80
An Introduction to Geometry Design An Introduction to Geometry Design Algorithms Algorithms Geometry Design Tutorial 1 Instituto Tecnológico de Veracruz 21-25 April 2008 Fathi El-Yafi Project and Software Development Manager Engineering Simulation

An Introduction to Geometry Design Algorithms · An Introduction to Geometry Design Algorithms Instituto Tecnológico de Veracruz Geometry Design Tutorial 21-25 April 2008 1 Fathi

  • Upload
    others

  • View
    14

  • Download
    1

Embed Size (px)

Citation preview

An Introduction to Geometry Design An Introduction to Geometry Design AlgorithmsAlgorithms

Geometry Design Tutorial 1Instituto Tecnológico de Veracruz 21-25 April 2008

Fathi El-YafiProject and Software Development Manager

Engineering Simulation

Geometry: Overview

• Geometry Basics� Definitions

� Data

� Semantic

• Topology� Mathematics

Geometry Design Tutorial 2Instituto Tecnológico de Veracruz 21-25 April 2008

� Mathematics� Hierarchy

• CSG Approach• BREP Approach

� Curves

� Surfaces

vertices:x,y,z location

Geometry: Concept Basics

Geometry Design Tutorial 3Instituto Tecnológico de Veracruz 21-25 April 2008

vertices:x,y,z location

Geometry: Concept Basics

curves:bounded by two vertices

Geometry Design Tutorial 4Instituto Tecnológico de Veracruz 21-25 April 2008

vertices:x,y,z location

Geometry: Concept Basics

surfaces:closed set of curves

curves:bounded by two vertices

Geometry Design Tutorial 5Instituto Tecnológico de Veracruz 21-25 April 2008

vertices:x,y,z location

Geometry: Concept Basics

surfaces:closed set of curves

curves:bounded by two vertices

Geometry Design Tutorial 6Instituto Tecnológico de Veracruz 21-25 April 2008

volumes: closed set of surfaces

vertices:x,y,z location

Geometry: Concept Basics

surfaces:closed set of curves

curves:bounded by two vertices

Geometry Design Tutorial 7Instituto Tecnológico de Veracruz 21-25 April 2008

body: collection of volumesvolumes: closed

set of surfaces

vertices:x,y,z location

Geometry: Concept Basics

surfaces:closed set of curves

curves:bounded by two vertices

Geometry Design Tutorial 8Instituto Tecnológico de Veracruz 21-25 April 2008

body: collection of volumesvolumes: closed

set of surfaces

loops: ordered set of curves on surface

vertices:x,y,z location

coedges: orientation of curve w.r.t. loop

Geometry: Concept Basics

surfaces:closed set of curves (loops)

curves:bounded by two vertices

Geometry Design Tutorial 9Instituto Tecnológico de Veracruz 21-25 April 2008

body: collection of volumesvolumes: closed

set of surfaces

loops: ordered set of curves on surface

vertices:x,y,z location

coedges: orientation of curve w.r.t. loop

Geometry: Concept Basics

curves:bounded by two vertices

surfaces:closed set of curves (loops)

Geometry Design Tutorial 10Instituto Tecnológico de Veracruz 21-25 April 2008

body: collection of volumes

loops: ordered set of curves on surface

shell: oriented set of surfaces comprising a volume volumes: closed set

of surfaces (shells)

vertices:x,y,z location

surfaces:closed set of curves (loops)

coedges: orientation of curve w.r.t. loop

curves:bounded by two vertices

Geometry: Concept Basics

Geometry Design Tutorial 11Instituto Tecnológico de Veracruz 21-25 April 2008

body: collection of volumesvolumes: closed set

of surfaces (shells)

loops: ordered set of curves on surface

shell: oriented set of surfaces comprising a volume

vertices:x,y,z location

coedges: orientation of curve w.r.t. loop

coface: oriented

Geometry: Concept Basics

surfaces:closed set of curves (loops)

curves:bounded by two vertices

Geometry Design Tutorial 12Instituto Tecnológico de Veracruz 21-25 April 2008

body: collection of volumes

loops: ordered set of curves on surface

shell: oriented set of surfaces comprising a volume

oriented surface w.r.t. shell

volumes: closed set of surfaces (shells)

Volume 1

Surface 11

Manifold Geometry: Each volume maintains its own set of unique surfaces

Geometry: Concept Basics

Geometry Design Tutorial 13Instituto Tecnológico de Veracruz 21-25 April 2008

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10 Surface 11

Surface 7

Volume 2

Surface 7

surfaces

Volume 1

Non-Manifold Geometry: Volumes share matching surfaces

Geometry: Concept Basics

Geometry Design Tutorial 14Instituto Tecnológico de Veracruz 21-25 April 2008

Volume 1

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6

Volume 2

Surface 8 Surface 9 Surface 10

Surface 7

Volume 2

Surface 7

Geometry: Data

• Model– Wireframe– Surface– Volume

• Geometrical Data Separated from Attributes

Geometry Design Tutorial 15Instituto Tecnológico de Veracruz 21-25 April 2008

• Geometrical Data Separated from Attributes• Attributes

– Colors– Parameters– Etc.

• Graphical Objects• Visible Parts

Semantic: Surface-Volume-Deflection- Defects

Geometry Design Tutorial 16Instituto Tecnológico de Veracruz 21-25 April 2008

Semantic: Surfaces and Features

Geometry Design Tutorial 17Instituto Tecnológico de Veracruz 21-25 April 2008

Semantic: Detail

Geometry Design Tutorial 18Instituto Tecnológico de Veracruz 21-25 April 2008

Semantic: Detail-Mesh–Bounding Box

Geometry Design Tutorial 19Instituto Tecnológico de Veracruz 21-25 April 2008

Semantic: Decomposition–CurvatureMesh STL-Mesh FEM

Geometry Design Tutorial 20Instituto Tecnológico de Veracruz 21-25 April 2008

Wireframe Model: Limits

Geometry Design Tutorial 21Instituto Tecnológico de Veracruz 21-25 April 2008

Basics of Topology

Topology??

•Concept of interior and exterior

•Orientation

Geometry Design Tutorial 22Instituto Tecnológico de Veracruz 21-25 April 2008

•Reliable calculation of basic parameters:volume, center of gravity, axis of inertia …

•Contour = oriented surface and limited area

•Tree construction

Relations: (Geometry, Topology)

Volume Solid

TopologyGeometry

Geometry Design Tutorial 23Instituto Tecnológico de Veracruz 21-25 April 2008

Surface

Curve

Vertex

face

Contour

Edge

Point

A contour “grips" to its interior

Either S is a Setof R3

Adhesion : A(S)

P ∈ A( S) : any neighborhood of P contains a point of S

Topology: Mathematics

Geometry Design Tutorial 24Instituto Tecnológico de Veracruz 21-25 April 2008

P ∈ A( S) : any neighborhood of P contains a point of S

Interior : I(S)

P ∈ I( S) if ∃ V(P) ⊂ S

Boundary : B(S)

P ∈ B( S) if P ∈ A( S) and P ∈ A( C(S)) where C(S) refers to the complementary of S in R3

Topology: Mathematics

Open : S = A(S)

Closed : S = I(S)

Geometry Design Tutorial 25Instituto Tecnológico de Veracruz 21-25 April 2008

Regular SolidS = A(I(S)) : adhesion of its interior = R(S)

Topology: Mathematics

A ∩∩∩∩ B = R(A∩B)A ∪∪∪∪ B = R(A∪B)A - B = R(A-B)C(A) = R(C(A))

Operator of Regularization

Geometry Design Tutorial 26Instituto Tecnológico de Veracruz 21-25 April 2008

A

B

A ∩∩∩∩ B

R(A ∩∩∩∩ B)A

A - B

R(A – B)

Topology: Mathematics

A B

Operator of Regularization

Geometry Design Tutorial 27Instituto Tecnológico de Veracruz 21-25 April 2008

A ∪∪∪∪ B

A B

C(A)/B

R(C(A)/B)

Topology: Mathematics

Euler Formula: V+F = E+2

Polyhedron Type of Faces F V E

Tetrahedron Equilateral Triangles 4 4 6

Octahedron Equilateral Triangles 8 6 12

Geometry Design Tutorial 28Instituto Tecnológico de Veracruz 21-25 April 2008

F = number of faces, V = number of vertices E = number of edges

Cube Squares 6 8 12

Dodecahedron Pentagons 12 20 30

Icosahedrons Equilateral Triangles 20 12 30

Topology: Mathematics

Cauchy Proof (1789-1857)

V+F=E+2 V+F=E+1 V+F+1=(E+1)+1 V+F=E+1

Geometry Design Tutorial 29Instituto Tecnológico de Veracruz 21-25 April 2008

V+F=E+2 V+F=E+1 V+F+1=(E+1)+1 V+F=E+1

V+F=E+1 V+F=E+1 (V-2)+F=(E-2)+1 V+F=E+1

3+1=3+1!!

Topology: Mathematics

Mesh Examples

F = 3844V = 1924E = V + F –2 = 5766

Geometry Design Tutorial 30Instituto Tecnológico de Veracruz 21-25 April 2008

F = 47566V = 23793E = S + F –2 = 71357

Topology : Hierarchy

Geometry Design Tutorial 31Instituto Tecnológico de Veracruz 21-25 April 2008

Constructive RepresentationParametric Volume PrimitivesTransformationsBoolean Operators:

Union, common, subtract

CSG : Constructive Solid Geometry

Geometry Design Tutorial 32Instituto Tecnológico de Veracruz 21-25 April 2008

Concept of GraphAdvantage :

Simple DescriptionSimulation of Object « Manufacturing »

CSG: Primitive Components

Geometry Design Tutorial 33Instituto Tecnológico de Veracruz 21-25 April 2008

U

CSG: Boolean Operators

Union

Geometry Design Tutorial 34Instituto Tecnológico de Veracruz 21-25 April 2008

U

Union

CSG: Boolean Operators

U

Geometry Design Tutorial 35Instituto Tecnológico de Veracruz 21-25 April 2008

U

Subtract

CSG: Boolean Operators

Geometry Design Tutorial 36Instituto Tecnológico de Veracruz 21-25 April 2008

U

-

Common

CSG: Boolean Operators

Geometry Design Tutorial 37Instituto Tecnológico de Veracruz 21-25 April 2008

CSG: Boolean Operators

Fillet

Geometry Design Tutorial 38Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Curves

Lap back point

us(u)

x, y, z function of u, continuous first order

Geometry Design Tutorial 39Instituto Tecnológico de Veracruz 21-25 April 2008

Multiple point

Arc length, abscissa curvilinear

0

2 2 2 2

2 2 2

ds = dx + dy + dz

( )u

u

dx dy dzs u du

du du du = + +

u

u=u0

s(u)

τ(s) τ(s+ds)

Geometry: Curvature

Geometry Design Tutorial 40Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Curvature

Geometry Design Tutorial 41Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Curvature

O

n

Ray ofOsculator Circle

=Curvature Ray

nOM

ρ=

Geometry Design Tutorial 42Instituto Tecnológico de Veracruz 21-25 April 2008

M

ρ

Parametric curve:

For the curve with the equation y = f(x):

Geometry: Vector and TangentialFrenet Reference

2

2

2 2

2 2

2

2

( ) et n( )

d xdxdsds

dOM dy d OM d yu u

ds ds ds dsdz d zds ds

τ

= =

Geometry Design Tutorial 43Instituto Tecnológico de Veracruz 21-25 April 2008

n = Principal normal

t

OM(s+dh1)

OM(s+dh2)

OM(s)

Geometry: Torsion

M(s)

M(s+ds)

Geometry Design Tutorial 44Instituto Tecnológico de Veracruz 21-25 April 2008

Osculator Plane at M(s)

Torsion

Geometry: Propeller Circular

2

2

2

2

2

2

2 2 2 2 2 2 2 2

2 2

= -R c o s = -R s inx = R c o s

y = R s in , = R c o s , = -R s in

z = p = p = 0

a in s i e t d o n c s =

R = - s in

d xd xdd

d y d y

d dd z d zd d

d s d x d y d z R p R p

d x

d s R p

θθ θθθθ θ θ

θ θθ

θ θ

θ

θ

= + + = + + ×

+

2

2 2 2

R = - c o s

d x

d s R pθ

+

Geometry Design Tutorial 45Instituto Tecnológico de Veracruz 21-25 April 2008

2 2

R =

d s R p

d y

d s Rτ

+ 2 2 2

2

2 2 2 2 22 2

2

22 2

2 2

2 22 2

2 2

= - c o s

R Rco s e t = - s in a v ec =

p = 0 =

ps in

-p p c o s e t d o n c

R

d s R p

d d y

d s d s R p R pp

d zd z

d sd s R p

R p

d bb n T T

d s R pR p

R p

τθ θ ρ

θ

τ θ

+

+ ++ +

+= × = =

++ +

Geometry: Propeller Circular

-1-0.5

00.5

1

-1-0.5

00.5

1

3-1

-0.500.5

1 -1-0.5

00.5

1

-1

-0.5

00.5

1

3

-1

-0.5

00.5

1

Discretizing

Geometry Design Tutorial 46Instituto Tecnológico de Veracruz 21-25 April 2008

0

1

2

0

1

2

Geometry: Frenet - SerretReference, Equations, Curvature, Torsion

Frenet Reference:

The Frenet - Serret equations are a convenient framework for analyzing curvature. T(s) is the unit tangent to the curve as a function of path length s.N(s) is the unit normal to the curve B(s) is the unit binormal; the vector cross product of T(s) and N(s).

Geometry Design Tutorial 47Instituto Tecnológico de Veracruz 21-25 April 2008

Frenet Equations:

Frenet Reference:

For any parametric function f(t), the expression of the curvature and the torsion are the following:

Geometry: CurvatureGaussian, Average

Gaussian Curvature

Geometry Design Tutorial 48Instituto Tecnológico de Veracruz 21-25 April 2008

Average Curvature

Curvature Cmap

Geometry: CurvatureGaussian, Average

Gaussian Curvature = 2

1

R

Sphere

Geometry Design Tutorial 49Instituto Tecnológico de Veracruz 21-25 April 2008

R

Average Curvature = 1

_R

Geometry: CurvatureGaussian, Average

Torus

Geometry Design Tutorial 50Instituto Tecnológico de Veracruz 21-25 April 2008

Gaussian Average

Geometry: Curvature

Torus

Geometry Design Tutorial 51Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Surfaces of Revolution

-1-0.5

00.5

1

-1-0.5

00.5

1

2

3

4-1-0.5

00.5

1

2

4

-1-0.5

00.51

Geometry Design Tutorial 52Instituto Tecnológico de Veracruz 21-25 April 2008

0

1 -4

-2

0

2

4-4

-2

0-1

-0.5

-4

-2

0

2

4

-1-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1-0.5

0

0.5

1

-1

-0.5

0

0.5

1

Geometry: Particular Surfaces

20

40

-100

10

Mobius Strip: 'Endless Ribbon'

Geometry Design Tutorial 53Instituto Tecnológico de Veracruz 21-25 April 2008

-25

0

25

50

-40

-20

0

20-10

-25

0

25

50

Geometry: Particular Surfaces

The Klein Bottle

Geometry Design Tutorial 54Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Particular Surfaces

The Klein Bottle

Geometry Design Tutorial 55Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Particular Surfaces

The Klein Bottle: Curvature

Geometry Design Tutorial 56Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Particular Surfaces

The Kuen Surfaces

Geometry Design Tutorial 57Instituto Tecnológico de Veracruz 21-25 April 2008

x=2*(cos(u)+u*sin(u))*sin(v)/(1+u*u*sin(v)*sin(v))

y=2*(sin(u)-u*cos(u))*sin(v)/(1+u*u*sin(v)*sin(v))

z=log(tan(v/2))+2*cos(v)/(1+u*u*sin(v)*sin(v))

Geometry: Particular Surfaces

The Dini Surfaces

Geometry Design Tutorial 58Instituto Tecnológico de Veracruz 21-25 April 2008

x=a*cos(u)*sin(v)y=a*sin(u)*sin(v) z=a*(cos(v)+log(tan((v/2))))+b*ua=1,b=0.2,u={ 0,4*pi},v={0.001,2}

Geometry: Particular Surfaces

Asteroid

Geometry Design Tutorial 59Instituto Tecnológico de Veracruz 21-25 April 2008

x= pow (a*cos(u)*cos(v),3) y= pow (b*sin(u)*cos(v),3) z= pow (c*sin(v),3)

Geometry: Particular Surfaces

The «Derviche»

Geometry Design Tutorial 60Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Curves

Lagrange Interpolating Polynomial

Geometry Design Tutorial 61Instituto Tecnológico de Veracruz 21-25 April 2008

The Lagrange interpolating polynomial is the polynomial P(x) of degree <= (n-1)that passes through the n points (x1,y1= f(x1)), x2,y2= f(x2)), ..., xn,yn= f(xn)),and is given by:

Geometry: Curves

Lagrange Interpolating Polynomial

Where:

Geometry Design Tutorial 62Instituto Tecnológico de Veracruz 21-25 April 2008

Written explicitly:

Geometry: Curves

Cubic Spline Interpolating Polynomial

Geometry Design Tutorial 63Instituto Tecnológico de Veracruz 21-25 April 2008

A cubic spline is a spline constructed of piecewisethird-order polynomials which pass through a set of m control points. The second derivative of each polynomial is commonly set to zero at the endpoints, since this provides a boundary condition that completes the system of m -2 equations.This produces a so-called "natural" cubic spline and leads to a simple tridiagonal systemwhich can be solved easily to give the coefficients of the polynomials.However, this choice is not the only one possible, and other boundary conditions can be used instead.

Geometry: Curves

Consider 1-dimensional spline for a set of n+1 points (y1, y2, .., yn),let the ith piece of the spline be represented by:

Where t is a parameter and i = 0, …, n-1 then

Cubic Spline Interpolating Polynomial

Geometry Design Tutorial 64Instituto Tecnológico de Veracruz 21-25 April 2008

Rearranging all these equations,leads to the following beautifullysymmetric tridiagonal system:

If the curve is instead closed, the system becomes

Geometry: Curves

Cubic Spline/Lagrange

1

2

1

2

Geometry Design Tutorial 65Instituto Tecnológico de Veracruz 21-25 April 2008

1 2 3 4 5 6 7

-3

-2

-1

1 2 3 4 5 6 7

-5

-4

-3

-2

-1

Geometry: Curves

Bézier

Given a set of n + 1 control points P0, P1, .., Pn, the corresponding Bèzier curve (or Bernstein- Bèzier curve) is given by:

Geometry Design Tutorial 66Instituto Tecnológico de Veracruz 21-25 April 2008

Where Bi,n(t) is a Bernstein polynomial and .

A "rational" Bézier curve is defined by:

where p is the order, Bi,p are the Bernstein polynomials,Pi are control points, and the weight Wi of Pi is the last ordinate of the homogeneousPoint Pi

w. These curves are closed under perspective transformations, and can representconic sections exactly.

Geometry: Curves

Bézier:Properties

� The Bézier curve always passes through the first and last control points.

Geometry Design Tutorial 67Instituto Tecnológico de Veracruz 21-25 April 2008

� The curve is tangent to P1–P0 and Pn–Pn-1 at the endpoints.

� The curve lies within the convex hull of the control points.

Geometry: Curves

Bézier:Properties

� A desirable property is that the curve can be translated and rotated by performing these Operations on the control points.

Geometry Design Tutorial 68Instituto Tecnológico de Veracruz 21-25 April 2008

� Undesirable properties of Bézier curves are their numerical instability for large numbers of control points, and the fact that moving a single

control point changes the global shape of the curve .

Geometry: Curves

Bézier: Bernstein Polynomials

Bin(t) = Cn

i (t-1)n-iti , Cni = n! / i!(n-i)!

Bi j(t) = (1-t)Bi

j-1(t) + t Bi-1j-1(t)

Geometry Design Tutorial 69Instituto Tecnológico de Veracruz 21-25 April 2008

B0 1(t) = (1-t)B0

0(t) + t B-10(t)

B1 1(t) = (1-t)B1

0(t) + t B00(t)

B0 2(t) = (1-t)B0

1(t) + t B-11(t)

Geometry: Curves

Bézier: Bernstein Polynomials

•Unit Partition: Σi=0,n Bin(t) = 1

Bi j(t) = (1-t)Bi

j-1(t) + t Bi-1j-1(t)

Geometry Design Tutorial 70Instituto Tecnológico de Veracruz 21-25 April 2008

•0<=Bin(t)<= 1

•Bin(0) = 0 et Bi

n(1) = 0

•B0n(0) = 1

•Bnn(1) = 1

Geometry: Curves

B-Spline

A B-Spline is a generalization of the Bézier curve.Let a vector known as the knot vector be defined

T = {t0, t1, …, tm},

Geometry Design Tutorial 71Instituto Tecnológico de Veracruz 21-25 April 2008

where T is a no decreasing sequence with ,and define control points P0, ..., Pn.Define the degree as: p = m-n-1

The "knots“ tp+1, ..., tm-p-1 are called internal knots.

Geometry: Curves

B-Spline

�Define the basis functions as:

Geometry Design Tutorial 72Instituto Tecnológico de Veracruz 21-25 April 2008

�Then the curve defined by: is a B-spline.

�Specific types include the non periodic B-spline(first p+1 knots equal 0 and last p+1 equal to 1; illustrated above)and uniform B-spline (internal knots are equally spaced).

�A curve is p - k times differentiable at a point where k duplicate knot values occur.

�A B-spline with no internal knots is a Bézier curve.

Geometry: Curves

NURBS-Curve

A non uniform rational B-spline curve defined by:

Geometry Design Tutorial 73Instituto Tecnológico de Veracruz 21-25 April 2008

where p is the order, Ni,p are the B-Spline basis functions, Pi are control points,and the weight Wi of Pi is the last ordinate of the homogeneous point Pi

w.These curves are closed under perspective transformations, and can representconic sections exactly.

Geometry: Curves

Conics

P(t) = w N t P t

w N t

i i i

i

i

i i

i

i

×

=

=

×

=

=

,

,

( ) ( )

( )

2

0

3

2

0

3

Geometry Design Tutorial 74Instituto Tecnológico de Veracruz 21-25 April 2008

Parabola w=1

Hyperbole w=4 Ellipse w=1/4

i =0

(0,0,0,1,1,1)

Geometry: Curves

•NURBS of degree 2•Control points (Isosceles triangle)•Knot vector (0,0,0,1,1,1)

Arcs

Geometry Design Tutorial 75Instituto Tecnológico de Veracruz 21-25 April 2008

Geometry: Curves

Circles

(0, 0, 0, 1/3, 1/3, 2/3, 2/3, 1, 1, 1)

Geometry Design Tutorial 76Instituto Tecnológico de Veracruz 21-25 April 2008

(0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1)

Geometry: Surfaces

A given Bézier surface of order (n, m) is defined bya set of (n + 1)(m + 1) control points ki,j.

Bézier

evaluated over the unit square, where:

Geometry Design Tutorial 77Instituto Tecnológico de Veracruz 21-25 April 2008

evaluated over the unit square, where:

is a Bernstein polynomial, and

is the binomial coefficient.

Geometry: Surfaces

S(u,v) = Σi=0,nΣj=0,m Bin(u) Bj

m(v) Pij

(n+1)(n+1) points Pij

Bézier

Geometry Design Tutorial 78Instituto Tecnológico de Veracruz 21-25 April 2008

Pi(v) = Σj=0,m Bjm(v)Pij

Geometry: Surfaces

NURBS

Geometry Design Tutorial 79Instituto Tecnológico de Veracruz 21-25 April 2008

NURBS are nearly ubiquitous for computer-aided design (CAD), manufacturing (CAM), and engineering (CAE)and are part of numerous industry wide used standards,such as IGES, STEP, ACIS, Parasolid.

Geometry: Surfaces

NURBS: PropertiesNURBS curves and surfaces are useful for a number of reasons:

�They are invariant under affine as well as perspective transformations.

�They offer one common mathematical form for both standard analytical shapes(e.g., conics) and free-form shapes.

Geometry Design Tutorial 80Instituto Tecnológico de Veracruz 21-25 April 2008

�They are generalizations of non-rational B-Splines and non-rational and rational Béziercurves and surfaces.

(e.g., conics) and free-form shapes.

�They provide the flexibility to design a large variety of shapes.

�They reduce the memory consumption when storing shapes (compared to simpler methods).

�They can be evaluated reasonably quickly by numerically stable and accurate algorithms.