48
An in-depth comparison of the porcine, murine and human immune responses; lessons from the genome and transcriptome. Harry Dawson

An in-depth comparison of the porcine, murine and human ... · PDF fileand human immune responses; lessons from the genome and transcriptome. ... Foot and Mouth Disease Bt Crystal

  • Upload
    doandan

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

An in-depth comparison of the porcine, murine and human immune responses; lessons from the

genome and transcriptome.

Harry Dawson

Porcine Models Used/Developed by DGIL Scientists

Animal Disease Models Novel Antihelminthics/Immunomodulators Foot and Mouth Disease Bt Crystal Protein Porcine Reproductive and Respiratory Syndrome Virus T. suis-derived Products

Animal and Human Disease Models Parasite Infection and Vaccine Efficacy Ascaris Anthrax Salmonella Circovirus Toxoplasma Mycoplasma Trichinella Trichuris Phytonutrients

Cocoa FlavenoidsHuman Disease Models Proanthocyanidins Obesity

Transgenic ModelsLipid Metabolism Targeted BCL2 Expression

Micronutrient Effects on Immunity Prebiotics and Probiotics Vitamin A Inulin Vitamin D Lactobacillus and Bifidobacteria

Animals Used For Experiments, European Union 2008

Controversy

Prototypic mouse M2 markers are not applicable (to humans) because there are no human homologs of particular genes (eg, Ym1 and Fizz1) or the gene is not regulated by these

cytokines in human macrophages (eg, Arginase 1)......the only gene regulated by IL-4 in the majority of conditions that was detectable with microarrays and proteomics was TGM2

(Martinez et al 2013).

In a direct comparison of mouse and human macrophages responding to LPS, only 30% of definitive orthologous genes that were induced in one species were

also induced in the other (Fairbairn 2011).

Swine are a scientifically and ethically acceptable intermediate species (rodent-human) for conducting scientific research relevant to humans.

Working Hypothesis

Comparative “omics” Analysis

2011 2012 2013

2015 2016 2016

Inflammasome Nutrigenomics Microbiome

Raw Phylogenetic Analysis of 9,000 Direct Orthologs

Pigs are further awayfrom

humans than mice inevolutionary years.

Groenen, M.A.M., the Swine Genome Consortium. Nature

2012

Human (0.163)

Pigs (0.144)

Mice (0.116)

Pigs and humans have a more similar

level of purifying selection pressure.

dN/dS

Raw Protein Similarity Analysis for Immune Response Genes

Functional/Structural Category Pairs Pig Mouse Mean Pig vs. Mouse Significance

(N) (Identity ±

SE) (Identity ±

SE) Difference IL-3/CSF Receptors 3 55.7 ± 5.7 38.3 ± 7.4 -17.3 0.039 SIGLEC Family 3 68.3 ± 4.8 56.7 ± 8.2 -11.7 NS B7 Family 6 77.0 ± 5.5 65.7 ± 7.8 -11.3 0.032 Chemokine 28 72.8 ± 2.3 63.6 ± 2.4 -9.8 < 0.0001 Kiiller cell lectin-like receptor Subfamily 6 62.2 ± 2.3 52.5 ± 2.8 -9.7 0.0009 Interferon Receptor 4 61.3 ± 3.1 51.8 ± 2.5 -9.5 0.023 TNF Superfamily 13 79.8 ± 2.2 70.8 ± 3.4 -9.0 0.0003 CD Marker, LAMP Superfamily 4 69.2 ± 2.8 60.0 ± 3.0 -9.0 NS SLAM Family 9 63.4 ± 2.6 55.5 ± 3.1 -8.0 < 0.0001 Cytokine 25 75.7 ± 1.8 68.8 ± 2.4 -6.8 < 0.0001 Cytokine Receptor 63 79.3 ± 1.4 72.5 ± 1.8 -6.8 < 0.0001 C-type lectin-like Pattern Recognition Receptor 13 74.4 ± 3.1 68.5 ± 2.4 -5.9 0.005 Pattern Recognition Receptor (PRR) 38 77.3 ± 1.3 73.1 ± 1.6 -4.5 < 0.0001 ......... ......... .........

32 71.4 ± 2.1 67.3 ± 2.3 -4.1 0.0004 TREM and TREM-like Receptor Family 4 61.5 ± 4.8 57.8 ± 5.8 -3.8 NS Acute Phase Reactant 38 75.2 ± 1.4 71.8 ± 1.5 -3.3 0.0001 Transcription Factor 121 93.3 ± 0.5 90.4 ± 0.7 -2.9 < 0.0001 Adhesion Molecule 40 76.8 ± 2.2 74.3 ± 2.2 -2.5 0.018 CD Marker, Peptidase 10 84.2 ± 1.8 81.8 ± 2.2 -2.4 NS Cadherin Family 7 93.0 ± 3.3 91.1 ± 3.4 -2.0 0.018 Tetraspanin Superfamily 9 88.9 ± 2.9 87.7 ± 2.4 -1.4 NS Membrane-spanning 4-domains Family 8 66.0 ± 4.0 65.1 ± 4.0 -0.9 NS

Total 677 80.1 ± 0.5 75.6 ± 0.6 -4.4 < 0.0001

Dawson, H. Comparative assessment of the pig, mouse, and human genomes. 2011.

Pigs are closer tohumans than mice in protein similarity.

Greater Pig-Human Similarity Revealed by Structural Motif Analysis

Dawson, H. Comparative assessment of the pig, mouse, and human genomes. 2011.

Key            Pig-­‐Human  Similarity            Mouse-­‐Human  Similarity            Pig-­‐Mouse  Similarity  

Protein Mouse Human Pig Similarity Protein Mouse Human Pig Similarity

APOBEC3 Zinc Deaminase Domain A B B     FCER2 CD21-Binding Region Present Present Absent    CCL26 Functional Domains +/- ++ ++     FCGR1A Ig Domains 2 3 3    CD8A V-set Domains 0 1 1     HCST (DAP10) Extracellular Motif Absent Present Absent    CD19 Ig Domains 1 2 1     MX1 Nuclear Localization Domain Present Absent Absent    CD33 Ig Domains 1 2 1     NAT6 RGD Domain Absent Present Present    CD33 V-set Domains 0 1 0     NFKBIA, Ankyrin Repeat Domain Insertion Present Absent Present    

CD34 Casein Kinase Phosphorylation Sites 1 1 0    

IL-2 Polyglutamine Motif Present Absent Absent    

CD34 Potential N-glycosylation Sites 6 9 8     IL7 Gene Exon 5 Absent Present Present    CD55 Short Consensus Repeats 4 4 3     IL25 Exon Present Absent Present    CD69 Isoforms 1 1 2     IL22RA2 Exon 3 Absent Present Absent    CD72 -3 AA/+-3 AA No No Yes     LIF Gene Alternative Exon Present Absent Absent    CD84 V-set Domains 1 0 1     SIRPA potential N-glycosylation Sites 17 10 5    CD93 EGF-like Domains 2 3 3     SIRPB1 C320 Homodimerization Residue Absent Present Absent    CD96 COG5099 Domain 0 1 0     NOD2 Leucine Rich Repeats 8 7 7    CD97 EGF-like Domains 3 4 2     NR3C1 Polyglutamine Motif Present Absent Absent    CD177 LU Domains 4 2 2     SELE Sushi Domains 1 and 4 Present Present Absent    

CD300B Cytoplasmic Tyrosine Signaling Motif Absent Present Absent    

SELP CCP Domains 8 9 6    

CSF1R Ig Domains 4 2 4     SELP EGF-CA Domains 1 0 0    DLK1 Isoforms 6 1 2     STAT2 Mini-satellite Insertion Yes No No    DLK1-D Present Absent Absent     TNIP3 ABIN Domains 1 2 2    DLK-A Present Present Absent     VCAM1 Ig Domains 5 5 4    DMBT1 SR Motifs 7 13 4     VSIG4 Extracellular Ig Domains 0 1 1    EMR1 EGF-like Domains 5 4 7     ZBP1 Central D3 Domain 1 0 1    

EP300 Pat1 Domain Absent Present Absent    

ZBP1 C-terminal TBK1/IRF3 Interacting Domain 1 0 1    

Greater Pig-Human Similarity Revealed by Structural Motif Analysis

         Pig-­‐Human  Similarity   22  

         Mouse-­‐Human  Similarity   13  

         Pig-­‐Mouse  Similarity   12  

The frequency of gross protein domain structural preservation between human and pig is nearly twice that of mouse to human and pig to mouse.

Dawson, H. Comparative assessment of the pig, mouse, and human genomes. 2011.

Greater Pig-Human Similarity Revealed by Unique Gene Analysis

A large scale analysis of immune response genes revealed that pigs have 11-, 6- and 2- fold less unique genes than do the mouse, cow or human Dawson H.D., the IRAG

Annotation GroupBMC Genomics 2013,

Greater Pig-Human Similarity Revealed by Gene Family Expansion Analysis

Key  Expansion   Contrac1on  >  25%   >  25%  >  50%   >  50%  >  75%   >  75%  

Adapted and updated fromDawson H.D., the IRAG Annotation GroupBMC Genomics 2013,

Family  Descrip1on  Number    

Human   Pig   Mouse  ADP-­‐ribosyltransferase/VIP2  Superfamily   4   4   5  Beta  Defensin  Superfamily   34   34   51  BPI  Superfamily   12   14   16  C-­‐type  Lysozyme/LYZ1  Superfamily   9   7   9  Cathelicidin  Superfamily   1   10   1  CCL  Chemokine   28   21   39  CD1  Superfamily   5   4   2  CD163/WC1  Superfamily   3   4   4  CLECT  Superfamily,  Asialoglycoprotein  and  DC  Receptor  Subfamily   16   13   24  CLECT  Superfamily,  CollecWn  Subfamily   7   7   7  CLECT  Superfamily,  NK  Cell  Receptor  Subfamily   24   23   57  CLECT  Superfamily,  Reg  Subfamily   5   3   7  CyWdine  Deaminase-­‐like  Superfamily   11   5   5  GH18  ChiWnase  Like  Superfamily   6   7   9  Granzyme/Mast  Cell  Tryptase/Serine  Protease  Superfamily   17   18   26  Immunity  Related  Guanosine  Triphosphatase  Superfamily   3   4   19  NLR,  Pyrin  and  AIM2-­‐like  Receptor  Superfamily   29   21   43  ResisWn  Superfamily   2   2   4  RNase  A  Family   14   13   22  SAA  Superfamily   4   6   5  SLAM  Superamily   9   11   9  Toll  Like  Receptor   10   10   12  TREM  and  TREM-­‐like  Receptor  Superfamily;   7   6   10  TRIM  E3  UbiquiWn-­‐protein  Ligase  Superfamily,  TRIM5  Subfamily   4   3   10  Type  I  Interferon,  Alpha  Subfamily   13   18   13  Type  I  Interferon,  Beta  Subfamily   1   1   1  Type  I  Interferon,  Delta  Subfamily   0   11   0  Type  I  Interferon,  Epsilon  Subfamily   1   1   1  Type  I  Interferon,  Omega  Subfamily   1   7   0  Type  I  Interferon,  Tau  Subfamily   0   0   0  Type  I  Interferon,  Zeta  Subfamily   0   0   9  ULBP  Superfamily   6   7   2  

Greater Pig-Human Similarity Revealed by Gene Family Expansion Analysis

Expansion Pig Mouse > 25% 4 8 > 50% 1 5 > 75% 3 5 Total 8 19

Contraction

> 25% 1 0 > 50% 3 0 > 75% 2 4 Total 6 4

Overall familial gene expansion of immune response genes in pigs relative to humans has occurred at less than half the rate of mice. Adapted and updated from

Dawson H.D., the IRAG Annotation GroupBMC Genomics 2013,

Greater Pig-Human Similarity Revealed by Gene Family Expansion Analysis of Pattern Recognition Receptors

Adapted and updated fromDawson H.D., the IRAG Annotation GroupBMC Genomics 2013,

Key  Expansion   Contrac1on  >  25%   >  25%  >  50%   >  50%  >  75%   >  75%  

Familial gene expansion (>25%) of Pattern Recognition Receptors (PRRs) in mice occursin 7 out of 10 Superfamilies.

Family  Descrip1on  Number    

Human   Pig   Mouse  BPI  Superfamily   12   14   16  CD1  Superfamily   5   4   2  CLECT  Superfamily,  Asialoglycoprotein  and  DC  Receptor  Subfamily   16   13   24  CLECT  Superfamily,  CollecWn  Subfamily   7   7   7  CLECT  Superfamily,  NK  Cell  Receptor  Subfamily   24   23   57  CLECT  Superfamily,  Reg  Subfamily   5   3   7  NLR,  AIM2-­‐like    Receptor  and  Pyrin  Superfamiles   29   21   43  RIG-­‐I-­‐Like  Receptor  Superfamily   5   5   5  Toll  Like  Receptor   10   10   12  TREM  and  TREM-­‐like  Receptor  Superfamily;   7   6   10  

Recognition of E. coli MAMPs and PAMPS by Pattern Recognition Receptors (non exhaustive)

Superfamily   Protein   Ligand   Referenece  BPI   LBP   LPS   Gutsmann  01  Complement   C3   K  capsular  anWgen   Van  Dijk  79  DEXDc   DDX33   Bacterial  RNA   Mitoma  13  

NLR   NLRP3  

Bacterial  mRNA,  rRNA  (h),  tRNA  (h),  RNA:DNA  hybrids   Vanaja  13  

NLR   NOD1  Acetyl-­‐muramyl-­‐tripepWde  (h),  tetrapepWde  (m)   Pradipta  10  

NLR   NOD2   Muramyl  dipepWde   Girardin  03  TLR,  NLR   TLR2,  NLRP3   E.  coli  curli  amyloid   Rapsinski  15  TLR,  NLR   TLR4,  NLRP3   LPS   Hoshino  99  

TLR   TLR7  tRNA  (Phe,  Lys),  not  (Tyr)  or  str.  Nissle  1917   Gehrig  12,  Jöckel  12  

TLR   TLR9  Unmethylated  bacterial  CpG  DNA  (species  specific)  

Bauer  01,  Guzylack-­‐Piriou  09  

TLR   TLR13  Unmethylated  bacterial  23S  rRNA  (m)   Li  13  

TREM   TREM2   LPS   Daws  03  

Comparison  of  NLR,  AIM2-­‐like    Receptor  and  Pyrin  Superfamily  Associated  

Inflammasomes  

The Role of Inflammasomes in the Initiation of Inflammation

Virgilio 13

PAMP = Pathogen-associated molecular pattern molecule MAMP = Microbe-associated molecular pattern molecule

The Role of Inflammasomes in the Initiation of Inflammation

Virgilio 13

PAMP = Pathogen-associated molecular pattern molecule MAMP = Microbe-associated molecular pattern molecule

Comparison of NLRP1 Inflammasome Component Proteins

Domains

NACHT

LRR

FIIND

CARD

PYD

NAD

hNLRP1 1,473

pNLRP1 1,294

mNlrp1a 1,182

mNlrp1b 1,174

mNlrp1c 1,196

Protein Structure Size

193mPycard (Asc)

196hPYCARD (ASC)

195pPYCARD (ASC)

Mechanism of NLRP1 Activation in Human and Mice

Ratsimandresy 13

The Role of Inflammasomes in the Initiation of Inflammation

Virgilio 13

PAMP = Pathogen-associated molecular pattern molecule MAMP = Microbe-associated molecular pattern molecule

Comparison of Other PYD containing NLR Proteins

Domains

NACHT

LRR

FISNA

PYD

NAD

hNLRP4 994

933pNLRP4

982mNlrp4a

mNlrp4b 863

mNlrp4c 982

mNlrp4d 982

mNlrp4e 978

mNlrp4f 937

mNlrp4g 944

933pNLRP7

1,037hNLRP7

Protein Structure Size

1,060hNLRP12

1,058pNLRP12

pNLRP12L 1,050

1,054mNlrp12

The Role of Inflammasomes in the Initiation of Inflammation

Virgilio 13

PAMP = Pathogen-associated molecular pattern molecule MAMP = Microbe-associated molecular pattern molecule

Comparison of NLRC4 Inflammasome Component Proteins

Domains

NACHT

LRR

CARD

PYD

NAD

728pNLRC4

1,024hNLRC4

1,024mNlrc4

mNaip1 1,403

pNAIP

1,443mNaip2

mNaip5 1,403

mNaip6 1,403

mNaip7 1,402

hNAIP 1,403

Protein Structure Size

Deletion of the NLRC4 LRR from the Porcine Genomes

The Role of Inflammasomes in the Initiation of Inflammation

Virgilio 13

PAMP = Pathogen-associated molecular pattern molecule MAMP = Microbe-associated molecular pattern molecule

Phylogenetic Analysis of Pig, Mouse and Human AIM2 Receptor Superfamily Members

Porcine, human and mouseAIM2 Receptor Superfamilynomenclature doesn’t always correspond to protein homology.

Humans, rodents and horsesare the only species that possess AIM2

Comparison of Macrophage Transcriptomes

Simplified  Schema1c  of  Macrophage  Polariza1on    

M1  macrophage  

M2a  macrophage  

Resident  macrophage  LPS  IFNγ  

IL-­‐4  IL-­‐13  

Promotes  Th1  response:    IL-­‐12,  TNFα  IL-­‐1b,  IL-­‐6  

ReacWve  oxygen  intermediates  Phagocytosis  

 Classic  inflammatory  

Promotes  Th2  response:      

Tissue  remodeling    

Allergic  inflamma1on  

Comparison  of  Human  (a)  and  Murine  (b)  M2  Macrophages  

(Adapted  from  Annu.  Rev.  Immunol.  2009.  27:451)  

CCL26

CD209

CCL17CCL22

Study  Design  

M1  macrophage  

M2a  macrophage  

Alveolar  macrophage  (n  =  4)  

10  ng/ml  E.  coli.  LPS  +  

5  ng/ml  IFNγ  

5  ng/ml  IL-­‐4  

24  h  Transcriptomes  of  mRNA  and    MicroRNA  by  Deep  Sequencing  

24,  48  and  74  h  Transcriptomes  by  Real  Wme  PCR)    

comparison  to  literature.

Deep Sequencing Data Pipeline

Transcriptome

Porcine GenomeBuild 10.2

NCBI ReferenceRNA Database

Bovine GenomeBuild 4.0

Human GenomeBuild 38

De NovoAssembly

MappedReads

IngenuityPathwayAnalysis

UnmappedReads

JMP Genomics

NCBIDatabase

20-30Million 80 bpSequences

PTR Database

>1,300 genes

Bivariate Fit Analysis of RNA-Seq RPKM and qPCR Reveals an Extremely High Degree of Correlation

Chen, C., et al. 2015. in preparation.

-1.155 -0.924 -0.693 -0.462 -0.231

00.23090.46190.69280.92381.1547

WG 7,692 genes

IL4LPS/IFNG

Distribu1on  of  Differen1ally  Expressed  Genes  

Gene M1&Fold Response Gene M2a&Fold ResponseTREM2 2105.9 H/M CCL21 276.1 H?/M?RAPGEF2 3.4 H EMR3 24.9 HSTAT4 3.5 H EMR4 22.2 MIFIT5 3.9 H TREM2 5.0 H/MPARP9 4.0 H TGM2 5.2 H/MIL7R 4.6 H NLRP12L 5.3 PGVIN1 5.5 M FN1 22.4 HIRF7 6.1 H SOCS1 31.3 H/MG0S2 7.2 H CD1A 31.6 HPPA1 9.5 H CCL17 41.6 H/MS100A9 10.9 H CD1E 92.1 HS100A12 11.0 H IL13RA2 301.6 H/MXAF1 13.3 H CD209 728.2 HTGM2 15.4 H?/M? NTRK1 1792.4 H?/M?IL8 59.3 HCCL20 762.2 HIL12B 1379.0 H/M

TNF 532.7 4.18E2164IL1B 643.2 5.61E284IL6 1391.0 8.36E218

Selected  Differen1ally  Expressed  Genes  

The transcriptomeinduced in porcine M1

and M2a macrophages at 24 h appears to be more

similar to humans

The Transcriptome of Pig M2a Macrophages are More Similar to Human

TREM2 *

IRF4 * *

5 to 15

15 to 45

45 to 135

-1.7 to 1.7

-15 to -45

-5 to -15

-1.7 to -5

-45 to -135

135 to 405

405 to 1215

1.7 to 5

-135 to -405

p < 0.05*

Fold Change

Significance

DCSTAMP n* * *

CCL2 ** *

CCL11 * * *

CCL17 * * *

7224 48

CCL22 ** *

TGM2 **

KDM6B *

CD209 ***

CCL26 * * *

Class/Molecule   Human   Mouse   Pig  C-­‐type  Lec1ns                  CD209   Y   N   Y  Chemokines                  CCL2   N   Y   N      CCL11   Y   Y   Y      CCL17   Y   Y   Y      CCL22   Y   Y   Y      CCL26   Y   N   Y  Miscellaneous                  DCSTAMP   N   Y   N      TGM2   Y   Y   Y      TREM2   Y   Y   Y  Transcip1on  Factors                  IRF4   ?   Y   ?/Y  Epigene1c  Regulators                  KDM6B   ?   Y   ?/Y  Chi1nase/FIZZ  Family                  Chi3l3  (Ym1)   NA   Y   NA      Chi3l4  (Ym2)   NA   Y   NA      Retnla  (Fizz1)   NA   Y   NA  

Intraspecies Comparison of CD209

Feature Human Mouse PigGenes 1 6 1Isoforms 8 8 1Length CD209 (404) CD209a (238) CD209 (244)C Lectin/CRD 263-378 (115) 115-229 (114) 116-235 (119)Extracellular 345 165 178Neck Domain (AA) 205 43 50Regulation by IL-4 Y N* YDistribution DC > Mf DC > Mf DC > Mf

*Caminschi et al 11

Feature  ID  Fold  

Change  Control  Means  

LPS/IFG  Means   p-­‐value   Feature  ID  

Fold  Change  

Control  Means  

LPS/IFG  Means   p-­‐value  

miR-­‐328-­‐3p   -­‐3.7   2.8   0.8   1.37E-­‐02   miR-­‐141-­‐3p   2.2   43.0   92.8   3.00E-­‐02  miR-­‐330-­‐3p   -­‐2.6   3.3   1.3   1.90E-­‐04   miR-­‐155-­‐5p   2.5   374.3   920.8   9.39E-­‐07  miR-­‐145-­‐5p   -­‐2.4   5.5   2.3   2.34E-­‐04   miR-­‐2904     3.0   34.5   105.0   2.54E-­‐03  miR-­‐130b-­‐5p   -­‐2.4   6.0   2.5   1.70E-­‐02   miR-­‐4792     3.0   181.5   547.8   9.28E-­‐11  miR-­‐744-­‐5p     -­‐1.9   159.8   82.3   9.95E-­‐04   miR-­‐9-­‐5p     3.0   11.3   33.3   2.54E-­‐03  miR-­‐194-­‐5p   -­‐1.7   3.8   2.3   1.37E-­‐02   miR-­‐221-­‐3p     3.6   737.0   2626.8   2.41E-­‐04  

miR-­‐29b-­‐1-­‐5p   -­‐1.6   3.3   2.0   1.37E-­‐02   miR-­‐222-­‐3p     3.6   112.5   406.5   2.04E-­‐02  miR-­‐151b   -­‐1.6   31.0   19.0   1.40E-­‐02   miR-­‐146a-­‐5p     3.7   106.5   377.8   1.20E-­‐02  miR-­‐365-­‐3p   -­‐1.6   47.5   30.0   1.37E-­‐02   miR-­‐6240     4.0   45.5   183.0   1.90E-­‐04  miR-­‐28-­‐3p   -­‐1.6   1452.3   936.8   1.37E-­‐02   miR-­‐2889     4.2   5.8   24.8   1.70E-­‐02  miR-­‐28-­‐5p   -­‐1.5   368.3   239.3   1.20E-­‐02   miR-­‐147-­‐3p     5.1   123.8   613.5   1.60E-­‐03  miR-­‐301a-­‐3p   -­‐1.5   95.8   63.0   1.20E-­‐02   miR-­‐222-­‐5p     5.9   2.3   13.8   6.20E-­‐06  miR-­‐6724-­‐5p   1.6   1.3   2.0   1.90E-­‐04   miR-­‐2340     6.0   1.0   6.5   5.37E-­‐04  miR-­‐215-­‐5p   1.8   3.8   6.8   9.65E-­‐03   miR-­‐2487     6.1   1.5   9.8   4.51E-­‐05  miR-­‐4332   2.1   25.3   54.0   1.95E-­‐02   miR-­‐155-­‐3p     20.3   0.3   7.5   5.85E-­‐06  

MicroRNA Expression in IFN-γ/LPS Treated Alveolar Mφs

The microRNAome induced in porcine M1 macrophages appears similar to humans

and mice.

The Role of miRNAs in the Resolution of Inflammation

The microRNAome induced in porcine M1

macrophages at 24 h appears to be between

the Immediate and Early Response

Automated and Manual Determination of Predicted Porcine Mir-155 Gene Targets

Fold   Gene  -­‐5.7   PDCD4  -­‐5.6   TP53INP1  -­‐3.7   ZNF652  -­‐2.4   INPP5D  -­‐1.9   FOXO3  -­‐1.7   HIVEP2  -­‐1.7   TM6SF1  

AGO4   HSDL1  C1QL2   MPEG1  CA13   MYO1D  CSF1R   NFIA  CYP51A1   OTUB2  F13A1   PODN  FAM105A   RGL1  FEZ2   RNF123  GNAS   RNF149  GPM6B   SGK3  

Conserved  Validated  Targets  in  other    Species  (human,  mouse)

Predicted  from  Ingenuity  Pathway  Analysis  (human)

Conclusion

A.  For immune related genes, the overall frequency of gross protein domain structural preservation between human and pig is nearly twice that of mouse to human and pig to mouse.

B.  Pigs have far less unique immune response genes than does the mouse.

C.  Immune-related gene family expansion in pigs relative to humans has occurred at less than half the rate of mice.

D.  Familial gene expansion of pig PRR superfamiles relative to humans has occurred at a reduced rate compared to mice. Contraction is observed in componenets of various inflammasomes.

Lessons Part 1

E.  Based upon shared functional domains and regulatory family members, the pig NLRP1 inflammasome is intermediate in similarity between the mouse and the human NLRP1 inflammasome.

F.  The NLRC4 and AIM2 Inflammasomes are not conserved in pigs, the NLRP7 inflammasomes is not conserved in mice.

G.  A preliminary analysis indicates that the LPS-induced transcriptome appears to be more conserved among humans and pigs while the LPS-induced microRNAome and targets appears similar in all 3 species.

H.  The pig and human M2a macrophage transcriptomes are more similar.

Lessons Part 2

A.  Functional characterization of the pattern recognition receptor repetoire to E. coli MAMPS and PAMPs in pigs, particularly those that interact with NLRP3.

B.  Functional characterization of additional NLR and AIM2-like inflammasomes in all 3 species.

C.  Characterization of C-type lectin inflammasomes in all 3 species.

D.  Characterization and target mapping of the porcine miRNAome.

E.  Protein reagents and informantics!

Future Directions

Status  of  NLRs  in  the  Porcine  Genome  

Gene   Status   Provisional  Status   Final  Status  NLRP1   Missing       GACC01000190.1  NLRP2   Missing       Predicted  full-­‐length  protein.  NLRP3   Truncated       NM_001256770.1  NLRP4   Truncated       Predicted  full-­‐length  protein.  NLRP5   ArWfactually  duplicated       Predicted  full-­‐length  protein.  NLRP6   Truncated       Predicted  full-­‐length  protein.  NLRP7   ArWfactually  duplicated       Predicted  full-­‐length  protein.  NLRP8   Truncated       Predicted  full-­‐length  protein.  NLRP9   Normal       Predicted  full-­‐length  protein.  NLRP10   Not  present   Expressed  pseudogene      NLRP11   Truncated       Predicted  full-­‐length  protein.  NLRP12   Normal       Full  length  protein    NLRP12L   Misannotated  and  truncated       GACC01000011.1  NLRP13   ArWfactually  duplicated       Predicted  full-­‐length  protein.  NLRP14       Expressed  pseudogene      NLRX1   Normal       NM_001204769.1  

Porcine Translational Research Database

Related Topics

Publications

ARS Manuscripts

Search for a publication

ARS Software

About the database

DGIL Porcine Translational Research Database

Current Statistics (07/01/2015)

Gene entries 8,158

Genes with full-length RNA transcripts (full 5’ and 3’) 5,514% of genome (estimated) 28.3%

Full-length protein sequences 6,096% of genome (estimated) 32.2%

Error notations (# of entries) 3,236Artifactually duplicated genes 842Missing genes (from Ensembl 10.2) 963Truncated proteins 1,279

Real-time PCR Assays 2,231Taqman 1,860SYBR Green 371

Antibodies (reactive and non reactive) 1,149Antibodies (# entries) 508

Acknowledgements

Dawson Laboratory, BHNRC

- Dr. Celine Chen - Catherine Guidy

- Dr. Sandra Heibel - Vandana Vangimalla

Diet Genomics and Immunology Laboratory, BHNRC

- Dr. Joe Urban - Ethiopia Beshah- Dr. Gloria Solano-Aguilar

Animal Parasitic Disease Lab, ANRI, BARC- Dr. Joan Lunney Daniel Berman- Katherine Mann

International Swine Genome Consortium SGSC/Immune Response Annotation Group (IRAG)

Bovine Functional Genomics Laboratory, ANRI, BARC

- Dr. Steven Schroeder

Meat Animal Research Center, Reproduction Research Unit, Clay Center, Nebraska

- Dr. Anthony McNeel

Pro and Anti Inflammatory Effects of Human NLRP7