20
An Incremental Theory of Diffraction formulation for the scattering by a thin elliptical cylinder, a strip, or a slit in a conducting surface * Dept. of Information Engineering, University of Siena, Siena, Italy M. M. Albani Albani *, A. Toccafondi*, *, A. Toccafondi*, C. Della C. Della Giovampaola* Giovampaola* , D. , D. Erricolo° Erricolo° 2007 USNC / URSI North American Radio Science Meeting July 22 - 26, 2007, Ottawa, Canada ° Dept. of ECE, University of Illinois at Chicago, Chicago, IL, USA

An Incremental Theory of Diffraction formulation for the ...nehorai/MURI/... · INCREMENTAL FIELD CONTRIBUTION By Fourier analysis, this spectral integral representation is interpreted

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • An Incremental Theory of Diffraction formulation for the scattering by a thin elliptical cylinder, a strip, or a

    slit in a conducting surface

    * Dept. of Information Engineering, University of Siena, Siena, Italy

    M. M. AlbaniAlbani*, A. Toccafondi*, *, A. Toccafondi*, C. Della C. Della Giovampaola*Giovampaola*, D. , D. Erricolo°Erricolo°

    2007 USNC / URSI North American Radio Science Meeting

    July 22 - 26, 2007, Ottawa, Canada

    ° Dept. of ECE, University of Illinois at Chicago, Chicago, IL, USA

  • augments Physical Optics (fringe formulation)

    MOTIVATIONSMOTIVATIONS

    The Incremental Theory of Diffraction (ITD) formulation has been introduced to evaluate the field scattered by moderately sized, local circular cylinder-shaped structures.

    overcomes difficulties in applying in ray-field descriptions close and at causticscaustics

    smoothly blends into the field predicted by UTD (when applicable)

    improves upon the field estimate whenever a stationary phase condition has not yet been established

    Advantages

  • Incremental field contributions may be deduced from either the currents or the field of local canonical problems

    Elementary Edge Waves (PTD)

    Incremental Theoryof Diffraction (ITD)

    BACKGROUNDBACKGROUND

    ELLIPTIC CYLINDER SHAPED CONFIGURATION

    To extend the applicability of the ITD approach

  • ( ) ( ) ( )t i sP P PΨ = Ψ + Ψ

    Scattered field representation

    The incremental field ψ(Ql) may be deduced from an appropriate local canonical problem tangent at Ql.

    For this purpose, we need to find a convenient field representation for the exact solution of the local canonical problem

    Then, at high-frequency, it is assumed that

    ITD LOCALIZATION PROCESSITD LOCALIZATION PROCESS

    ( ) ( )s ll

    P Q dlΨ = ψ∫

    ( ) ( )cs cP z dz∞

    −∞

    ′′ ′′Ψ = ψ∫

    ( ) ( )0l c z

    Q z′′=

    ′′=ψ ψ

    P

    P’

    Ql

    l

    z

    l

  • INCREMENTAL FIELD CONTRIBUTIONINCREMENTAL FIELD CONTRIBUTION

    By Fourier analysis, this spectral integral representation is interpreted as the spatial convolution product of two functions

    ( )3 , ' ( , , ) ( ' , ', ')D q q qG r r u z z u v u z z u v dz∞

    −∞

    = − ⋅ −∫

    ( ')3 1( , ') ( , , ) ( , ', ')2

    zjk z zDzG r r U k u v U k u v e dkρ ρπ

    ∞− −

    −∞

    = ⋅∫

    2 ( , , , ', ')DG k u v u vρ

    Spectral synthesis

    P

    P’

    Ql zzq z

    z'

    cosh cos2

    sinh sin2

    2

    dx u v

    dy u v

    e d a

    =

    =

    = ( ,0)A a≡

    (0, )B b≡

    ,02d

    F ≡

    x

    y

    au uv

  • INCREMENTAL FIELD CONTRIBUTIONINCREMENTAL FIELD CONTRIBUTION

    1 1 '

    0( ) ( , , ) ( ', ', ') ( , , ) ( , ', ')

    q

    - -q z

    z u z u v u z u v F U k u v F U k u vρ ρψ = = − ⋅ = ⋅

    This above spatial integral representation allows to directly define the local incremental field contribution

    Inverse Fourier transform

    P

    P’

    Ql zzq z

    z'

    ( )3 , ' ( , , ) ( ' , ', ')D q q qG r r u z z u v u z z u v dz∞

    −∞

    = − ⋅ −∫

  • Canonical solution (spectral synthesis) for an infinite elliptic cylinder with both source and observation point at finite distance

    ( )2'' 2 ''zk k kρ = −

    LOCAL CANONICAL PROBLEMLOCAL CANONICAL PROBLEM

    ( ) ( ) ( ), , ,e oG G G′ ′ ′= +r r r r r r

    ( ) ( ) ( )

    ( ) ( )( )

    , , (4), ,

    (4), ,

    1, , , ,

    2 2 2 2

    , ' , ' 2 2

    n n

    z

    n n

    e o e on n a e o e o

    jk z zze o e o

    d d dG C k u S k v R k u

    d dS k v R k u e dk

    ρ ρ ρ

    ρ ρ

    π

    −∞

    ′′ ′− −

    ′ ′′ ′′ ′′= ⋅

    ′′ ′′ ′′

    ∫r r

    ( ) ( ), ,( , )0

    1, ,e o e one o

    n n

    G j G∞

    =

    ′ ′= −Ω∑r r r r

    ( ,0)A a≡

    (0, )B b≡

    ,02d

    F ≡

    x

    y

    au

  • Canonical solution (spectral synthesis) for an infinite elliptic cylinder with both source and observation point at finite distance

    LOCAL CANONICAL PROBLEMLOCAL CANONICAL PROBLEM

    ( ) ( ) ( )

    ( ) ( )( )

    , , (4), ,

    (4), ,

    1, , , ,

    2 2 2 2

    , ' , ' 2 2

    n n

    z

    n n

    e o e on n a e o e o

    jk z zze o e o

    d d dG C k u S k v R k u

    d dS k v R k u e dk

    ρ ρ ρ

    ρ ρ

    π

    −∞

    ′′ ′− −

    ′ ′′ ′′ ′′= ⋅

    ′′ ′′ ′′

    ∫r r

    soft b.c.

    (1)( , )

    ,

    (4)( , )

    R ,2,

    2 R ,2

    n

    n

    e o ae on a

    e o a

    dk u

    dC k u

    dk u

    ρ

    ρ

    ρ

    ′′ ′′ = ′′

    modal series representationmodal series representation, rapidly converges for small small (moderately sized)elliptic cylinderselliptic cylinders

    (1)'( , )

    ,

    (4) '( , )

    R ,2,

    2 R ,2

    n

    n

    e o ae on a

    e o a

    dk u

    dC k u

    dk u

    ρ

    ρ

    ρ

    ′′ ′′ = ′′

    hard b.c.

    first derivative

  • ( ) ( ) ( ) ( ) ( )( ), , (4) , (4)

    , , , ,

    1r,r , , , , , ' , ' 2 2 2 2 2 2 2

    z

    n n n n

    jk z ze o e o e on n a n a ze o e o e o e o

    d d d d d dG k u S k v R k u k u S k v R k u e dkρ ρ ρ ρ ρ ρσ σπ

    ∞′′ ′− −

    −∞

    ′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= ∫

    (1)( , )

    , , ,

    (4)( , )

    R ,2, , ,

    2 2 2R ,2

    n

    n

    e o ae o e o e on a n a n a

    e o a

    dk u

    d d dC k u k u k u

    dk u

    ρ

    ρ ρ ρ

    ρ

    σ σ

    ′′ ′′ ′′ ′′= = ′′

    ( )'' , ,nU k u vρ ( )'' , ', 'nU k u vρ

    THE APPROPRIATE SPECTRUM FUNCTIONSTHE APPROPRIATE SPECTRUM FUNCTIONS

    The GF is cast in the form of the product of 2 spectrum functions, depending only on either the incidence or the observation aspects (soft case)

    Use of the ITD FT-convolution process yields

    ( ) ( ) ' ''' '' '1 1( , , ) ( ', ', ') , , , ', '2 2

    z zjk z jk zn n n z n zu z u v u z u v U k u v e dk U k u v e dkρ ρπ π

    ∞ ∞− −

    −∞ −∞

    − ⋅ = ⋅∫ ∫

  • ( ) ( ), (4)

    , ,

    1( , , ) , , ,

    2 2 2 2z

    n n

    jk ze on n a ze o e o

    d d du z u v k u S k v R k u e dkρ ρ ρσπ

    ∞−

    −∞

    ′′− = ∫

    Asymptotic expression of ( ) ( )(4), ,ne oR uχ

    ( )

    cosh (2 1) / 4(4) 2

    ,

    1, cosh

    2 2cosh

    2

    n

    dj k u n

    e o

    d dR k u e k u

    dk u

    ρ π

    ρ ρ

    ρ

    − − + → ∞

    ;

    HIGHHIGH--FREQUENCY EXPRESSIONSFREQUENCY EXPRESSIONS

    cosh2d

    u ρ→Since for large u

    ( )(2 1) / 4(4)

    ,

    1,

    2nj k l

    e o

    dR k u e u

    kρ ρ π

    ρρ ρ

    − − + → ∞

    ;

  • ( )

    (2 1) / 4, cos( )

    ,

    1( , , ) , , sin

    2 2 2 sinn

    j le o jkr

    n n a e oC

    e d du z u v k u S k v e k d

    πθ β

    ρ ρσ θ θπ β

    +− − ′′−

    ∫;

    Useful representation of

    HIGHHIGH--FREQUENCY EXPRESSIONSFREQUENCY EXPRESSIONS

    ( , , )nu z u v− for large u

    Asymptotic evaluation for large r

    ( )

    ( 1) / 2,

    ,( , , ) sin , sin ,2 22 n

    j n jkre o

    n n a e o

    e d d eu z u v k u S k v

    r

    π

    σ β βπ

    + − −

    ;

    By analogy

    ( )

    ( 1) / 2 ',

    ,( ', ', ') sin ' , sin ' , '2 2 '2 n

    j n jkre o

    n n a e o

    e d d eu z u v k u S k v

    r

    π

    σ β βπ

    + −

    ;

  • HIGHHIGH--FREQUENCY EXPRESSIONSFREQUENCY EXPRESSIONS

    Scattered scalar field by the actual elliptic cylinder

    ( )

    ( )

    12

    (1)( 1) ( , )

    ,,0

    (4)( , )

    12

    (1)( , )

    ,(4)( , )

    R sin ,2( ) sin ,

    2 2R sin ,2

    R sin ' ,2 sin ' , '

    2R sin ' ,2

    n

    nq

    n

    n

    n

    n

    j n e o ae on q e oz

    e o a

    e o a

    e o

    e o a

    dk u

    e dz S k v

    dk u

    dk u

    dS k v

    dk u

    π βψ β

    π β

    ββ

    β

    +

    =

    = ⋅

    '

    '

    jkr jkre er r

    − −

    Incremental contribution for a soft elliptic cylinder

    ( ), ,( , )0

    1, ( )e o e on le o

    n n l

    j Q dlψ∞

    =

    ′Ψ = −Ω∑ ∫r r

    ( ) ( ) ( ), , ,e o′ ′ ′Ψ = Ψ + Ψr r r r r r

    P

    P’

    Ql

    l

    z

    l

  • In the electromagnetic case for directedẑ

    is obtained after replacing in( ),s sz z nd E d Hζ

    ( )'' (') ('), ,nU k u vρ

    ,e onψ

    by ( )( ) '' (') ('), ,nk U k u vρ ρ′

    ,,

    e os hΨ EM Vector Potentials

    ( )2

    ,,2,

    j m e oz z s h

    kE H j

    kρζ ω= − Ψ

    Thus,

    dipole illumination and observation

    ELECTROMAGNETIC CASEELECTROMAGNETIC CASE

    ,e osΨ,e o

    jzA

    mzF

    soft hard

  • THE DYADIC SCATTERING COEFFICIENTTHE DYADIC SCATTERING COEFFICIENT

    Dyadic closedDyadic closed--form highform high--frequencyfrequency expression for the ITD incremental scattered field contribution

    ( ), ( , ) ( , )( ) ( )0 0

    1 1, , , ( ) ( )

    n n

    e os h s h l s h le o

    n nn n

    D j Q j Qβ β φ φ ψ ψ∞ ∞

    = =

    ′ ′ = − −Ω Ω∑ ∑

    ( )( )

    ( )( )

    ( )( )

    , , , 00 , , , 4

    i jkrls

    ih l

    dE P E QD eD rdE P E Q

    β β

    φ φ

    β β φ φβ β φ φ π

    −′

    ′ ′ = ′ ′

    The expected transitional behavior of the field is reconstructed by numerical integration of the incremental contributions along the curved axis of the actual cylindrical configuration. 'P

    'iEφ

    'iEβ

    'βlQ

    β

    sdEβ

    sdEφ

    P

    ( 1), , ,

    ( , ) ( , ) ( , ) ( , ) ( , )( ) sin , sin ' , sin , sin ' , '2 2 2 2 2n n n n nj n

    e o e o e os h l s h a s h a e o e o

    e d d d dQ k u k u S k v S k v

    π

    ψ σ β σ β β βπ

    + =

  • INCREMENTAL SCATTERING BY A STRIPINCREMENTAL SCATTERING BY A STRIP

    x y

    z

    ITD coefficient for a strip

    the odd part vanishes (soft case)

    ( )

    ( )

    ( )0

    ( )0

    1, , , ( )

    1, , , ( )

    n

    n

    es s le

    n n

    oh h lo

    n n

    D j Q

    D j Q

    β β φ φ ψ

    β β φ φ ψ

    =

    =

    ′ ′ = −Ω

    ′ ′ = −Ω

    ( 1)

    ( ) sin ,0 sin ' , 0 sin , sin ' , '2 2 2 2 2n n n n n

    j ne e es l s s e e

    e d d d dQ k k S k v S k v

    π

    ψ σ β σ β β βπ

    + =

    12

    (1) (')

    (')

    (4) (')

    R sin ,02sin , 0

    2 R sin ,02

    n

    n

    n

    ees

    e

    dk

    dk

    dk

    βσ β

    β

    =

    , 02d

    0

    21

    au

    a de

    =

    ==

    x

    y

    the even part vanishes (hard case)

    ( 1)

    ( ) sin ,0 sin ' ,0 sin , sin ' , '2 2 2 2 2n n n n n

    j no o oh l h h o o

    e d d d dQ k k S k v S k v

    π

    ψ σ β σ β β βπ

    + =

    12

    (1)' (')

    (')

    (4)' (')

    R sin ,02sin ,0

    2 R sin ,02

    n

    n

    n

    ooh

    o

    dk

    dk

    dk

    βσ β

    β

    =

  • INCREMENTAL SCATTERING BY A SLITINCREMENTAL SCATTERING BY A SLIT

    x y

    z, 0

    2d

    0

    21

    au

    a de

    =

    ==

    x

    y

    ITD coefficient for a slit (dual of the strip)

    the even part vanishes (soft case)

    ( )

    ( )

    ( )0

    ( )0

    1, , , ( )

    1, , , ( )

    n

    n

    os s lo

    n n

    eh h le

    n n

    D j Q

    D j Q

    β β φ φ ψ

    β β φ φ ψ

    =

    =

    ′ ′ = −Ω

    ′ ′ = −Ω

    ( 1)

    ( ) sin ,0 sin ' , 0 sin , sin ' , '2 2 2 2 2n n n n n

    j no o os l s s o o

    e d d d dQ k k S k v S k v

    π

    ψ σ β σ β β βπ

    + =

    12

    (1)' (')

    (')

    (4)' (')

    R sin , 02sin , 0

    2 R sin , 02

    n

    n

    n

    oos

    o

    dk

    dk

    dk

    βσ β

    β

    =

    the odd part vanishes (hard case)

    ( 1)

    ( ) sin ,0 sin ' , 0 sin , sin ' , '2 2 2 2 2n n n n n

    j ne e eh l h h e e

    e d d d dQ k k S k v S k v

    π

    ψ σ β σ β β βπ

    + =

    12

    (1) (')

    (')

    (4) (')

    R sin ,02sin , 0

    2 R sin ,02

    n

    n

    n

    eeh

    e

    dk

    dk

    dk

    βσ β

    β

    =

  • excitation: electric electric hertzianhertzian dipoledipoleResults from simulations are compared with a MoMMoM solution (Feko™)

    #1 #1 straight uniform elliptic cylinder – azimuthal scan

    NUMERICAL RESULTSNUMERICAL RESULTS

    x

    y

    z

    r'r

    0.15a λ= 0.075b λ= 0.26d λ=

    0.8662dea

    = = 5r λ= ' 7r λ=

    -6

    -4

    -2

    0

    2

    4

    6

    8

    10

    0 20 40 60 80 100 120 140 160 180

    ITDMoM

    | |

    (dBV/m)

    ϕ

    ' 0φ =

  • #2 #2 strip – azimuthal scan

    NUMERICAL RESULTSNUMERICAL RESULTS

    x

    y

    z

    r 'r

    d

    -2

    0

    2

    4

    6

    8

    -80 -60 -40 -20 0 20 40 60 80

    | |

    (dBV/m)

    ϕ

    ITDMoM

    0.4d λ= 5r λ= ' 7r λ=

    '2π

    φ =

  • #3 #3 strip – azimuthal scan

    NUMERICAL RESULTSNUMERICAL RESULTS

    0.4d λ= 5r λ= ' 7r λ=

    x

    y

    z

    r'r

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    0 20 40 60 80 100 120 140 160 180

    | |

    (dBV/m)

    ϕ

    ' 0φ =

    ITDMoM

  • ITD provides a quite general procedure for defining incremental field contributions from the exact solution of canonical problems with a uniform cylindrical configuration.

    Here, this procedure has been applied to elliptic cylinders, and to strips and slits as particular cases (EM case).

    Comparisons with results obtained by MoM simulations have shown that the proposed incremental representation may be used to estimate the scattered field from moderately sized elliptic structures.

    Explicit closed form, high-frequency expressions of a dyadic incremental scattering coefficient have been obtained for moderately sized elliptic cylinders, strips and slits.

    CONCLUDING REMARKSCONCLUDING REMARKS