12
- 107 - http://www.j-es.org/ Scientific Journal of Earth Science December 2013, Volume 3, Issue 4, PP.107-118 An Improved Non-negative Matrix Factorization Method of Blind Unmixing for Hyperspectral Imagery Jingjing Cao, Li Zhuo Center of Integrated Geographic Information Analysis, Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, PR China Email: [email protected] Abstract An improved non-negative matrix factorization method of blind unmixing for hyperspectral imagery (ATGP-NMF) was proposed in this paper, concerning the fact that the blind unmixing of Non-negative Matrix Factorization(NMF) is easily reduced to the local minimum, by which the spectra and abundance of the target endmember that were obtained by using Automatic Target Generation Process (ATGP) algorithm based on unsupervised orthogonal subspace projection and Non-negative Least Squares (NNLS) were then regarded as initial values by NMF to get the corresponding endmember. The validity and feasibility of the proposed method were analyzed based on the data of both simulation and remote sensing imagery; and then the result was compared with that from VCA-FCLS algorithm which extracted the endmember matrix by using the Vertex Component Analysis (VCA) algorithm and the abundance matrix by using the Fully Constrained Least Squares (FCLS) algorithm. It was indicated that the optimization of the target endmember initial value not only promotes the algorithm accuracy, but also strengthens its feasibility in the ATGP-NMF algorithm. Keywords: Hyperspectral Remote Sensing; Mixed Pixel; Target Endmember; Non-negative Matrix Factorization; Blind Unmixing 一种改进的高光谱混合像元非负矩阵盲分解方法 曹晶晶,卓莉 中山大学地理科学与规划学院综合地理信息研究中心,广东省城市化与地理环境空间模拟重点实验室,广东 广州 510275 要: 针对非负矩阵盲信号分离(NMF)易陷入局部极小值的问题,提出了一种改进的高光谱混合像元非负矩阵盲分解方 (ATGP-NMF)。利用非监督正交子空间投影算法(ATGP)和非负最小二乘法(NNLS)获取目标端元的光谱与丰度,以此作 为初始值进行 NMF 盲分解,得到最终的端元光谱和端元丰度;结合模拟仿真数据和真实遥感影像两类实验数据对该方法 的有效性、适用性进行验证,并与 VCA-FCLS 算法进行比较。结果表明,ATGP-NMF 算法通过优化目标端元的初始值不 仅提高了算法分解的精度,而且增强了算法的适用性。 关键词:高光谱遥感;混合像元;目标端元;非负矩阵分解;盲分解 引言 高光谱遥感以高光谱分辨率、图谱合一的特点克服了多光谱遥感在光谱精细信息表达等方面的局限使本 来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱图像包含了丰富的空间、辐射和光谱 基金资助:广东省自然科学基金面上项目“基于多源遥感与智能优化方法的人口空间分布模拟研究”(S2012010010517); 中山大学柳林教授千人计划科研启动项目(2011-2014);教育部-外国专家局高等学校创新引智基地项目“北京师范大学综合 灾害风险管理创新引智基地”(B08008)。

An Improved Non-negative Matrix Factorization Method of Blind Unmixing for Hyperspectral Imagery.pdf

Embed Size (px)

Citation preview

  • - 107 -

    http://www.j-es.org/

    Scientific Journal of Earth Science December 2013, Volume 3, Issue 4, PP.107-118

    An Improved Non-negative Matrix Factorization

    Method of Blind Unmixing for Hyperspectral

    Imagery Jingjing Cao, Li Zhuo

    Center of Integrated Geographic Information Analysis, Guangdong Key Laboratory for Urbanization and Geo-simulation, School

    of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, PR China

    Email: [email protected]

    Abstract

    An improved non-negative matrix factorization method of blind unmixing for hyperspectral imagery (ATGP-NMF) was proposed

    in this paper, concerning the fact that the blind unmixing of Non-negative Matrix Factorization(NMF) is easily reduced to the local

    minimum, by which the spectra and abundance of the target endmember that were obtained by using Automatic Target Generation

    Process (ATGP) algorithm based on unsupervised orthogonal subspace projection and Non-negative Least Squares (NNLS) were

    then regarded as initial values by NMF to get the corresponding endmember. The validity and feasibility of the proposed method

    were analyzed based on the data of both simulation and remote sensing imagery; and then the result was compared with that from

    VCA-FCLS algorithm which extracted the endmember matrix by using the Vertex Component Analysis (VCA) algorithm and the

    abundance matrix by using the Fully Constrained Least Squares (FCLS) algorithm. It was indicated that the optimization of the

    target endmember initial value not only promotes the algorithm accuracy, but also strengthens its feasibility in the ATGP-NMF

    algorithm.

    Keywords: Hyperspectral Remote Sensing; Mixed Pixel; Target Endmember; Non-negative Matrix Factorization; Blind Unmixing

    510275

    (NMF)

    (ATGP-NMF)(ATGP)(NNLS)

    NMF

    VCA-FCLSATGP-NMF

    S20120100105172011-2014-B08008

  • - 108 -

    http://www.j-es.org/

    [1]

    [2]Blind Source Separation, BSS

    [3, 4]BSS

    Independent Component Analysis, IC[5-10]

    Non-negative matrix factorization, NMF[11-13]Complexity Analysis, CA[14]

    Sparse Component Analysis, SCA[15, 16]NMF

    NMF

    NMF[17] NMF[11] NMF[18]

    [19][13] NMF

    NMF

    NMF

    Automatic Target Generation

    Process-Non-negative matrix factorization, ATGP-NMF NMF

    1

    NMF 20 Lee Seung 1999Nature

    [20]

    [21]n mX r

    n rA r mS

    n m n r r m n mX A S E (1)

    nm r ( min( , ))r n m n rA

    r n mX n mE

    NMF

    n m n r r mX A S (2)

    NMF NMF

    (4) NMF

    A S

    221 1( , ) ( ( ) )

    2 2ij ij

    ij

    Euc X AS X AS X AS (3)

    21min ( , )

    2

    0, 0

    F

    ij ij

    f A S X AS

    a s

    (4)

  • - 109 -

    http://www.j-es.org/

    2

    F Frobenius

    ( )

    ( )

    T

    pb

    pb pb T

    pb

    A XS S

    A AS (5)

    ( )

    ( )

    T

    lp

    lp lp T

    lp

    XSA A

    ASS (6)

    NMF

    2 ATGP-NMF

    1

    NMF NMF

    ATGP [22] NMF NMF

    1

    2.1

  • - 110 -

    http://www.j-es.org/

    Harsanyi, Farrand Chang[23]-Neyman-Pearson

    Hsrsanyi-Farrand-Chang, HFCHFC

    PCA, ICA, AkaikeAkaike Information Criterion, AIC[24]

    Minimum Description Length, MDL[25]HFC

    2.2

    ATGP[22, 26]

    ATGP

    (1) x HFC q

    (2)

    0t 0 arg max[ ]Tx

    t x x

    (3) 0t 0 0U t 0 0=U tP P

    0 01 arg max[( ) ( )]TU Uxt P x P x

    (4) 1i i ( 1,2, , 1i q ) i it 1 1arg max[( ) ( )]i iTi U Uxt P x P x

    (5) it 0 1[ , , , ]i iU t t t #

    iU i iP I UU

    (6) q

    0 1 1[ , , , ]qt t t

    2.3 NMF

    NMF

    NMF

    (1) A S ATGP NMF A NNLS

    S

    (2)

    0 A S

    ( )

    ( )

    T

    pb

    pb pb T

    pb

    A XS S

    A AS

    (7)

    ( )

    ( )

    T

    lp

    lp lp T

    lp

    XSA A

    ASS

    (8)

    (3) A S(7) S (8) A

  • - 111 -

    http://www.j-es.org/

    (4) 1

    (9) S S 1

    pb

    pb P

    pb

    p

    SS

    S

    (9)

    (5) A S 0

    2( ) ( ) ( )1 ( , )

    2

    k k kEuc X X X X (10)

    ( ) kX k X

    2.4

    [27]

    3

    ATGP-NMF 2

    2

    VCA-FCLS NMF

    VCA [28, 29] FCLS [30]

    VCA-FCLS

    Nascimento Dias[31]Spectral Angle Distance, SAD

    Spectral Information Divergence, SID

    Root Mean Square Error, RMSE[27] SE[32] d[33]

    (1) SAD

    1 1 1

    1 1

    ( , ) cos cos

    N

    i i

    i

    N N

    i i i i

    i i

    ABAB

    SAD A BA B

    A A B B

    (11)

    A BN

    (2) SID

    ( , ) ( || ) ( || )SID A B D A B D B A (12)

    AB

    (3) RMSE

    2

    1 1

    ( )pN

    ij ij

    i j

    S S

    RMSEN

    (13)

    ijS ijS i jN

  • - 112 -

    http://www.j-es.org/

    (4) SE

    1 1

    pN

    ij ij

    i j

    a a

    SEp N

    (14)

    N p 1 2, , , pc c c ija i jc ija i jc

    (5) d

    2

    1

    2

    1

    ( )

    1.0 1.0

    ( )

    N

    t t

    t

    N

    t t

    t

    O PMSE

    d NPE

    P O O O

    (15)

    MSEPEPON

    d Willmott[33][01] d

    2R

    3.1

    ENVI 5.0United States Geological Survey, USGS 5

    BruciteChabazite(Olivine)Spessartine

    Witherite420 2

    2 USGS

  • - 113 -

    http://www.j-es.org/

    (a) VCA-FLCS

    (b) ATGP-NMF

    3 (a)VCA-FLCS(d)ATGP-NMF( USGS)

    Dirichlet 1

    Signal Noise RatioSNR 30dB 1296

    3

    1 SAD

    Brucite Chabazite Olivine Spessartine Witherite Mean VCA-FCLS 0.0028 0.0037 0.0053 0.0042 0.0021 0.0036

    ATGP-NMF 0.0056 0.0124 0.0121 0.0080 0.0046 0.0085

    2 SID

    Brucite Chabazite Olivine Spessartine Witherite Mean VCA-FCLS 0.097010-4 0.202410-4 0.631010-4 0.282110-4 0.045710-4 0.251610-4

    ATGP-NMF 0.069610-3 0.290510-3 0.601910-3 0.094410-3 0.021910-3 0.215710-3

    3

    RMSE SE d

    VCA-FCLS 0.0067 0.0047 0.9999

    ATGP-NMF 0.0170 0.0121 0.9991

  • - 114 -

    http://www.j-es.org/

    1 2 3ATGP-NMF VCA-FCLS

    SADSIDRMSE SE 1

    VCA-FCLS

    3.2

    3.2.1

    8

    Hyperion 8196196 356nm2577nm 10nm 30m30m 242

    3.2.2

    (1)

    1m1m

    3m3m ENVI 5.0Feature Extraction K-

    K-Nearest Neighbor, KNN[34]

    ArcGIS 30m30m

    (2)

    11

    30

    3.2.3

    ENVI Hyperion HFC

    VD 7

    Plaza Chang[35] FP =10-3 VD

    7 VD

    FP 10-1 10-2 10-3 10-4 10-5 10-6

    VD 11 11 10 10 9 9

  • - 115 -

    http://www.j-es.org/

    HFCVD=10 ATGP-NMF

    300 9

    (a) (b) (c) (d)

    (e) (f) (g) (h)

    (i) (j) (k)

    9 ATGP-NMF(a)(b)(c)(d)(e)(f)(g)(h)(i) 1#(j) 2#(k)

    8

    (SAD) (SID)

    VCA-FCLS ATGP-NMF VCA-FCLS ATGP-NMF

    0.1707 0.1008 0.1206 0.0310

    0.3848 0.1584 0.3342 0.3849

    0.1158 0.0980 0.0196 0.0113

    0.2332 0.0444 0.0582 0.0022

    0.1544 0.0618 0.0303 0.0039

    0.0449 0.0918 0.0019 0.0104

    0.5870 0.1249 0.7253 0.0167

    1# 0.1107 0.0759 0.0123 0.0073

    2# 0.8300 0.0796 1.1788 0.0065

    0.4485 0.0705 0.2403 0.0050

    0.3080 0.0906 0.2722 0.0479

    3.2.4

  • - 116 -

    http://www.j-es.org/

    8 VCA-FCLS ATGP-NMF 10 SAD

    SID

    9

    RMSE SE d

    VCA-FCLS 0.2368 0.1356 0.5538

    ATGP-NMF 0.1814 0.1155 0.7382

    8 VCA-FCLS ATGP-NMF 10 SAD

    SIDATGP-NMF

    10ATGP-NMF

    RMSESE d

    9 VCA-FCLS ATGP-NMF

    ATGP-NMF

    ATGP-NMF

    4

    NMF ATGP-NMF

    NMF NMF

    VCA-FCLS

    ATGP-NMF

    VCA-FCLS

    NMF

    (1)

    (2)(3)

    (4)

    REFERENCES

    [1] Li X W, Wang J D,Hu B X et al., "Application of Priori Knowledge in Remote Sensing Inversion." Science China (Series D),

    1998, 28(1): 67-72

    [2] S. Haykin, Z. Chen, "The Cocktail Party Problem." Neural computation, 2005, 17: 1875-1902

  • - 117 -

    http://www.j-es.org/

    [3] Yang Wei, Chen Jin, Gong Peng et al. "A New Spectral Mixture Analysis Method Based on Spectral Correlation Matching."

    Journal of Remote Sensing. 2008, 12: 454-461

    [4] J. Chen, X. Jia, W. Yang et al., "Generalization of Subpixel Analysis for Hyperspectral Data with Flexibility in Spectral Similarity

    Measures." Geoscience and Remote Sensing, IEEE Transactions on, 2009, 47: 2165-2171

    [5] J. D. Bayliss, J. A. Gualtieri and R. F. Cromp, "Analyzing Hyperspectral Data with Independent Component Analysis." in 26th

    AIPR Workshop: Exploiting New Image Sources and Sensors, 1998, 133-143

    [6] Tao Xin, Fan Wenjie and Xu Xiru. "Blind Separation of Component Information from Hyperspectral Data." Acta Scientiarum

    Naturalium Universitatis Pekinensis, 2008, 6: 19

    [7] W. Xia, B. Wang and L. Zhang, "Blind Unmixing Based on Independent Component Analysis for Hyperspectral Imagery." Journal

    of Infrared and Millimeter Waves, 2011, 30: 131-136

    [8] T. Tanaka and A. Cichocki, "Subband Decomposition Independent Component Analysis and New Performance Criteria." in

    Acoustics, Speech, and Signal Processing, 2004. Proceedings. (ICASSP'04). IEEE International Conference on, 2004, 5: V-541-4

    [9] I. Kopriva and D. Seri, "Wavelet Packets Approach to Blind Separation of Statistically Dependent Sources." Neurocomputing,

    2008, 71:1642-1655

    [10] C. Wu, B. Du and L. Zhang, "Hyperspectral Change Detection Based on Independent Component Analysis." J. Remote Sens, 2012,

    3: 545-561

    [11] A. Pascual-Montano, J. M. Carazo, K. Kochi et al., "Non-smooth Non-negative Matrix Factorization (nsNMF)." Pattern Analysis

    and Machine Intelligence, IEEE Transactions on, 2006, 28: 403-415

    [12] Tao Xuetao. "Research of Spectral Unmixing Based on Linear Model for Multi-Channel Remote Sensing Images." 2008

    [13] D. Cai, X. He, J. Han et al., "Graph Regularized Non-negative Matrix Factorization for Data Representation." Pattern Analysis and

    Machine Intelligence, IEEE Transactions on, 2011, 33: 1548-1560

    [14] J. V. Stone, "Blind Source Separation using Temporal Predictability." Neural computation, 2001, 13: 1559-1574

    [15] P. Georgiev, F. Theis and A. Cichocki, "Sparse Component Analysis and Blind Source Separation of Underdetermined Mixtures."

    Neural Networks, IEEE Transactions on, 2005, 16: 992-996

    [16] Yu Xianchuan, Cao Tingting, Hu Dan et al., "Blind Image Separation Based on Wavelet Transformation and Sparse Component

    Analysis." Journal of Beijing University of Posts and Telecommunications, 2010, 33(002): 58-63

    [17] V. P. Pauca, J. Piper and R. J. Plemmons, "Nonnegative Matrix Factorization for Spectral Data Analysis." Linear algebra and its

    applications, 2006, 416: 29-47

    [18] A. Cichocki and R. Zdunek, "Regularized Alternating Least Squares Algorithms for Non-negative Matrix/Tensor Factorization." in

    Advances in Neural Networks-ISNN 2007: Springer, 2007, 793-802

    [19] Z. Yang, G. Zhou, S. Xie et al., "Blind Spectral Unmixing Based on Sparse Non-negative Matrix Factorization." Image Processing,

    IEEE Transactions on, 2011, 20: 1112-1125

    [20] D. D. Lee and H. S. Seung, "Learning the Parts of Objects by Non-negative Matrix Factorization." Nature, 1999, 401: 788-791

    [21] Gu YanTing. "Application Research on Quantitative Prediction of Mineral Resources of Non-Negative Matrices Factorizaton

    algorithm Based on GIS." 2010.

    [22] H. Ren and C. Chang, "Automatic Spectral Target Recognition in Hyperspectral Imagery." Aerospace and Electronic Systems,

    IEEE Transactions on, 2003, 39:1232-1249

    [23] J. C. Harsanyi, W. H. Farrand and C. Chang, "Determining the Number and Identity of Spectral Endmembers: an Integrated

    Approach using Neyman-Pearson Eigen-Thresholding and Iterative Constrained RMS Error Minimization." in Proceedings of the

    Thematic Conference on Geologic Remote Sensing, 1993, 395-395

    [24] H. Akaike, "A New Look at the Statistical Model Identification. "Automatic Control, IEEE Transactions on, 1974, 19: 716-723

    [25] G. Schwarz, "Estimating the Dimension of a Model." The annals of statistics, 1978, 6: 461-464

    [26] Wu Bo, Zhang Liangpei, and Li Xiangping. "Unsupervised Orthogonal Subspace Projection Approach to Unmix Hyperspectral

    Imagery Automatically." Journal of Image and Graphics, 2004,9: 1392-1396

  • - 118 -

    http://www.j-es.org/

    [27] Li Xi, Chen Xuehong, Chen Xiaoling et al., "Blind Unmixing of Hyperspectral Mixed Pixels Assisted by Wavelet Packet

    Decomposition." Acta Photonica Sinica, 2011, 40(6): 835-842

    [28] J. M. Nascimento and J. B. Dias, "Vertex Component Analysis: A fast Algorithm to Unmix Hyperspectral Data." Geoscience and

    Remote Sensing, IEEE Transactions on, 2005, 43: 898-910

    [29] J. M. P. Nascimento, "Unsupervised Hyperspectral Unmixing." Universidade Tcnica de Lisboa, 2006.

    [30] D. C. Heinz, "Fully Constrained Least Squares Linear Spectral Mixture Analysis Method for Material Quantification in

    Hyperspectral Imagery." Geoscience and Remote Sensing, IEEE Transactions on, 2001, 39: 529-545

    [31] J. M. Nascimento and J. B. Dias, "Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data." Geoscience and

    Remote Sensing, IEEE Transactions on, 2005, 43: 898-910

    [32] S. Jia and Y. Qian, "Constrained Non-negative Matrix Factorization for Hyperspectral Unmixing." Geoscience and Remote

    Sensing, IEEE Transactions on, 2009, 47: 161-173

    [33] D. R. Legates and G. J. McCabe, "Evaluating the Use of "Goodness-of-Fit" Measures in Hydrologic and Hydroclimatic Model

    Validation." Water Resources Research, 1999, 35: 233-241

    [34] T. Cover and P. Hart, "Nearest Neighbor Pattern Classification." Information Theory, IEEE Transactions on, 1967, 13: 21-27

    [35] A. Plaza and C. Chang, "Impact of Initialization on Design of Endmember Extraction Algorithms." Geoscience and Remote

    Sensing, IEEE Transactions on, 2006, 44: 3397-3407

    1989-

    Email: [email protected]

    1973-

    /

    (CPGIS)

    1

    1 2

    1 30

    Email: [email protected]