9
Anempiricalanalysisof thePLMimplementationeffectsintheaerospaceindustry Marco Cantamessa, Fra nce sca Montagna *,Paolo Neirotti Department of ProductionSystemsandBusinessEconomics, PolitecnicodiTorino, Torino,Italy 1.Introduction Thesurvival of rmsincompetitive marketsissignicantly associated tonewproductdevelopment (NPD)capabilities [1,2], andNPDmanagement istightlyrelatedtotheuseandre-useof productinformation andknowledge. Forthisreason, thereisan ever-increasing opportunity forusingITtoimprovetheperfor- manceof theproductdevelopment processthroughout itsentire lifecycle[3].Productlifecyclemanagement(PLM)systems areIT application frameworks thatarewidelyacclaimed forsupporting thisobjective, alongwithenhancingknowledge management capabilities andcoordination amongthefunctional areasinvolved inNPD. Ingeneral, PLMsystemsintegrate [4]: -Systemsandtechnologiestosupport designactivities(i.e., visuali- zation/viewing applications, CA-Xintegration, productdata management, engineering changemanagement tools, congura- tionmanagement tools, etc.),inthecontextof interdisciplinary anddistributedteams(i.e., dataexchangeandcollaboration technologies, designcoordination tools). -Knowledgemanagement systems(i.e., documentmanagement, contentmanagementsystems, etc.). -Project management andworkowmanagement tools. -Systemsandtechnologiestosupport relationsthroughthesupply chain(i.e.,customer-oriented andsupplier-oriented applications, or informat iontrackingsystems). Notonlythewidediffusionof suchenablingtechnologies inindustry, butalsotheirhighcosts, makesitimportant tounderstand thereal benetsthatcanderivefromPLMimplementations. Thisunder- standing obviously cannotdowithoutempirical evidence. Infact, despitethepromiseof greatbenets, PLMmaybedeployedinan ineffective way,andrmsmightndthemselves quitefarfromthe expected operational orstrategic outcomes. Literatureusuallyfocusesoneffectsof PLM,however thereisno contribution (withtheexceptionof [4]) that  jointlyconsidersthe impactandunderstanding of PLMonindividuals’ work, on business operations androutines andontheentirerm. Really, anumberof aspects areusuallyneglectedateachof the threelevels. Whenconsidering individuals, PLMrequiresaburden toadoptersintermsof theknowledge neededtoachievean effective application[5]. Furthermore, anddifferently tothewell- knowncaseof Enterprise ResourcePlanning(ERP)systems[6], PLMtechnologies arelessprescriptive onthewayactivities must beperformed (i.e., PLMcanstrictlymanageprocedures butdoes notobligeindividuals todospecictransactions). Hence, evenif PLMisexpectedtobeusedinthedailylifeforthemanagement of allengineering changes, theuseof PLMtechnologies nowadayscan stillvaryamongemployees, dependingontheadvantage they experience withrespecttothepreviousworkingconditions. Fromanorganizational pointof view, andagaindifferently from ERP,PLMsystems support inherently lesspredictable, more knowledge-intensive (andoftendependent ontacitknowledge) processes, thathaveaverylongduration(especially inindustries likeaerospace) andinvolveverylargeteamsacrossthecompany anditssupplychain.So,arelativelyeffective butnon-uniform assimilation of suchtechnologies attheindividual levelmaynot ComputersinIndustry63(2012)243–251 AR TICL EINFO  Article history: Received10 January2011 Received in re vi sed form 29 Sept ember 2011 Accepted13 January2012 Ava ilable online 16 Februa ry 2012 Keywords: Newproductdevelopment(NPD) Productlifecyclemanagement(PLM) ABSTR ACT The pro vis ion of an eff ect ive IT suppor t to produc t dev elop mentprocess es sti ll remains an openresearc h question, becaus e of the complex ity that is inher ent to this area of corporat e act ivit y. Acc or din g to the current state of the art, pr oduct li fec ycle management (PLM) syste ms can be considere d as important enablers for achi evin g true coordi nati on and effective management of produc t development process es. Howev er, few contr ibuti ons in li teratu re investi gate the centr al issue of understandin g how company impl ement at io n ap pr oache s ca n mu tu al l y i nt er ac t a nd ca n de te rm in e t h e a ct ua l ef f ec ts of PL M introduction. The pap er presents a framework for representi ng PLM imp lementation effectsat three dif fer ent levels (i nd iv id ual, or ganiz at io nal, and st ra t egic ) jo in tl y to an empi ri ca l in v es t ig at io n in amaj or It al ia n aerosp ace compa ny. 2012 El sevi er B.V. Al l ri ghts reserved. *Correspondingauthorat:C.soDucadegliAbruzzi24,Torino,Italy. Tel.:+390110907213;fax:+390110907299. E-mailaddress:[email protected] (F.Montagna). ContentslistsavailableatSciVerseScienceDirect Computers in Industry jou r nalhomepage:www.elsevier.com/locate/compind 0166-3615/$seefrontmatter2012ElsevierB.V.Allrightsreserved. doi:10.1016/j.compind.2012.01.004

An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

Embed Size (px)

Citation preview

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 1/9

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 2/9

automatically  lead  to  their  effective  deployment   at  the  organiza-

tional   level,  because  of   the  effects  related  to  network   externalities

[7,8]  and  learning-by-using  among   adopters   [9].

At  a  strategic  level,  there  can  be  a  negative  impact   if 

management   misjudges  the  effort  required.  Moreover,   the  success

of   any  PLM  implementation  (and   consequently   its  strategic

outcomes)   depends   on  organizational  characteristics.  These  are

markedly  different  across  firms,  and  this   can  significantly  alter  the

implementation   strategy  and  its  outcomes.

The  research  question  faced  in  the  paper  is  to  analyze  PLM

implementation   effects  at  different  levels.  In  particular,  the  paper

theorizes  and  empirically  validates  the  existence  of   three  distinct

dimensions   (operational,  organizational,  and  strategic)  in  the

implementation   and  their  interactions.  Besides  these  elements

that  are  more  deeply   considered  in  the  paper,   the  entire  research

regarded,  also  other   factors  affecting  PLM  assimilation  such   as

learning-by-using  effects,  end  users’  acceptance   of   the  technology,

etc.   The  underlying   idea  is  that,   through   this  analysis,  it  is  possible

to  make   the  relations  among   the  elements  which  can  lead  to

effective  PLM  implementations  emerge.

The  first  part  of   the  paper  is  based  on  literature  review,  with  the

objective  of   identifying  the  diverse  dimensions   of   the  problem  and

the  focal  points   of   the  analysis.  The  second   step  is  represented  by

the  construction   of   a  theoretical  model   that   summarizes  thedifferent  perspectives  coming   from  literature.  Starting  from  the

main   PLM  system  functionalities  declared  in  literature,  the  paper

proposes   three  incidence   matrices  for  analyzing  effects  interac-

tions,   and  then  investigates  the  impact   of   PLM  on  individual  work,

on  organizational  processes  and  at  a  strategic  level.  Finally,  the

three   dimensions   of   PLM  effects  are  investigated  by  an  explorative

study   in  a  large  enterprise  operating   in  the  aerospace  industry.  The

last  section  deals  with  conclusions   and  managerial  implications.

2.  Literature  review

Many  contributions   in  academic  literature  and  among   practi-

tioners  give  different  definitions   of   PLM  and  propose   a  number   of 

viewpoints,  which  can  be  summarized   in  Table  1. The  table  doesnot  refer  to  specific  areas  of   PLM  implementation,  but  to  diverse

investigation  perspectives.  The  main  aspects  which   are  objects  of 

investigation  in  literature  are  the  implementation   industrial

scenario   [1],  approaches   [2],  operative  modalities  [3]  and

implementation   effects  [4].

At  the  same  time,  two main  perspectives are present,  depending

on  whether  contributors   focus   on  adopters  (i.e.,  a  ‘‘demand-side’’

perspective)  or  on  systems  and  their  vendors  (i.e.,  a  ‘‘supply-side’’

perspective).  Considering  the  industrial  scenario  [1],  the  demand-

side  perspective  focuses  on  drivers  that  lead  firms   to  adopt   PLM

systems  (e.g.  [10])  or  integrated  managerial  approaches   to  NPD

process  (e.g.  [11]).  Conversely,  a  supply-side  perspective,  quite

often  found  in  practitioner-oriented   papers   (e.g.  [12]),  focuses  on

enabling   technologies.  In  this   context   it  is  possible  to  recognize

two  technological   trajectories,  one  that   views  PLM  as  a  progressive

broadening   of   the  scope  of   CAD  systems  (e.g.  the  one  proposed   by

Dassault/IBM,   Siemens/UGS,   Enovia,  think3,  etc.),  the  other  as  a

specific  module   of   enterprise  systems  (e.g.  SAP  PLM;  Oracle   PLM,

etc.).

Concerning   implementation  approaches   [2],  a  first  stream

concerns   a  top-down   perspective  on  the  NPD  process  and

considers   PLM  a  holistic  and  strategic  activity  addressing  many

components   such   as  products,   organizational  structure,   working

methods,   processes,  people  and  information  systems  [4].  The

second   stream  is  related  to  a  bottom-up   perspective,  leading  from

tools  to  problems.  It  considers  that  knowledge  of   available  tools

can  allow  finding   appropriate  solutions  for  company-specific

problems.  This  perspective  identifies  PLM  as  a  set  of   tools  for

gathering,  managing,  spreading  and  using   information  and

knowledge  on  products.   It  focuses  on  specific  technological

solutions,  and  is  stressed  by  consultants   and  business  analysts

(for   a  survey,  see  [13]).

Some  authors   [14,15]  claim  that  PLM  should   be  approached

through   these  two  perspectives  together.  The  implementation  of tools  without   the  comprehension   of   strategy  and  business

processes  cannot   be  useful,   just  like  the  application  of   business-

level  PLM  fundamentals   without   an  adequate   knowledge  of   the

supporting   technologies.

This  dichotomy   is  present  also  when   dealing  with  implemen-

tation  operative  modalities  [3].  According   to  the  first  perspective,

the  key  focus   should   be  on  understanding   and  eventually  re-

engineering  the  business  processes  in  which  products   are

developed  [14,15].  According   to  the  other  perspective,  implemen-

tation  decisions  should  be  guided  by  the  features  and  functionali-

ties  of   IT  applications   (e.g. product  data management   systems, data

exchange   and  collaboration  technologies).  In  this   sense,  firms  must

look   for  the  specific  applications   they  need,  and  not  all  possible

tools  will  be  adopted.At  last,  a  somewhat  limited  amount  of   research  contributions

has  been  dedicated  to  investigate  the  effects,  in  term  of   benefits

and  problems,  of   PLM  implementation  [4].

One  way  is  to  assess  the  impact  of   PLM  in  improving

effectiveness,  efficiency  and  control   of   the  NPD  process.  It  regards

the  reduction   of   design  mistakes  [16], the  improved  possibility  of 

design  alternative  comparisons   [13,14,16],  a  better  understanding

of   product   architecture   and  components   features  [13],   the

achievement   of   design  parameter  optimization  [17], the  reuse  of 

past  design  information  (e.g.  [14,16,18]),  the  anomaly   detection  in

 Table  1

Investigation  perspectives  on  PLM   in   literature.

Implementation  industrial  scenario  [1]  Implementation  approaches  [2]  Implementation

modalities   [3]

Implementation  effects  [4]

Demand  side  Basic  drivers

-  Saaksvuori  and  Immonen  [16];

-  Dutta  and  Ameri  [41];

- Sharma   [21].

- Rangan  et  al.   [10]

Integrated  approaches  to   NPD

-  Hage  et  al.  [11];

-  Nobelius  and  Sundgren  [42];

- Von  Corswant  and  Tunfilv  [43].

Comprehensive  approach  to  NPD

and  product  information  management

-   Stark  [4]);

- Rangan  et  al.  [10]

Focus  on  processes

- Grieves   [15];

-   Schuh  et  al.  [14].

Impact  given   by  the  adoption

of   a  PLM   strategy

-  Schuh  et  al.  [14];

-  Stark  [4]

Supply  side  Existent  supporting  technologies

-  Garetti,  et  al.  [12]

- Dassault/IBM  UGS,  Enovia,

Think3,  SAP   PLM;   Oracle  PLM,   etc.

Tool-   driven  approach  in  order  to

provide  a  specific  support  to  specific

processes  [13]

Focus  on  technological

choices

- Garetti,  et  al.   [12];

- Sudarsan  et  al.  [44]

Benefits  given   by  specific

solutions

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251244

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 3/9

the  first  phases  of   NPD  and  the  management   of   design  changes

[16,19].  This   impact   can  be  considered   as  an  enabler  of   the

development   of   more   innovative  products   [14].  Moreover,  data

integration,  reduction   of   data   redundancy,   real-time  updating

[16,20]  and,   more  in  general,  integrated  information  and

knowledge  management   (e.g.  [4,14]),  as  provided  by  PLM  systems,enhances   cross-functional   collaboration  among   employees  [21–

23].  This   leads  to  a  decrease  of   transaction  costs  in  the  NPD  process

[38],  more   effective  project  coordination   and  control   on  product

engineering  [13,14,24,25], besides  a  greater  rigor  in  the  manage-

ment  of   NPD,   especially  for  product   planning   [4,14].

Finally,  it  is  also  possible  to  attempt  an  evaluation  of   the

revenue   increase  or  the  cost  reduction   that   PLM  can  lead  to.  These

‘‘bottom  line’’   results  stem  from  an  improved   management   of 

design  alternatives,  a  greater  design  diversification  [14,16], a

deeper   comprehension   of   product   architecture   and  components

features   [14], a  lower  impact   of   product   changes  on  process

[16,26],   the  possibility  of   re-using  past  design  information

[14,16,18],   a  higher   quality  of   design  and  a  lower  number   of 

design  mistakes  [16], an  improved  management   of   complex  tasks[27],  the  reduction   of   time   needed   for  information  research  [14,16]

and  for  low  added-value  activities  [16], the  anomaly  detection  in

the  first  phases  of   NPD  and  the  management   of   design  changes

[16,19],   an  effective  support   for  teamwork  and  cross-functional

collaboration  [21–23].

3.   Theoretical  model  developed  and  focal  points  of   the  analysis

None   of   the  previously  mentioned  contributions   examines  the

elements   of   the  firm  on  which  PLM  impacts  by  considering

different  implementation  levels.

Stark  [4]  considers  three   levels  of   PLM  implementation   in  the

pursuit   of   opportunities   and  benefits,  but  does   not  consider   the

associated 

organizational 

issues. 

This 

is 

an 

important 

limitation,since  PLM  systems  require  the  reengineering  of   relevant  business

processes  [28,29], with  a  dramatic  impact   on  the  firm’s   organisa-

tion   [30].

This   paper  attempts   to  take  into  account  the  organizational

effects  of   PLM  implementation  by  considering  workers  in  the  NPD

process   as  the  unit  of   analysis.  In  so  doing,   the  paper  distinguishes

between  three  different  dimensions   of   PLM  impact,  individual

operational  effects, organizational   process  effects, and  strategic 

effects. The  first   dimension  analyzes  the  impact   of   PLM  on  users’

individual  work  and  operational   procedures.   The  second   dimen-

sion  reflects  the  benefits  that  users  may  have  perceived  in  the

entire   NPD  process,  in  terms  of   impacts  on  coordination   routines,

idea   exchanges  and  workflows.  The  third  dimension  reflects  how

employees 

perceived 

how 

PLM 

affected 

firm 

performance 

from 

a

strategic  point   of   view.  The  basic  idea  is  that,  through  the

identification  of   the  effects  of   PLM  at  different  levels,  the  dealings

among   the  elements   which  lead  to  effective  PLM  implementations

can  result.

Table 2  shows  the  effects  as described  in  literature  and  classifies

them  in  the  defined   three  categories.Really  despite  these  three   dimensions   are  likely  to  go  together

within  a  firm,   it  is  plausible  to  expect   that   when   PLM  effects  are

investigated at  the  individual  level,  some  users may have perceived

benefits   in  their  individual   job  without   experiencing   concrete

results  at  the  NPD  process  level.  This   is  more   likely  where   the

technology   is  scarcely  used   as  a  coordination   tool,  but  simple  as  a

knowledge  repository  for  his/her  own  use.   Vice  versa,  some  other

users  may  have   not  perceived  any  particular  impact  in  their

individual  work,  despite  at  the  process  level  PLM  resulted  into

improved  coordination   and  knowledge  management.   This   is   more

likely  in  individuals  with  a  low  acceptance   of   the  new  technology.

In  addition,  some  individuals  may  do  not  have   a  greater  vision  or

sensitiveness  on  the  strategic  implications  of   PLM  implementation

despite  their  use  of   PLM  is  regular  and  the  advantages  on  theircoordination   routines   is  evident.  This   is  the  reason  why  the  study

of   the  perception   of   the  users  about   these  diverse  effects  is  the  first

focal  point  of   the  analysis.

After having  considered   the  three   levels  of   PLM  implementation

effects,  the  mutual   interactions   among   them  remain  to  be

explored.  Operational  effects  can  influence   the  development

process  and  –  in  turn   –  this  can  have   an  influence   at  strategic

level.  This   knowledge  on  the  PLM  implementation  effects  and

relations  at  multiple  levels  (by  referring  to  Table  1, [4])  may  allow

to  understand   its  antecedents   concerning   modalities  [3],

approaches   [2]  and  industrial  scenarios  [1].

In  order  to  assess  the  mutual   relations  at  different  levels,

incidence   matrices  can  be  used  to  explore  potential   causal   links

among 

effects 

[31], systematically 

reporting 

in 

the 

matrices 

thefindings   deriving  from  literature.

Specifically,  three  matrices  have  been  considered.   The  first

matrix  connects   PLM  functionalities  (i,  on  the  rows)  to  individual-

level  operational  effects  (j,  on  the  columns).  The  second   matrix

connects   functionalities  i or  the  individual-level  operational  effects

 j  on  the  rows   to  process-level  effects  (r,  on  the  columns).   The  third

matrix  connects   the  operational-level   j  or  process-level  effects  r

(on  the  rows)  to  strategic  effects  (s,  on  the  columns).   These

matrices   can  be  translated  in  a  causal   map  that  shows   the  different

interactions,  as  in  Fig. 1. Obviously,   it  is  important  to underline   that

the  possibility  of   a  direct   link  between  two  distant  groups   is

allowed  by  the  model.   For  instance,  the  direct   link  between  a  PLM

individual  operative  effect  and  a  strategic  effect  can  be  allowed

even 

without 

intermediate 

individual 

and 

operative 

effects.

 Table  2

PLM  effects  classification.

Individual  operative  effects  Organizational  process  effects  Strategic  effects

Improved  possibility  of   design  alternative

comparisons  and  management  [14,16]

Reduction  of   data  redundancy  and  real-time

data  integration  [16,20]

Higher  product  innovation  level   [14]

Better  comprehension  of   product  architecture

and  components  features  [14]

Information  and  knowledge  management  [4,14]  Product  cost  reduction  [14,16]

Past  design  information  reuse  [14,16,18]  Transaction  cost  reduction  in  the  NPD  process  [38]  Time  to  market  reduction  [14]

Reduction  of   design  mistakes  [16]  More  effective  project  coordination  and  control  [14,24,25]  Process  cost  reduction  [14]

Support 

for 

complex 

task 

execution 

(e.g. 

[27]) 

More 

rigorous 

NPD 

Management 

(especially 

forproduct  planning)  [4,14] Customer 

satisfaction 

[14]

Design   optimization   [17]  Product  diversification  [14]

Time  reduction  for  research  and

information  gathering  [14,16]

Higher  design  quality  [16]

Reduction  of   low  value  added  activities   [16]  Anomaly  detection  in   the  first  phases  of 

NPD  and  design  changes  [16,19]

Support  for   design  in   team  and

cross-functional  collaboration   [21–23]

Lower   impact  of   product  changes  on   process  [16,26]

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251  245

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 4/9

Matrix  X,  as  shown  in  Fig.  2  and  whose  description  below

explains  the  logic  used  for  its  construction,   considers  the  relations

between  PLM  functionalities  (as  listed  in  the  introduction   and

described  in  [4]) on  the  rows  and  the  main  individual  operative

effects,  which   are  claimed  by  literature  on  PLM  systems  (as  shown

in  Table  2),on  the  column.  Matrix   Y   and  Z  are  similarly  constructed

and  shown  in  Figs.  3  and  4.This   theoretical   model   has  then   been  validated  by  a  panel  of 

industry   experts,  however  must   also  be  validated  on  a  broader

empirical  base.  Moreover,  especially  in  the  evaluation  of   user

perception,   moderator  effects  due  to  individual  traits  of   PLM  users

(e.g.  age, gender,  type  of   tasks performed)  and  to  the  organizational

context   (e.g.  the  functional   department   and  its  involvement  in  the

NPD  process,  the  facilitating  conditions   set  the  and  middle

managers   for  encouraging   and  supporting   the  PLM  use)  may  be

relevant  and  may  affect  the  interdependencies   among   the  PLM

effects  described  by  the  matrices.

The  first  point   is  completely  treated  in  the  paper.   Results

described  here   are  obtained  by  using  a  scale  that  has  been

validated  statistically  through   a  Principal   Components   Analysis,  of 

the  three   identified  dimensions  and  their  relations.

The  second  point  is  mainly  related   to  the  nature  of   PLM  as  a

complex  technology  that  can  be  accepted  to  a  different   extent  by

individuals   depending  on  the  individual   traits   and  their organiza-

tional context. The Technology Acceptance  issue does  not only affect

individuals   but,  due  to  network  externalities   in  the  organizationalprocesses,   can  also  affect  the  benefits  of   the  technology  at

organizational   and  business   process   level. This  issue  was  part  of 

the  study and guided  the construction of  questionnaires  but  it  is only

briefly  mentioned  in  the  paper.  This  because   as  Fig.  5  shows,   the

focus  of   the  analysis   in  this  paper  is  on  the  operational,

organizational   and  strategic   effects   and  their linkages   of   PLM

implementation;  readers   are referred  to  [34]   for  further  details.

4.   The  survey 

Two  business  units   of   an  Italian  industrial  group,   which

operates   in  the  aerospace  industry,  were  the  setting  for  the

Fig.  1.  Causal  relation   matrices.

Fig.  2.  Matrix  X-PLM  functionalities  vs   individual  operative  effects.

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251246

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 5/9

empirical  analysis.  In  both   cases,  PLM  implementations   were

driven  by  the  willingness  to  enforce   stronger  relationships  in  the

firm’s  network  of   customers,  suppliers,  and partners,  together  with

the  need  for  a  better  management   of   concurrent   engineering

activities.  The  business  units  introduced   different  PLM  functional-

ities,  with  product   data  and  configuration   management,   process

planning   and  resources   management   being  the  most   important.

The  study  was  based  on  a  quantitative  analysis  conducted

through   a  structured   questionnaire  addressed  to  all  adopters  of 

PLM  systems  in  the  two  units.   A  representative  sample  made  by

300  respondents   in  the  two  units   was  involved  into  the  study:   this

sample  reflected  the  distribution  of   the  population   of   PLM  end-

users  regarding  age,  educational   level  and  type  of   organizational

function. 

133 

usable 

responses 

were 

obtained 

(63 

from 

firstBusiness   Unit  and  74  from  the  second   one),  which   correspond   to

about   a  20%  response  rate   in  each  of   the  two  organizations.  To

check  for  non-response   bias,  the  respondents   were  compared   with

the  non-respondents   through   contingency   tables,  Kruskall–Wallis

non-parametric   tests  and  a  logit  analysis.

In  the  surveyed  sample  110  respondents   were  part   of   a  cross-

functional   product   development  team  and  72  were  affiliated  with

the  product   design  department.   On  average,  61%  of   PLM  users’

working  time  was  spent  performing  tasks  associated  with  product

development   projects.  With  respect  to  age,  the  sample  was  well

balanced   (49.6%  of   the  surveyed workers were under  the  age  of  40).

Age  was  found  to  highly  correlate  with  seniority  (Pearson

correlation  was  0.788  with  a  0.1%   p-value),  thereby  highlighting

the 

low 

turnover 

rates 

of  

the 

surveyed 

users.

Data  were  collected  following  a  three   stage  process.   A

preliminary  round  of   interviews  was  made  with  senior  managers

accountable   for  the  PLM  implementation  project  and  with  some

program  managers,  in  order  to  analyze  the  organizational  impact

of   PLM  and  the  type   of   implementation.  A  structured  questionnaire

was  then  sent   to  all  the  end users  of   PLM  system.  Findings  obtained

from   the  survey  were  at  last  discussed  and  validated  with  the  top

management.

Outcomes   emerging  from  this   survey  can  be  generalized  at  the

industry   level,  as  firms   in  the  aerospace  industry   exhibit  similar

business  processes,  with  a  high  degree  of   standardization  and

limited  room  for  idiosyncratic  operations,  routines   and  human

capital.  Standardization  occurs   because  players  in  this  industry

often 

work 

together 

in 

R&D 

alliances 

and 

tend 

to 

follow 

similarpractices   both   to  ensure   operating   compatibility  with  partners   and

to  imitate  partners’  good  practices.  Thus,   when   generalized,  results

reflect   how  PLM  is  accepted   and  assimilated  in  the  operational

routines   and  processes  of   large  aerospace  firms   one  year  after  its

implementation.

4.1.  The  questionnaires  and  measures

Based  on  previous  PLM-specific  literature,  the  questionnaire

included   the  measures   presented  in  Table  3. Each  item  was

expressed  on  a  5-level  Likert  scale,  wherein  the  value  ‘00

corresponds   to  a  neutral  position  between  a  strong   disagreement

(‘20)  and  a  strong   agreement  (‘+20).  In  order   to  identify  higher-

level 

factors, 

item 

responses 

were 

analyzed 

using 

factor 

analysis.

Fig.  3.  Functionalities  and  Individual  operative  effects  vs.  organizational  process  effects.

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251  247

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 6/9

We employed  a  loading  threshold  of   0.5  for  component   identifica-

tion   and  a  level  of   0.6  for  the  Kaiser–Meyer–Olkin  measure  of 

sampling  adequacy.  Items  were  aggregated  into  factors  after

controlling   for  the  internal   consistency  of   the  measures   using

Cronbach’s   alpha.   A  reliability  threshold  of   0.7  was  used  for  this

purpose.   Given  the  lack  of   previous   theoretical  studies  that   clearly

separated  the  individual  from  process-level  dimensions  of   PLM

impact,   exploratory  factor   analysis  (EFA)  to  identify  the  dimen-

sions  of   PLM’s   organizational  impact   was  used.

5.   Analysis  of   the  results

5.1.  PLM   impact 

Table  4  reports  descriptive  statistics  and  EFA  results  for  factors

related 

to 

PLM 

impact. 

This 

analysis 

separated 

three 

dimensions 

of benefits   experienced  by users.  Each   item  loaded higher   on  only   one

factor,  thereby  supporting   the  discriminant  validity  of   the

measures.

The first  factor  identified by  the analysis  refers  to  the perception

that  PLM  produces   strategic  benefits:  that  it  reduces   the  firm’s

product   costs  and  enhances   the  development  of   new  products

starting  from  platforms.  It  was  labelled  ‘Perceived  Strategic

Benefits’   and  confirms   the  first  typology  of   effects  considered  by

the  theoretical  model.

Also  the  second   factor  EFA  revealed  confirms   the  theoretical

model   and  refers  to  ‘‘process  effects’’.  It  explains  the  benefits  users

perceived  in  the  organization  of   NPD  activities  thanks   to  PLM  use

and  was  labelled  ‘Perceived  Impact   on  the  NPD  process.   This   factor

considers: 

(1) 

more 

effective 

collaboration 

with 

colleagues, 

(2)

Fig.  4.  Individual  operative  effects  and  organizational  process  effects  vs.  strategic  effects.

Fig.  5.  Factors  that  describe  PLM   impact.

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251248

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 7/9

better  cross-functional   coordination   and  idea  exchange,   (3)  more

structured   ways  to  manage  workflows,  and  (4)  more   frequent   use

of  

component 

carryover. 

Among 

these 

items, 

there 

was 

diffusedagreement  among   users  that   PLM  facilitated  a  more  structured

way  of   managing  workflows  (item  2.3).  Conversely,  the  perception

that  PLM  supports   the  coordination   and  exchange   of   ideas  (item

2.4)  exhibited  a  limited  diffusion  among   the  surveyed  users.

The  third  factor  too  confirms   the  developed  theoretical  model

and  refers  to  the  impact   of   PLM  on  individual  work   and  operational

procedures.   This   was  labelled  ‘Perceived  Impact   on  Individual

Work’   and  encompasses:  (1)  easier  product   data   retrieval,  (2)  a

reduction   in  time  wasted  due  to  either  ‘re-inventing  the  wheel’  or

to  doing   useless  work  because  data  is  inaccurate   or  not  updated;

(3)  an  increase  in  time  devoted  to  individual  technical  work   and  (4)

individual  productivity  increase  (i.e.,  less  time   needed   to  perform  a

 job).  Among   these  factors,  the  items  that   describe  the  impact   of 

PLM 

on 

overall 

individual 

productivity 

(item 

3.1) 

and 

the 

reduced

waste  of   time   (item  3.2)  show   the  lowest  means   and  the  highest

standard   deviations.  Conversely,  diffused  agreement  was  on  the

greater 

ease 

of  

retrieving 

product 

data. 

These 

results 

are 

consistentwith  descriptive  statistics  of   how  users  view  the  impact   of   PLM  on

the  allocation  of   their  working  time  (see  Table  5).  On  average,  PLM

 Table  3

Measures  in  the  questionnaire.

PLM  perceived  benefits  Item  Main  references

Impact  on   individual  work  1.  Increased  ease  of   retrieving  product  data  See  Table  2  column  1

2.  Increased  individual  productivity

3.  Increased  time  available   for  individual  technical  work

Reduction  in   the  time  spent  ‘re-inventing  the  wheel’  or   re-doing

the  same  activity  due  to  a  prior  use  of   wrong/non-updated  product  data

Impact  on   the  NPD   process  1.  Enhanced  cross-functional  coordination  See  Table  2  column  2

2.  Enhanced  data  integration  and  improved  collaboration   tools

3.  Enhanced  product  knowledge  re-use

More  effective  process  management  tools   in   NPD  (i.e.,   workflow  management)

Strategic  effects  1.  Product  and  process  cost  reductions  See  Table  2  column  3

2.  Time-to-market  reductions  and  more  innovative  product  platforms

 Table  4

Factors  that  describe  PLM   impact.

Type  of   effects  Meana S.D.   Median   Factor   loadings

F1  F2  F3

F1.  Perceived  strategic  effects  1.1  –  PLM  generated  a  reduction  in   product

development  costs***0.23  0.79  0  0.76  0.39  0.25

1. 2  –  PLM  favoured  the  development  of 

product  platforms***0.28  0.68  0  0.60  0.26  0.29

F2.  perceived  impact  on

the  NPD   process

2.1  –  PLM  has  favoured  a  more  effective

collaboration  among  employees***0.27  0.75  0  0.21  0.59  0.34

2.2  –  PLM  supported  more  idea  exchange

and  more  cross-functional  coordination

0.02  0.77  0  0.12  0.64  0.49

2.3  –  PLM  encouraged  employees  to  work  in  a

more  structured  way,   following

workflows  rules  for  validating/authorising

changes  to  product  data***

0.64  0.80  1  0.23  0.67  0.34

2.4  –  PLM  favoured  product  carry-over*** 0.31  0.75  0  0.37  0.64  0.32

F3.  Perceived  impact  on

individual  work

3.1  –  PLM  contributed  to  reducing  the  time

required  to  do  many  tasks  of   my job

0.04  1.07  0  0.34  0.32  0.79

3.2  –  Thanks  to  PLM,   I  do  not  have  to  spend

time  ‘re-inventing  the  wheel’  or   re-doing  the

same  task  due  to  product  data  inconsistencies

0.12  0.92  0  0.08  0.39  0.80

3.3  –  Thanks  to  PLM,   I  can  more  easily  develop

new  and  effective  solutions  since  I  can  spend

more  time  on  technical  aspects

0.05  0.76  0  0.45  0.39  0.76

3.4  –  Once  PLM   has  been  implemented,

product  data  are  more  easily  available

and  more  rapidly  retrievable***

0.69  0.89  1  0.47  0.44  0.87

Initial  eigenvalue  3.646  1.266  1.016

Proportion  of   variance  explained  [%]  36.4  12.6  10.2

Cumulative  variance  explained  [%]  36.4  49.1  59.2

Cronbach’s  Alpha  0.60  0.70  0.73

Kaiser–Meyer–Olkin  measure  of   sampling  0.80

a +2 = strongly  agree;  2  = strongly  disagree.***  p-Value < 0.1%  (Student’s  t -test  for  assessing  whether  a   variable’s  mean  significantly  differs  from  0).

 Table  5

Estimated  changes  in   the  allocation   of   working  time  for   PLM  users  after   PLM

implementation.

Increased  estimated  percentage

of   time  spent  doing

No.   obs  Mean  Standard  deviation

Individual  technical  work*** 97  5.14%  12.84%

Internal  meeting  97  0.67%  4.87%

Reporting  96  0.52%  6.80%

Data  retrieval*** 98  5.55%  8.00%

***  p-Value < 0.1%  (Student’s  t -test  for  assessing  whether  a  variable’s  mean

significantly 

differs 

from 

0).

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251  249

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 8/9

favoured  a  reduction  in  time  spent  retrieving  information,   as  well

as  an  increase  in  time  spent  on  individual  technical   work.  The

average  magnitude   of   this   substitution  effect  was  approximately

5%  of   users’  working  time  (a  t -test  underscored   that  these  changes

were   significantly  different  from  zero  at  a  0.1%   p-value).

5.2.  PLM   use  as  a  coordination  tool

The  item  2.4  of   Table  4  shows  a  limited  agreement  among   the

surveyed  users  about   the  perception   of   PLM  as  a  support  to  thecoordination.   This   result  induced   the  idea  of   analyzing  the  role   of 

PLM  in  the  NPD  specifically  in  term  of   coordination.   Obviously,

because  the  data  collected,  this  has  been  made   only   considering

the  collaborative  technologies   that   were  present  in  the  company,

even  is  authors   know   that   more   collaboration  oriented   tools  exist.

Two  dimensions   were  considered   (Table  6): the  frequency   of   use

(F ) and  its  significance  (I )  to  employees  in  allowing  them  to  get

information  they  need.   Mann–Whitney   non-parametric   tests

highlighted  different  coordination   patterns   associated  to  users’

functional   departments,  but  not  to  age.  Users  estimated  that   and

formal   meetings  are  the  most  important   coordination   modes  for

getting  information  relevant  to  their  own  tasks.  In  the  product

design  department   –  although  PLM  is  more   frequently  used  for

coordination   than   in  the  other  departments,   it  is  both   less  used  andless  important   than   direct  verbal  communication   or  exchanges

(paired  samples  t -test  revealed  significant  differences  at  a  1%   p-

value).  Thus,   the  role  of   PLM  in  supporting   knowledge  exchange

does   not  go  through   explicit  communication   but,   rather,  in

allowing  easier  access  to  product  data   and  embedded   tacit

knowledge.

5.3.  Implication  of   outcomes

Some  considerations   can bemade on  theseresults. Thefirstone

is  related to the PLM role  in  individual activities.  The  most

important   benefit   perceived from an  individual   point  of   view   is

thatPLMhelpsa  reduction   in   time  spent  retrieving   information,  as

well 

as 

an 

increasein 

time 

spent on 

individual technicalwork. 

Thisoutcome is  coherent  with   literature [14,16]   and emerges  very

clearly   by thesurvey. An explanation  could  be  that these  benefits

are  short term  perceivable in  an  explicit way.  On  the  contrary,

understand  that  the  own competence in  developing   design

solutions   is   improved  surely requires more  experiential time

besides a  bigger effort  of   internalization.

Another   important  result  is  related  to  the  PLM  role  in

coordination.   In  literature,  PLM  is  described  as  a  facilitating

system  for  coordination   [13,14,21,24,25]  but  users  do  not  perceive

it  in  the  same  way.  Table  4  shows  that   PLM  is  not  commonly

perceived  as  a  support   to  the  coordination   and  Table  6  shows  that

and  formal  meetings  are  considered  more   important  than   PLM  for

coordination.   This  should  be  due  to  the  fact  that   and  formal

meetings 

are 

proved 

procedures.

The  importance   attributed  to  PLM  does  not  fit  to  frequency   in

use  and  in  fact  what   is  really  interesting  is  analyzing  the

frequencies.  The  dichotomy   between  and  informal  communica-

tions   on  one  side,  in  respect  to  PLM  and  formal  meetings  on  the

other   side  is  evident.  It  seems  that  PLM,   obliging  somehow   to

formalize  procedures,  becomes  de  facto  assimilated  in  its  use  to

formal   meetings.  This   induced   formalism  in  the  procedures

actually  persuades  users  to  prefer  for  coordination   informal

mechanisms,  such  as  emails  and  direct  contacts.

This  is  significant,  more   than   even  before,  if   one  considers   theproduct   design  department.   Although   here   PLM  is  more  frequently

used   for  coordination   than   in  the  other  departments,   it  is  both  less

used   and  less  important   than   direct   verbal  communication   or

exchanges.   The  reason  therefore  may  be,  on  the  one hand,   that  PLM

would  not  provide  the  right  technological   solutions  for  coordina-

tion  and  hence  users  prefer  other   tools,  on  the  other  hand,   the

studied  implementations  may  be  immature   so  that  users  have  not

completely   assimilated  PLM  potentialities.

These  results  anyway   stimulate  specific  managerial  implica-

tions.  They   make   evident  that  in  order  to  take  advantage  of   all  the

possible  benefits   that   PLM  can  provide,  technology,   changes   in

business  processes  and  organization  must   be  combined   consis-

tently.  It  is  important  take  into  account   cultural   issues  that   easily

recognize  in  the  PLM  systems  the  data   gathering  facilities,  butimpose  resistance  for  an  effective  use  of   knowledge  sharing  tools.

Rather   than,   it  is  important   keep  in  mind  the  user  inertia  in  the

process  reshaping  and  standardization;   considering   that   users

easily  agree  to  a  better  workflow  management   but  slowly,

familiarize  with  new  coordination   procedures.

6.  Conclusive  remarks

At  the  moment,   there   is  debate   in  literature  on  how  obtain

successful  PLM  implementations.  The  paper  presents  an  investi-

gation  on  PLM  implementation  effects  at  different  levels.  In

particular,  the  paper  has  theorized  and  empirically  validated  the

existence  of   three  distinct  dimensions  (operational,  organizational,

and 

strategic).The  outcomes   generally  confirm  what  is  stated  by  literature.

The  real  contribution   of   the  paper  consists  in  the  way  they   are

obtained.  In  order   to  evaluate  benefits  and  effects  of   a  PLM

implementation,  besides  anecdotal   evidence  on  the  impact   of   IT  on

NPD processes  at  the macro-level,  as usually made  in  literature,  the

paper  proposes  a  micro-level  analysis  on  the  impact   of   the

technology   on  individuals’   job  that   allows  to  analyze  the  linkages

between  the  individual  use,   the  impact  on  the  NPD  process  and  the

strategic  implications.  This   analysis,  by  using  statistical  methods,

allowed  a  deeper   knowledge  of   the  individual  and  organizational

phenomena   linked  to  PLM  implementations.

Two  types  of   contribution   for managers arise  from  these  results.

First,  the  paper  provides  managers  with  a  framework  to  measure

the 

benefits 

produced 

by 

PLM 

technologies. 

Second, 

the 

results

 Table  6

Frequency  and  importance  of   different  coordination  modes.

Exchanges  Formal  meetings  Informal  direct  verbal

communication

PLM

F   I   F   I   F   I F   I 

Product  design  department  1.77  1.67  0.97  1.53  1.39  1.32  0.91  1.22

Other  departments  1.57  1.48  0.98  1.31  1.36  1.26  0.67  1.39

Entire  sample  1.68  1.59  0.98  1.43  1.38  1.29  0.81  1.29

 p-Value  (ANOVA)  5.7%  5.5%  92.5%  5.0%  75.2%  66.6%  9.1%  25.9%

 p-Value  (Mann–Whitney  test)  9.4%  6.6%  92.7%  3.8%  96.2%  79.6%  9.2%  23.4%

F  =  frequency  of   use;  I  =  importance  for  getting  key  information  to  accomplish  own   job  (1 =  low;  3 = high).

M.  Cantamessa  et   al.  /   Computers  in  Industry  63  (2012)   243–251250

7/18/2019 An Empirical Analysis of the PLM Implementation Effects in the Aerospace Industry

http://slidepdf.com/reader/full/an-empirical-analysis-of-the-plm-implementation-effects-in-the-aerospace-industry 9/9