1
An improved sub-grid scale flow model f An improved sub-grid scale flow model f Federico Perini, Rolf D. Reitz Federico Perini, Rolf D. Reitz Motivation Sub-grid scale near-nozzle flo Motivation Combustion efficiency and noise control in engines require multiple injection strategies Transients become a relevant part of the injection, affecting spray jet Sub-grid scale near-nozzle flo A sub-grid scale, transient flow prediction (u sgs ) is used for the spray calculation Transients become a relevant part of the injection, affecting spray jet properties Computational efficiency of the model is crucial to extend its operation to realistic engine geometries & multiple nozzles instead than under-resolved momentum cell values ( ) + Δ + = u θ θ θ sgs t sgs p n d t , Efficient collision modeling with extended outcomes Estimate Radius-of -Influence (ROI) based on a tetrahedralization of the to realistic engine geometries & multiple nozzles Δ d t ( ) ( ) - = - + Δ + + Δ + = u r E u u u θ θ θ n n B uvw B sgs p sgs t sgs p n B m S m d t d t , , 1 Estimate Radius-of -Influence (ROI) based on a tetrahedralization of the drops inside the computational parcel S ρ p r p V c r k d = Ω - + Δ + Ω Ω Δ + Δ = jet 3 3 4 jet jet 3 p , 1 3 4 p 0, p , 1 3 4 n n t p n B p p i p p p B p p uvw r d Δt d t r N d t d t r N S θ θ θ πρ πρ 3 4 V N k r ROI - = π Implicit coupled solution with SIMPLE solv β L θ S θ rel θ 0 r ( ) Ω - Δ + + Δ + + = 4 jet 3 p 3 jet p d t 1 3 4 1 3 i p n n sgs t p n B p p n n p B p p u r d t r N d Δt θ u θ θ r πρ 3 9 4 2 6 p V p N k r ROI - = π ROI-based collision estimation is O(n 2 ), n number of particles filter impossible collisions based on squared distance function between two Implicit coupled solution with SIMPLE solv Transient turbulent gas-jet model used to the effective gas jet assumption: L ρ impossible collisions based on squared distance function between two droplets within the timestep () () () ( ) c bt at t t t t d t f rel rel + + = - + - + = = 2 2 0 , 2 0 , 1 0 , 2 0 , 1 2 2 2 1 2 , 2 , x x θ x x θ x x v Strouhal u x f = ( ) ( ) exp 1 , - - + = t t t x u u Pre-processing filter of eligible parcel couples by running a kd-tree ( ) ( ) ROI t d t t t if possible collision a b t Δ > - = min min min min & & 0 2 ( ) ( ) ( ) () ( ) 2 0 , , , exp 1 , 0 = - - + = axis entr sgs t t inj axis t x x f t r x t t x u u u u Pre-processing filter of eligible parcel couples by running a kd-tree based radius-of-influence search 2 S ROI 1 S ROI eligible eligible not ( ) 2 2 2 2 12 1 , , + = entr sgs K x r t r x u Stokes number and turbulent entrainment L t θ Δ GA-based study of spray mode Deterministic bouncing, stretching separation (‘grazing’), reflexive separation, coalescence prediction L ROI L 5 objective functions: vapor penetration, liquid standard deviation, mixture fraction distribution 6 optimized model variable: C RT , C ΛRT , B 1 , St, K e separation, coalescence prediction 6 7 Spray A, C 12 H 26 , 900K, O 2 =0.0, t inj =1.5ms Experiment simulation 1 m] Initial ramp 2 3 4 5 penetration [cm] 0.4 0.6 0.8 liquid penetration [cm 1 f 2 f 0 0.5 1 1.5 2 x 10 -3 0 1 time [s] 0 1 0 0.2 time [s] UNIVERSITY OF WISCONSIN - for transient fuel sprays for transient fuel sprays Funding Sponsor Sandia National Laboratories Funding Sponsor Sandia National Laboratories w modeling 0.16 w modeling vel. particle vel. field = = θ u 0.08 0.12 0.16 e fraction [-] experiment simulation z = 30 mm r 20 30 40 50mm axial vel. particle = θ x r 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.04 distance [cm] mixture z axial Validation Sandia Spray A and mixture preparation in a light duty optical diesel engine B u u = θ drag F distance [cm] sgs u u = B u u = θ 36 μs 16 μs 76 μs 56 μs 116 μs 136 μs 0 0.2 0 ver iteration maintained jet Ω 0.4 0.6 0.8 ver iteration maintained represent the sub-grid scale flow field using 1 [cm] 1.5 Squish plane p inj = 500 bar Squish plane p inj = 860 bar Squish plane p inj = 1220 bar p I Stokes τ τ = ( ) ( ) 0 , - - inj d t u u τ τ τ τ 0 0.5 1 1.5 experiment ( ) ( ) ( ) 0 , - - - inj inj inj d x x St t u u τ τ τ τ τ 1.5 0 0.5 1 CA = -15.0 CA = -10.0 CA = -5.0 phi [-] Rim plane CA = -15.0 CA = -10.0 CA = -5.0 Rim plane CA = -15.0 simulation CA = -10.0 CA = -5.0 Rim plane 0 0.5 1 1.5 experiment function f entr are model constants el constants 0 0.5 1 CA = -15.0 CA = -10.0 CA = -5.0 phi [-] Bowl plane CA = -15.0 CA = -10.0 CA = -5.0 Bowl plane simulation CA = -15.0 CA = -10.0 CA = -5.0 Bowl plane transient, steady state liquid penetration and n entr , γ max 0 0.5 1 1.5 1.5 experiment 1.2 1.4 m] Spray A, C 12 H 26 , 900K, O 2 =0.0, t inj =1.5ms ( ) l σ phase 4 f 0 0.5 1 CA = -15.0 CA = -10.0 CA = -5.0 phi [-] CA = -15.0 CA = -10.0 CA = -5.0 CA = -15.0 simulation CA = -10.0 CA = -5.0 0.4 0.6 0.8 1 liquid penetration [cm l 3 f References [1] Perini F and Reitz RD, “An effieient atomization, collision and sub-grid scale momentum coupling model for transient vaporizing engine sprays”, Int J Multiphase Flow, submitted, 2 x 10 -4 ] 0 0.5 1 1.5 2 x 10 -3 0 0.2 time [s] coupling model for transient vaporizing engine sprays”, Int J Multiphase Flow, submitted, 2015 ENGINE RESEARCH CENTER As of April 17, 2015

An improved sub -grid scale flow model for transient fuel ... · An improved sub -grid scale flow model for transient fuel sprays Federico Perini, Rolf D. Reitz Motivation Sub -grid

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: An improved sub -grid scale flow model for transient fuel ... · An improved sub -grid scale flow model for transient fuel sprays Federico Perini, Rolf D. Reitz Motivation Sub -grid

An improved sub-grid scale flow model for transient fuel spraysAn improved sub-grid scale flow model for transient fuel sprays

Federico Perini, Rolf D. ReitzFederico Perini, Rolf D. Reitz

Motivation Sub-grid scale near-nozzle flow modelingMotivation

• Combustion efficiency and noise control in engines require multiple injection strategies

• Transients become a relevant part of the injection, affecting spray jet

Sub-grid scale near-nozzle flow modeling

• A sub-grid scale, transient flow prediction

(usgs) is used for the spray calculation• Transients become a relevant part of the injection, affecting spray jet properties

• Computational efficiency of the model is crucial to extend its operationto realistic engine geometries & multiple nozzles

instead than under-resolved momentumcell values

( ) +∆+′=

uθθθ

sgstsgspn dt ,

Efficient collision modeling with extended outcomes

• Estimate Radius-of-Influence (ROI) based on a tetrahedralization of the

to realistic engine geometries & multiple nozzles

∆ dt

( )

( )

−=−+

∆+

+∆+′=

urEuu

uθθθ

nnBuvwB

sgsp

sgstsgspn

B

mSm

dt

dt

,

,

1

• Estimate Radius-of-Influence (ROI) based on a tetrahedralization of the drops inside the computational parcel

SρprpVc rkd =

∑∈

Ω∉

′−+

∆+′

Ω∈

Ω∉∆+

=

jet

33

4jet

jet

3

p,13

4

p0,

p,13

4

nn

tpn

Bpp

ipp

p

Bpp

uvw

rd∆t

dtrN

dt

dtrN

S

θθθ

πρ

πρ

3 4V Nk

rROI

−= π

• Implicit coupled solution with SIMPLE solver

β

relθ 0r ( )∑∈

Ω∈

′−

∆+

+∆+′

Ω∉

′−+

=4

jet

3

p

3

jet

pdt13

4

p,13

ip

nn

sgstpn

Bpp

nn

p

Bpp

u

rdt

rN

rd∆t

rN

θuθθ

θ

r

πρ

πρ

3

9

4

26p

Vp N

krROI

−= π

• ROI-based collision estimation is O(n2), n number of particles filter

impossible collisions based on squared distance function between two

• Implicit coupled solution with SIMPLE solver

• Transient turbulent gas-jet model used tothe effective gas jet assumption:

impossible collisions based on squared distance function between twodroplets within the timestep

( ) ( ) ( )( ) cbtatttttdtf relrel ++=−+−+== 22

0,20,10,20,1

22

21

2 ,2, xxθxxθxx

v Strouhalu

xf≈=

( ) ( ) exp1,

−−+= ∫

t

ttx uu

• Pre-processing filter of eligible parcel couples by running a kd-tree

( ) ( ) ROItdtttifpossiblecollisionabt ≤∆≤>→−= minminminmin &&02( ) ( )

( ) ( ) ( )2

0

,,,

exp1,0

=

−−+= ∫

axisentrsgs

t

tinjaxis

txxftrx

ttx

uu

uu

• Pre-processing filter of eligible parcel couples by running a kd-treebased radius-of-influence search

2SROI

1SROI

eligibleeligible

not

( )2

22

2121

,,

+

=

entr

sgs

Kx

rtrxu

• Stokes number and turbulent entrainment

Ltθ∆GA-based study of spray model constants

• Deterministic bouncing, stretching separation (‘grazing’), reflexiveseparation, coalescence prediction

LROI

Ltθ∆

• 5 objective functions: vapor penetration, liquidstandard deviation, mixture fraction distribution

• 6 optimized model variable: CRT, CΛRT, B1, St, Kentr

separation, coalescence prediction

6

7

Spray A, C12

H26

, 900K, O2=0.0, t

inj=1.5ms

Experiment

simulation 1

liq

uid

pen

etra

tio

n [

cm]

Initial ramp

2

3

4

5

pen

etra

tio

n [

cm]

0.4

0.6

0.8

liq

uid

pen

etra

tio

n [

cm]

1f

2f

0 0.5 1 1.5 2

x 10-3

0

1

time [s]

0 1

0

0.2

time [s]

UNIVERSITY OF WISCONSIN -

grid scale flow model for transient fuel spraysgrid scale flow model for transient fuel sprays

Funding Sponsor – Sandia National LaboratoriesFunding Sponsor – Sandia National Laboratories

nozzle flow modeling 0.16 nozzle flow modeling

vel.particle

vel.field

=

=

θ

u0.08

0.12

0.16

mix

ture

fra

ctio

n [

-]

experiment

simulation

z = 30 mm

r20 30 40 50mm

axial vel.particle=θ

x

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.80

0.04

distance [cm]

mix

ture

fra

ctio

n [

-]

z

axial

Validation• Sandia Spray A and mixture preparation in a light duty optical diesel engine

Buu =

θ

dragF

distance [cm]

sgsuu =

Buu =

θ36 µs16 µs 76 µs56 µs 116 µs 136 µs 0

0.2

0.4

SIMPLE solver iteration maintained

jetΩ

B 0.4

0.6

0.8

SIMPLE solver iteration maintained

represent the sub-grid scale flow field using1

[cm]

1.5

Squish planepinj = 500 bar

Squish planepinj = 860 bar

Squish planepinj = 1220 bar

p

IStokesτ

τ=≈

( )( )

0 ,∂

−inj

dt u

u ττ

ττ

0

0.5

1

1.5

ex

perim

en

t

ex

perim

en

t

ex

perim

en

t

( )( )

( )0 ,

−−

inj

inj

inj

dxxSt

t uu τ

τ

ττ

τ

1.5

0

0.5

1

sim

ula

tion

CA = -15.0 CA = -10.0 CA = -5.0phi [-]

Rim plane

sim

ula

tion

CA = -15.0 CA = -10.0 CA = -5.0

Rim plane

CA = -15.0

sim

ula

tion

CA = -10.0 CA = -5.0

Rim plane

0

0.5

1

1.5

1.5

ex

perim

en

t

ex

perim

en

t

ex

perim

en

t

function fentr are model constants

based study of spray model constants 0

0.5

1

sim

ula

tion

CA = -15.0 CA = -10.0 CA = -5.0phi [-]

Bowl plane

CA = -15.0

sim

ula

tion

CA = -10.0 CA = -5.0

Bowl plane

sim

ula

tion

CA = -15.0 CA = -10.0 CA = -5.0

Bowl plane

transient, steady state liquid penetration and distribution

entr, γmax

0

0.5

1

1.5

1.5

exp

eri

men

t

Bowl plane

exp

eri

men

t

Bowl planeBowl plane

exp

eri

men

t

1.2

1.4

liq

uid

pen

etra

tio

n [

cm]

Spray A, C12

H26

, 900K, O2=0.0, t

inj=1.5ms

( )lσ

phase

4f 0

0.5

1

1.5

sim

ula

tio

n

CA = -15.0 CA = -10.0 CA = -5.0phi [-]

sim

ula

tio

n

CA = -15.0 CA = -10.0 CA = -5.0

CA = -15.0

sim

ula

tio

n

CA = -10.0 CA = -5.0

0.4

0.6

0.8

1

liq

uid

pen

etra

tio

n [

cm]

l 3f

References[1] Perini F and Reitz RD, “An effieient atomization, collision and sub-grid scale momentum

coupling model for transient vaporizing engine sprays”, Int J Multiphase Flow, submitted,

2

x 10-4time [s]

0 0.5 1 1.5 2

x 10-3

0

0.2

time [s]

l coupling model for transient vaporizing engine sprays”, Int J Multiphase Flow, submitted, 2015

ENGINE RESEARCH CENTER As of April 17, 2015