learned from ESG2006 and E2VP

Methodological – general

• There is no single numerical-modeling methodthat can be considered the best – in terms of accuracy and computational efficiency – for all structure-wavefield configurations

• Apparently/intuitively “small” or “insignificant” differencesin the discrete representation of spatial variation in material parameterscan cause considerable inaccuracies and consequently discrepancies

• Sufficiently accurate and computationally efficient methodsfor implementing- continuous and discontinuous material heterogeneity(consistent with the interface boundary condition),- realistic attenuation (not simpler than that corresponding to the GZB/GMB-EK rheology),- nonreflecting boundary (not less efficient than PML)- free-surface conditionprove to be the key elementsof a reasonably accurate numerical simulation

Page 48: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

Lessons learned from ESG2006 and E2VP

Methodological – finite-difference method

The commonly used name of “finite-difference method”in the numerical modeling of earthquake ground motion

may represent one of a large variety of FD schemes and codes

Surprisingly,not all FD schemes

used for simulations and publicationsare at the state-of-the-art level

Page 49: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

Lessons learned from ESG2006 and E2VP

Practical

The numerical-simulation methodsand the corresponding computer codesare not yet in a “press-button” mode;

the codes should never be applied as black-box tools,that is,

without sufficient methodological knowledgeof the method and the code

At least two different but comparably accurate,verified and state-of-the-art methods

should be appliedin order to obtain reliable numerical prediction

of earthquake ground motion at a site of interest

Material interfacesshould not be artificially introduced

in the computational model;their presence can have strong impacton the locally induced surface waves

It is necessary to perform numerical simulationsfor at least two different discretizations

Page 50: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

www.cambridge.org/moczo

Page 51: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology
Page 52: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology

nuquake.eu/fdsim

Page 53: An Introduction To Numerical Modelling in Seismologyindico.ictp.it/event/a13229/session/13/contribution/54/material/0/0.pdf · An Introduction To Numerical Modelling in Seismology