An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

Embed Size (px)

Citation preview

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    1/52

    AN INTRODUCTION TO ELECTROMAGNETIC FIELD

    THEORY

    CHRISTIAN G ALLAI

    MCGIL L U NIVERSITY, MONTREALQC, CANADA

    FAL L 2011

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    2/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    1

    Contents

    1. Introduction to Transmission Lines ....................................................................................................... 7

    1.1. Telegraphers Equations ............................................................................................................... 7

    2. Lossless Propagation ............................................................................................................................. 7

    2.1. Wave Equation .............................................................................................................................. 7

    2.2. Lossless Wave Equation ( )........................................................................................... 73. Harmonic Waves on Lossless Lines ....................................................................................................... 8

    3.1. Time Harmonic Representation .................................................................................................... 8

    3.2. Phasor Representation.................................................................................................................. 8

    4. Transmission Line Equations in Phasor Form ....................................................................................... 9

    4.1. Propagation Constant ................................................................................................................ 94.2. Attenuation Coefficient ............................................................................................................. 94.3. Signal Strength .............................................................................................................................. 9

    4.4. Impedance of Lossy Lines ............................................................................................................. 9

    5. Power Transmission ............................................................................................................................ 10

    5.1. Instantaneous Power .................................................................................................................. 10

    5.2. Time-Average Power ................................................................................................................... 10

    6. Wave Reflection .................................................................................................................................. 10

    6.1. Reflection and Transmission Coefficients ................................................................................... 10

    6.2. Power Delivered to the Load ...................................................................................................... 10

    7. Voltage Standing Wave Ratio .............................................................................................................. 11

    7.1. Incident and Reflected Waves .................................................................................................... 11

    7.2. Maxima and Minima ................................................................................................................... 11

    7.3. Voltage Standing Wave Ratio (VSWR) ........................................................................................ 12

    7.4. Open and Short Circuit Lines....................................................................................................... 12

    8. Input Impedance ................................................................................................................................. 12

    8.1. Forward and Backward Travelling Waves ................................................................................... 12

    8.2. Wave Impedance ........................................................................................................................ 13

    8.3. Input Impedance at ........................................................................................................ 13

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    3/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    2

    8.4. Power Transferred to the Load: .................................................................................................. 13

    8.5. Input Current and Voltage .......................................................................................................... 13

    8.6. Half Wave and Quarter Wave Lines ............................................................................................ 14

    8.7.

    For Short and Open Circuit Loads ........................................................................................ 14

    9. Smith Charts ........................................................................................................................................ 14

    9.1. Normalized Load Impedance ...................................................................................................... 15

    9.2. Short Circuit, Matched Load, and Open Circuit Points ............................................................... 15

    9.3. R and X Circles ............................................................................................................................. 15

    10. Single Stub Impedance Matching ................................................................................................... 15

    10.1. Single Stub Calculations for Lossless Lines .............................................................................. 16

    10.2. Double Stub Matching ............................................................................................................ 16

    11. Transient Signals on Transmission Lines ......................................................................................... 17

    11.1. Voltage as a Function of Time ................................................................................................. 17

    11.2. Current as a Function of Time ................................................................................................. 18

    12. Pulses and Initially Charged Lines ................................................................................................... 19

    12.1. Pulse Representation .............................................................................................................. 19

    13. Power Transfer to a Load Calculation Methods.............................................................................. 19

    13.1. Method # 1 .............................................................................................................................. 19

    13.2. Method # 2 .............................................................................................................................. 20

    13.3. Power Efficiency ...................................................................................................................... 21

    14. EM Wave Propagation in Free Space .............................................................................................. 21

    14.1. Maxwells Equations ............................................................................................................... 21

    14.2. Source Free Wave Equations ............................................................................ 2114.3. Homogeneous Vector Helmholtz Equations ........................................................................... 22

    14.4. Plane Waves ............................................................................................................................ 22

    14.5. Harmonic Waves ..................................................................................................................... 22

    Magnetic Fields ....................................................................................................................... 2314.7. Transverse Electromagnetic Wave.......................................................................................... 2315. Wave Propagation in Dielectrics ..................................................................................................... 23

    15.1. Propagation Constant ............................................................................................................. 24

    15.2. Waves in Lossless Dielectrics .................................................................................................. 24

    15.3. Impedance in a Dielectric ........................................................................................................ 24

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    4/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    3

    15.4. Refractive Index ...................................................................................................................... 25

    15.5. Approximations for Low Loss Dielectrics ................................................................................ 25

    16. The Loss Tangent............................................................................................................................. 25

    16.1. Review Concepts ..................................................................................................................... 25

    16.2. The Loss Tangent ..................................................................................................................... 25

    16.3. Attenuation and Phase Coefficients ....................................................................................... 26

    16.4. Average Power Loss ................................................................................................................ 26

    16.5. Conductors and Insulators ...................................................................................................... 26

    17. Power and Energy Transport .......................................................................................................... 26

    17.1. The Poynting Vector ................................................................................................................ 27

    17.2. Instantaneous Power Density ................................................................................................. 27

    17.3. Time Average Power Density and Flux .................................................................................... 27

    17.4. Example 1 ................................................................................................................................ 27

    17.5. Power Flux Through a Medium ............................................................................................... 28

    18. Waves in Good Conductors: The Skin Effect ................................................................................... 28

    18.1. Skin Depth ............................................................................................................................... 28

    18.2. Impedance in Good Conductors ............................................................................................. 29

    18.3. Frequency Dependent Resistance .......................................................................................... 29

    18.4. Surface Resistance .................................................................................................................. 29

    19. Polarization ..................................................................................................................................... 29

    19.1. Linear Polarization (P-State) ................................................................................................... 29

    19.2. Circular Polarization ................................................................................................................ 29

    19.3. Elliptical Polarization ............................................................................................................... 30

    20. Reflection and Dispersion of Waves ............................................................................................... 30

    20.1. Boundary Conditions ............................................................................................................... 31

    20.2. Reflection and Transmission Coefficients ............................................................................... 31

    20.3. Total Electric and Magnetic Fields in Region 1 ....................................................................... 31

    20.4. Standing Wave Zeroes and Maxima........................................................................................ 31

    20.5. Transmitted and Reflected Power .......................................................................................... 32

    21. Standing Waves and Plane Wave Reflection .................................................................................. 32

    21.1. Total Wave Amplitude ............................................................................................................ 32

    21.2. Maximum Amplitude .............................................................................................................. 32

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    5/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    4

    21.3. Minimum Amplitude ............................................................................................................... 32

    21.4. Standing Wave Ratio ............................................................................................................... 33

    22. Wave Reflection at Multiple Interfaces .......................................................................................... 33

    22.1. Review of Waves Incident on an Interface ............................................................................. 33

    22.2. Wave Impedance at a Dielectric Boundary ............................................................................. 34

    22.3. Dielectric Coating Antireflection ............................................................................................. 34

    22.4. Radome Antireflection ............................................................................................................ 34

    23. Wave Propagation in Arbitrary Directions ...................................................................................... 35

    23.1. Transverse EM Waves ............................................................................................................. 35

    24. Wave Reflection at Oblique Incidence ............................................................................................ 35

    24.1. Parallel and Perpendicular Polarization .................................................................................. 35

    24.2. Boundary Conditions ............................................................................................................... 36

    24.3. Snells Law ............................................................................................................................... 36

    24.4. Field Amplitudes ..................................................................................................................... 36

    24.5. Fresnel Coefficients for Refractive Index ................................................................................ 36

    25. Special Cases of Wave Reflection ................................................................................................... 37

    25.1. Total Internal Reflection ......................................................................................................... 37

    25.2. Brewster Angle ........................................................................................................................ 37

    26. Dispersive Materials and Group Velocity ........................................................................................ 38

    26.1. Dispersion ............................................................................................................................... 38

    26.2. Phase and Group Velocity ....................................................................................................... 38

    26.3. Calculation of Dispersion ........................................................................................................ 38

    27. Electromagnetic Waves in Transmission Lines ............................................................................... 39

    27.1. Parallel Plate Transmission Line .............................................................................................. 39

    27.2. Power Transmitted ................................................................................................................. 39

    27.3. Impedances ............................................................................................................................. 40

    27.4. Ratio of Electric to Magnetic Field .......................................................................................... 40

    27.5. Resistance ............................................................................................................................... 40

    27.6. Loss .......................................................................................................................................... 40

    27.7. Phase Velocity ......................................................................................................................... 40

    28. Basic Waveguide Operation ............................................................................................................ 40

    28.1. Disadvantages of Transmission Lines ...................................................................................... 40

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    6/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    5

    28.2. From Transmission Line to Waveguide ................................................................................... 41

    28.3. Phase Constant ....................................................................................................................... 41

    28.4. Cut-Off Frequency ................................................................................................................... 41

    28.5. Cut-Off Wavelength ................................................................................................................ 42

    28.6. Example 1 ................................................................................................................................ 42

    29. Phase and Group Velocity in the Parallel Plate Waveguide............................................................ 43

    29.1. Group Velocity Dispersion and Delay...................................................................................... 43

    30. Wave Equations in Parallel Plate Waveguides ................................................................................ 43

    30.1. General Field Solution ............................................................................................................. 44

    30.2. Waves at Cut-Off ..................................................................................................................... 44

    30.3. Magnetic Field (TE Mode) ....................................................................................................... 44

    30.4. Impedance .............................................................................................................................. 45

    30.5. TM Modes ............................................................................................................................... 45

    31. Rectangular Waveguides ................................................................................................................ 45

    31.1. TM Modes: Propagation Constant and Cut-Off Frequency .................................................... 45

    31.2. TE Modes: Propagation Constant and Cut-Off Frequency ...................................................... 46

    31.3. TE10 Mode .............................................................................................................................. 46

    31.4. Power in a Waveguide ............................................................................................................ 46

    32. Dielectric Slab Waveguides ............................................................................................................. 47

    32.1. Fresnel Equations For Reflection ............................................................................................ 47

    32.2. Phase Shift Expressions ........................................................................................................... 47

    32.3. Self-Consistency Equation ....................................................................................................... 47

    33. Introduction to Antennas ................................................................................................................ 48

    33.1. What Does an Antenna Do? .................................................................................................... 48

    33.2. Radiation Resistance ............................................................................................................... 48

    33.3. Antenna Pattern and Directivity ............................................................................................. 48

    33.4. Elemental Dipole Summary ..................................................................................................... 49

    33.5. Elemental (Hertzian) Dipole .................................................................................................... 49

    33.6. Spherical Coordinates Definitions ........................................................................................... 49

    33.7. Time-Varying Field Patterns .................................................................................................... 49

    33.8. Retarded Potential .................................................................................................................. 50

    33.9. Time Harmonic Solution .......................................................................................................... 50

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    7/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    6

    33.10. Vector Magnetic Potential Due To Elemental Dipole ............................................................. 50

    33.11. A in Spherical Coordinates ...................................................................................................... 50

    33.12. H and E Fields .......................................................................................................................... 50

    33.13. Far Field Regime ...................................................................................................................... 51

    33.14. Typical H-Plane Patterns ......................................................................................................... 51

    33.15. Radiated Power ....................................................................................................................... 51

    33.16. Radiation Resistance ............................................................................................................... 51

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    8/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    7

    1. Introduction to Transmission Lines

    At low frequencies we use a lumped circuit model

    As frequencies increase, wave propagation becomes important

    This occurs when

    o The circuit dimensions are larger than the propagation time for voltage and current

    transients

    o The circuit dimensions are several wavelengths or less

    1 1 Telegraphers Equations

    2. Lossless Propagation

    If a line has no resistance and no conductance we describe it as lossless

    The speed of signal propagation on such a line is given by This is the speed of light on the line

    Voltage and current are related to each other by the line impedance

    2 1

    Wave Equation

    2 2

    Lossless Wave Equation ( )

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    9/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    8

    3.

    Harmonic Waves on Lossless Lines

    When there is only one frequency present we can represent the signal as a cosine wave

    The phasor representation is the complex time independent form

    To obtain the time dependent measurable voltage, multiply the phasor by and take the realpart3 1

    Time Harmonic Representation

    || ||

    ||

    Where is the angular frequency, is the initial phase, and is the phase constant

    3 2

    Phasor Representation

    ||

    Where ||is the complex amplitude. For the time-independent phasor form we have:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    10/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    9

    Two voltage waves with equal frequencies and opposite amplitudes are propagating in opposite

    directions on a transmission line. Determine the total voltage as a function of time and position:

    [] 4.

    Transmission Line Equations in Phasor Form

    4 1

    Propagation Constant In order to deal with lossy lines, we introduce a new parameter, the propagation constant

    . We use this

    to represent the spatial wave evolution:

    4 2 Attenuation Coefficient Since is a positive real number, wave amplitude decays as the wave travels to the right (positive z). Itsunits are Nepers/m (Np/m).

    4 3

    Signal Strength

    || 4 4 Impedance of Lossy Lines

    ||

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    11/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    10

    5. Power Transmission

    Time-average power is always positive when net power is flowing along a positive axis

    Instantaneous power can be zero, or negative

    Power loss is often measured in dB/m

    5 1 Instantaneous Power

    5 2 Time-Average Power

    ||||

    6. Wave Reflection

    Changes of impedance give rise to reflections

    The ratio of incident voltage to reflected voltage is given by the reflection coefficient

    The fraction of power reflected is given by the square of this value

    The reflection coefficient can be complex

    6 1 Reflection and Transmission Coefficients

    The reflection coefficient defines the ratio of the reflected voltage to the incident voltage

    There is a corresponding transmission coefficient that defines the ratio of the load voltage to the

    incident voltage

    6 2 Power Delivered to the Load

    ||

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    12/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    11

    |||| 7. Voltage Standing Wave Ratio

    When the load is not matched to the line, reflections occur

    These interfere with the incident wave, producing a mixture of standing and travelling waves

    The location of the standing wave minima and maxima are a function of the load impedance

    The ratio of maximum to minimum amplitude is called the voltage standing wave ratio

    7 1 Incident and Reflected Waves

    7 2 Maxima and Minima

    If , , we have:

    If , , we have:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    13/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    12

    7 3 Voltage Standing Wave Ratio (VSWR)

    || ||7 4 Open and Short Circuit Lines

    8. Input Impedance

    Due to reflections the ratio of voltage to current changes along the line

    This can be expressed by the wave impedance

    At the input we call this the input impedance

    The input impedance determines the power that can be delivered to the load

    A half-wave line has an input impedance equal to the load impedance

    A quarter-wave line can be used for impedance matching

    Short and open circuits have purely reactive input impedances

    8 1 Forward and Backward Travelling Waves

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    14/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    13

    8 2

    Wave Impedance

    8 3 Input Impedance at

    8 4

    Power Transferred to the Load:

    8 5 Input Current and Voltage

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    15/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    14

    8 6

    Half Wave and Quarter Wave Lines

    If we look at the expression for input impedance we see that when we have: This is called a half-wave line, the input impedance is always equal to the load impedance. When we

    have we have:

    This is called a quarter-wave line. It can be used for impedance matching. In order to perform

    impedance matching we add a line that is a quarter wavelength long with an impedance :

    8 7 For Short and Open Circuit Loads

    9. Smith Charts

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    16/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    15

    The Smith Chart is a graphical representation of the complex quantities involved in transmission

    line calculations

    It plots the reflection coefficient as a function of load impedance

    It plots the normalized input impedance as a function of distance from the load

    It also allows the standing wave ratio to be determined

    9 1 Normalized Load Impedance

    9 2 Short Circuit, Matched Load, and Open Circuit Points

    9 3 R and X Circles

    R-circles represent the load resistance

    X-Circles represent the load reactance

    10. Single Stub Impedance Matching

    Impedance matching is necessary for maximum power transfer

    Simple impedance matching can be achieved through the use of a quarter-wave length of line of

    intermediate impedance in front of the load

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    17/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    16

    This is not generally the most suitable technique

    Improved impedance matching is achieved through the use of a stub: a parallel circuit which has

    an input admittance equal to that of the line

    A more advanced technique is to employ a double stub

    10 1 Single Stub Calculations for Lossless Lines

    10 2 Double Stub Matching

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    18/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    17

    Fix one stub in parallel across the load

    Place the other at fixed distances (1/8, wavelength, etc) Two variable lengths and permit the real and imaginary parts to be matched

    11.

    Transient Signals on Transmission Lines

    Transients cannot be modelled the same way as harmonic signals

    In a lossless line edges travel at the phase velocity

    Forward and backward going waves build up on the line

    Eventually the load current and voltage match the low-frequency solution

    Reflection diagrams show the reflected edges graphically as a plot of or 11 1

    Voltage as a Function of Time

    ( )

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    19/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    18

    11 2

    Current as a Function of Time

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    20/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    19

    12. Pulses and Initially Charged Lines

    Pulses can be modeled as the combination of a positive and negative edge

    An initially charged line can be used to generate a pulse

    12 1 Pulse Representation

    { 13.

    Power Transfer to a Load Calculation Methods

    13 1 Method # 1

    The first method is based on calculating the power flowing into the line:

    1.

    Power atthe load:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    21/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    20

    2.

    In steady state this is equal to the power deliveredby the generator at the input:

    3.

    To calculate

    and

    (the voltage and current at the input) we can apply the standard circuit laws

    at the generator:

    4.

    Note that is the input impedance (calculated in the usual way). This takes the line length intoaccount.

    13 2

    Method # 2

    The second method makes use of the reflection coefficient.

    1.

    Again, power at the load:

    2.

    Now recognize that load voltage and current are given by (Where and are the forward-goingvoltage and current amplitudes):

    3.

    So power at the load is:

    || ||4.

    We still need to find :

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    22/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    21

    13 3

    Power Efficiency

    We can write the power efficiency (ratio of power delivered to the load to the forward-going power) as:

    || 14. EM Wave Propagation in Free Space

    Electromagnetic waves are a self-consistent solution to Maxwells equations

    Time harmonic waves have a single frequency

    We can represent them via phasor notation

    For a time harmonic wave, we can obtain a set of wave equations that are time independent

    These are the Helmholtz equations

    14 1 Maxwells Equations

    Constitutive relations:

    14 2

    Source Free Wave Equations With and the Maxwell equations become:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    23/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    22

    This gives us the source free wave equations:

    14 3

    Homogeneous Vector Helmholtz Equations

    14 4 Plane Waves

    Lets assume that the E-field only has an x-component and only varies in z:

    14 5 Harmonic Waves

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    24/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    23

    Where is the angular frequency, is the wavenumber (), is the initial phase, is theamplitude, is the phase velocity, is the period, and is the phase.14 6 Magnetic Fields

    Magnetic fields and Electric fields are related through:

    The existence of an electric field implies the existence of a magnetic field. For the Harmonic wave,

    travelling in the z direction, we have the Electric field in the x direction of:

    This gives us a magnetic field of:

    14 7 Transverse Electromagnetic Wave

    Where

    is the impedance of free space:

    15. Wave Propagation in Dielectrics

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    25/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    24

    A lossy medium absorbs energy from an EM Wave

    Lost energy is converted to heat

    All real media are lossy

    Loss depends on frequency

    Loss can be due to:

    o

    Conduction: moving charges against resistance requires energy

    o Damping: forces in a dielectric

    Waves are attenuated in a lossy medium

    15 1 Propagation Constant

    15 2 Waves in Lossless Dielectrics

    For the lossless dielectric

    :

    The wavelength is reduced!

    15 3

    Impedance in a Dielectric

    The impedance in a medium is also modified from that of a vacuum:

    This means that the ratio of the electric to the magnetic field will change.

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    26/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    25

    15 4

    Refractive Index 15 5 Approximations for Low Loss Dielectrics

    16.

    The Loss Tangent

    Loss can arise from

    o Conduction (in a metal)

    o Damping (in a lossy dielectric)

    We can represent this with a complex dielectric constant

    Loss can be modeled as if a conduction current existed

    The angle between the displacement current and the actual current is called the loss tangent

    The magnitude of this parameter provides an estimate of loss Large loss tangent high absorption

    16 1 Review Concepts

    For a lossless medium we have:

    For a lossy medium we have:

    16 2 The Loss Tangent

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    27/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    26

    Use the ratio of conduction to displacement current to determine the degree of loss:

    16 3 Attenuation and Phase Coefficients

    16 4 Average Power Loss

    We know that in a conducting region, the average power dissipated by current flow is:

    16 5 Conductors and Insulators

    When the loss tangent is small :o

    Low loss

    o Insulator/dielectric

    When the loss tangent is large :o

    High loss

    o Conductor

    17. Power and Energy Transport

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    28/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    27

    EM Waves transport energy

    The direction of power flow is given by the Poynting vector

    The Poynting vector describes the power density In isotropic media this is the same direction as the wave vector

    We can distinguish between instantaneous and time average power Time average power is related to field amplitude via:

    ||

    17 1

    The Poynting Vector

    17 2 Instantaneous Power Density

    || [ ( )]17 3 Time Average Power Density and Flux

    || 17 4 Example 1

    The transmitter mast on Mount Royal is specified as . The IEEE safety limit for RF power is . How close can you stand to the transmitter? How much power reaches us here? What is theelectric field in the classroom due to the transmitter?

    Area:

    Power Density:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    29/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    28

    17 5 Power Flux Through a Medium

    ||

    ( )18. Waves in Good Conductors: The Skin Effect

    In conductors, wave amplitude falls by within the skin depth The attenuation goes up with the square root of frequency

    Skin depth falls with the square root of frequency The power lost is the same as if all the current were flowing within one skin depth

    18 1

    Skin Depth

    Attenuation is very rapid in a conductor. Skin depth measures the distance over which a wave isattenuated by a factor of :

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    30/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    29

    18 2

    Impedance in Good Conductors

    18 3 Frequency Dependent Resistance

    18 4

    Surface Resistance

    19.

    Polarization

    Defined by direction of electric field

    Different states:

    o Unpolarized light: no constant E-field direction

    o Linear polarization: E-field always remains in the same direction

    o Circular polarization: E-field direction rotates in a circle; amplitude remains constant

    o Elliptical polarization E-field direction and magnitude traces an ellipse

    19 1

    Linear Polarization (P-State)

    General linear polarization can be described as a vector sum of vertical and horizontal linear

    polarizations:

    ( )Angle:

    Magnitude:

    19 2

    Circular Polarization

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    31/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    30

    Right Circular:

    [ ]Left Circular:

    [ ]Sum:

    19 3

    Elliptical Polarization

    General case where :

    20. Reflection and Dispersion of Waves

    All power is reflected from a perfect conductor

    There is no net transfer of power and the Poynting vector is zero

    The wave in front of the conductor is a standing wave

    Nodes of the standing wave are spaced at a wavelength

    The transmitted and reflected power must add to the incident power

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    32/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    31

    20 1

    Boundary Conditions

    At the boundary, the tangential E-field is continuous:

    20 2

    Reflection and Transmission Coefficients

    20 3

    Total Electric and Magnetic Fields in Region 1

    These are standing waves.

    20 4

    Standing Wave Zeroes and Maxima

    The electric field has zeroes at:

    The electric field has maxima at:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    33/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    32

    20 5 Transmitted and Reflected Power

    The transmitted power is equal to:

    ||While the reflected power is equal to:

    ||21. Standing Waves and Plane Wave Reflection

    When partial reflection occurs, partial standing waves will also arise

    The standing wave ratio tells about the degree of reflection

    The standing wave peaks are spaced by one half a wavelength

    The phase of the standing wave pattern is a function of the reflection coefficient

    21 1 Total Wave Amplitude

    Calculate the total wave amplitude in region 1:

    ( )21 2 Maximum Amplitude

    Maximum amplitude occurs when the two terms are in phase:

    | | ||

    21 3 Minimum Amplitude

    Minimum amplitude occurs when the forward and reflected waves are 180 degrees out of phase:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    34/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    33

    | | ||

    21 4 Standing Wave Ratio

    As with transmission lines, the standing wave ratio tells us how much reflection is occurring. The

    standing wave Ratio is equal to: | || | || ||

    22. Wave Reflection at Multiple Interfaces

    The effective impedance at the surface of a multiple dielectric stack is a function of the

    impedances and spacings of all the layers and also of the wavelength of the incident wave

    The reflection and transmission coefficients are calculated from the effective impedance

    If the effective impedance matches the incident medium impedance there will be no reflection

    Two important antireflection configurations:

    o wave layer with impedance intermediate between air and substrate

    o

    wave layer (radome) surrounded by a single medium

    22 1 Review of Waves Incident on an Interface

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    35/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    34

    22 2

    Wave Impedance at a Dielectric Boundary

    22 3 Dielectric Coating Antireflection

    22 4 Radome Antireflection

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    36/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    35

    23. Wave Propagation in Arbitrary Directions

    E and H are orthogonal

    E and H are related through the impedance of the medium

    Direction of propagation is described by the wave vector The plane of constant phase is perpendicular to the wave vector E and H are perpendicular to the wave vector

    A wavefront is a plane of constant phase

    The wave vector defines the direction of the wave

    Wavefronts are orthogonal to the wave vector

    Plane waves have planar wavefronts

    A plane EM wave is called a transverse electromagnetic wave (TEM)

    23 1 Transverse EM Waves

    We can write the wave as:

    24. Wave Reflection at Oblique Incidence

    For oblique incidence at a dielectric boundary, waves are reflected and refracted

    The angle of refraction is given by Snells law

    The reflection and refraction coefficients are functions of the incident wave polarization

    We describe the wave polarization as being either parallel to the plane of incidence (p-

    polarization) or perpendicular to the plane of incidence (s-polarization)

    24 1 Parallel and Perpendicular Polarization

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    37/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    36

    24 2 Boundary Conditions

    We know that at the boundary tangential E-fields are conserved. Tangential E-fields are in the z-

    direction, therefore at the boundary: 24 3 Snells Law Giving us that . And Snells refraction law:

    24 4 Field Amplitudes

    24 5

    Fresnel Coefficients for Refractive Index

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    38/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    37

    25. Special Cases of Wave Reflection

    Under certain conditions of oblique incidence we can have either total reflection or total

    transmission

    Total internal reflection occurs for both polarizations when a wave passes from a low index

    medium to a higher index medium and when the angle is greater than the critical angle

    At the Brewster angle, only s-polarized light is reflected, and all p-polarized light is transmitted

    25 1 Total Internal Reflection

    Is there a condition for which we get 100% reflection at an interface? The reflection coefficient for p-

    polarization is:

    So the condition for total reflection is given by the critical angle :

    Thus we require that . So the wave must start in a higher index material. This is also described astotal internal reflection.

    25 2 Brewster Angle

    At the Brewster angle, which mean that all of the wave amplitude is transmitted:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    39/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    38

    26. Dispersive Materials and Group Velocity

    If the phase constant is a nonlinear function of frequency then signal propagation is frequency

    dependent

    This is called dispersion

    The speed of information is called the group velocity

    This is typically less than the phase velocity

    Signals will be distorted

    Energy also travels at the group velocity

    26 1

    Dispersion

    In free space all frequencies travel at the same speedthe phase velocity

    . However, in materials, the

    phase velocity, and hence the phase constant is a nonlinear function of frequency.26 2 Phase and Group Velocity

    Speed of the carrier = phase velocity :

    Speed of the envelope = group velocity :

    26 3

    Calculation of Dispersion

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    40/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    39

    27. Electromagnetic Waves in Transmission Lines

    The equations for inductance and resistance that we have assume that the current is confined

    within a thin skin depth

    At lower frequencies this assumption is no longer true

    The textbook includes the equations for low frequency operation

    TEM wave between conductors = Transmission line!

    Non-TEM wave between conductors = waveguide!

    27 1 Parallel Plate Transmission Line

    Voltage:

    Current:

    Therefore, for the parallel plate transmission line we have:

    27 2 Power Transmitted

    ||

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    41/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    40

    27 3

    Impedances

    27 4 Ratio of Electric to Magnetic Field

    27 5 Resistance

    27 6 Loss

    27 7 Phase Velocity

    The phase velocity is the same as that for a plane wave:

    28.

    Basic Waveguide Operation

    EM waves can travel in other modes than TEM inside waveguides

    Each mode travels at a given angle as a function of frequency and waveguide dimensions

    Non-TEM modes cannot propagate below the cut-off frequency

    The phase and group velocity of these waves are modified by the waveguide

    28 1 Disadvantages of Transmission Lines

    Transmission lines work well at moderate frequencies (MHzGHz depending on distance). Loss

    increases with frequency, due to surface resistance. Once wavelength

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    42/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    41

    28 2

    From Transmission Line to Waveguide

    TEM wave between conductors:

    Transverse Electric Wave:

    Transverse Magnetic Wave:

    28 3 Phase Constant

    Stable propagation requires that a twice-reflected wave has same phase as an unreflected wave.

    Condition for stable mode:

    Phase constant:

    28 4 Cut-Off Frequency

    Phase constant:

    Define the cut-off frequency as:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    43/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    42

    So that the phase constant becomes:

    Above cut-off phase constant is real

    o

    Propagation

    Below cut-off phase constant is imaginaryo No Propagation

    28 5

    Cut-Off Wavelength

    28 6 Example 1

    What is the lowest frequency transverse mode that will propagate in a planar waveguide 5 mm thick,

    filled with a dielectric material with relative permittivity 2.25? For a frequency 20% above this, calculatethe guide wavelength, phase velocity, and group velocity. What is the frequency of the next highest

    mode?

    TM1 and TE1 both have the same cut-off frequency:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    44/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    43

    The next highest mode is :

    29.

    Phase and Group Velocity in the Parallel Plate Waveguide

    The phase and group velocity are frequency dependent

    At cut-off, phase velocity is infinite, and group velocity is zero

    As frequency increases above cut-off, phase velocity decreases and group velocity increases

    For the planar waveguide, we can model the electric field as interference of two waves

    29 1 Group Velocity Dispersion and Delay

    If the group velocity changes with frequency, then dispersion will occur. Since:

    Waveguides are usually dispersive. Also, signals that travel in different modes will suffer from a group

    delay difference:

    30.

    Wave Equations in Parallel Plate Waveguides

    We have used the term mode without really defining it

    A mode of a waveguide is a distribution of electric and magnetic fields which will propagate

    along the waveguide without change except for a phase evolution term

    i.e. it is a solution to the equation:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    45/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    44

    As we have seen, for planar waveguides there are two families of solutions (TE and TM)

    which are distinguished by their eigenvalues These are the TE1, TE2, , TEn and TM1, TM2, , TMn modes

    30 1 General Field Solution

    We derived the equation for the E-field for a TE mode in a parallel plate waveguide by considering wave

    interference. However, we did not calculate the magnetic field. Is there a more general method to

    obtain E and H fields for any type of waveguide? Yes there is! The field solution is:

    30 2 Waves at Cut-Off

    When , the waves are oscillating between the top and bottom plates as standing waves. Themode number is the number of half-wave cycles that fit between the plates.

    30 3 Magnetic Field (TE Mode)

    Now that we have the E-field we can find the H-Field:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    46/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    45

    30 4

    Impedance

    30 5 TM Modes

    We can follow a similar route to derive the equations for TM modes:

    31. Rectangular Waveguides

    Rectangular waveguides provide confinement in both x and y

    We assume conducting boundary conditions

    They are single conductor waveguides

    Rectangular waveguides do not support TEM waves. Nor do any other single conductor

    waveguides.

    31 1

    TM Modes: Propagation Constant and Cut-Off Frequency

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    47/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    46

    Cut-Off Frequency:

    31 2 TE Modes: Propagation Constant and Cut-Off Frequency

    Propagation constant and cut-off frequency the same as for TM modes:

    31 3

    TE10 Mode

    Field values for the TE10 mode:

    31 4 Power in a Waveguide

    Power can be calculated using the Poynting vector:

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    48/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    47

    32.

    Dielectric Slab Waveguides

    32 1

    Fresnel Equations For Reflection

    Perpendicular amplitude reflection coefficient:

    In the TIR regime we modify these expressions as follows:

    32 2 Phase Shift Expressions

    For Perpendicular Polarization (TE):

    For Parallel Polarization (TM):

    32 3

    Self-Consistency Equation

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    49/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    48

    33.

    Introduction to Antennas

    The elemental dipole antenna is the basic element of all linear antennas

    Its just a short length of wire!

    Changing the current in it changes the external E and H fields

    There is a lag between the current changing and the external fields changing

    The information about the changing current travels as a wave into space

    In the far-field, the waves look like plane waves

    33 1 What Does an Antenna Do?

    Transform electrical signals into electromagnetic waves, and vise versa

    Converts oscillating electrons into photons

    Power is transferred from the antenna to a distant object

    Parallel plate transmission line with flared end:

    33 2 Radiation Resistance

    What is the load impedance of the flared transmission line?

    Not infinite (open circuit), because no power would be broadcast from it

    An antenna has a radiation resistance

    This is the equivalent resistance that would dissipate the same amount of power as the antenna

    is broadcasting

    Efficient antennas have a high radiation resistance

    33 3 Antenna Pattern and Directivity

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    50/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    49

    33 4 Elemental Dipole Summary

    The elemental dipole antenna is the basic element of all linear antennas

    Its just a short length of wire!

    Changing the current changes the external E and H fields

    There is a lag between the current changing and the external fields changing

    The information about the changing current travels as a wave into space

    In the far-field, the waves look like plane waves

    33 5 Elemental (Hertzian) Dipole

    Electric dipole with oscillating charges

    Current flows from one pole to the other

    33 6 Spherical Coordinates Definitions

    33 7

    Time-Varying Field Patterns

    Both current and charge are time-dependent

    We could calculate the radiation field using either:

    o

    The E-field (from charge)

    o The H-field (from current)

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    51/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    50

    We will calculate the H-field

    To do this we need to work out the retarded potential

    33 8 Retarded Potential

    The potential at a distance is retarded It is the potential due to the current at time

    agoo is the speed at which information about the potential travels

    33 9

    Time Harmonic Solution

    Current densityis time harmonic:

    Time harmonic wave equation for potentials:

    33 10 Vector Magnetic Potential Due To Elemental Dipole

    For a thin short dipole we can write:

    33 11

    A in Spherical Coordinates

    33 12 H and E Fields

  • 8/10/2019 An Introduction to Electromagnetic Field Theory (CHRISTIAN GALLAI)

    52/52

    Christian Gallai An Introduction to Electromagnetic Field Theory Fall 2011

    33 13 Far Field Regime

    33 14 Typical H-Plane Patterns

    H-plane patterns are often more complex than that of the simple elemental dipole

    Antenna arrays have directed patterns

    33 15 Radiated Power

    Calculate this via the Poynting vector:

    33 16 Radiation Resistance

    Since the antenna is radiating power, it must present a resistive load to the source

    We can introduce a radiation resistance

    This is the resistance that would dissipate the same power

    Since for an elemental dipole we have:

    Therefore the radiation resistance is: