21
Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

  • View
    212

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Amr Aldaiel - Andrew KravitzKatie Noble - Zack Taylor - Alan

Yim

Page 2: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Overview• Objectives and features• Block diagram• Microcontroller and FPGA • Rover assembly and mechanics• Peripherals• Power distribution system• User interface and communication link• Risks and contingency plan• Division of tasks• Time schedule• Cost estimation

Page 3: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Purpose

• Remotely operated rover to be used for purposes including:– Home/Business surveillance– Hazardous environment monitoring– Accessing low-light and small space

environments– Non-intrusive monitoring of disabled

and elderly

Page 4: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Features• Wireless real-time video with

illumination capabilities• Remote manual operation via

computer-based user interface• Temperature sensor• LCD display and keypad

• Wireless network control• Automatic patrol mode• Smoke detector, CO detector

PreliminaryGoals

PotentialAdd-ons

Page 5: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Block Diagram

Page 6: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Microcontroller

• PIC18F6527 Microcontroller (64 Pin)– Contains 5 on Board PWM

• 2 PWM to control vehicle movement• 1 PWM to control camera servo for vertical aim

– Onboard EEPROM, RAM and EnhFl memory– Internal Oscillator to sample wheel position– Max Operating Frequency 40MHz– Upward scalable for additional features

Page 7: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

FPGA or CPLD

• Xilinx XCS10 FPGA– Uses

• On Board Control Pad• On Board LCD display• LED information lights for debugging• On Board Switches and Buttons for

debugging

Page 8: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Rover Assembly and Mechanics• Two independent drive-trains• Each drive-train driven by a different DC

motor• Options

– Treads– Left/Right side wheels linked by belts– Front/Back wheels on axles

• Optical encoder feedback for automated movement (optional)

Page 9: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Peripherals

• Wireless camera• High-intensity illumination

LEDs• Temperature sensor• LCD display and keypad• Night vision camera

capabilities• Smoke detector• Carbon Monoxide detector

PreliminaryGoals

PotentialAdd-ons

Page 10: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Power Distribution SystemTasks:• Design and build a Power Management

Unit (PMU)• Build switching power converters as

needed for different parts of the eyeBOT• Ensure power is adequately distributed

and efficiently managed• Ensure switching converters are

adequately cooled down by heat-sinks and/or fans

Page 11: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Initial PMU Components

• 1st Stage Step-Down Converter• 2nd Stage Step-Up/Down

Converters• Motor Controller and Gate Driver• H-bridge Inverter• Servo Controller

Page 12: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

PMU (Power Management Unit)

Page 13: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Step-Up/Step-Down DC-to-DC Converter• Non-inverting buck-boost Converter

(Could also use a Flyback Converter):

Page 14: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

H-Bridge ConverterH-Bridge Converter

Page 15: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

User Interface

• User will interface with the eyeBOT from a base computer.

• User will control movement of wheels and camera

• Programmed using Visual C#

Page 16: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Communication Link

• Camera will communicate wirelessly directly with the base computer

• All other devices will communicate to the base computer through an RS-232 cable

• Once working, we will upgrade to wireless communication

Page 17: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Risks & Contingency Plan

• Errors on PCB– Wire wrap prototype

• Power issues– Can use tethered AC power

• Visual interface issues– LCD panel rover control

• Wireless interfacing issues– Can use tethered RS-232 interface

Page 18: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Division of Tasks• Amr

– Power distribution system, LCD/Keypad

• Andrew– Microcontroller, FPGA

• Katie– Motors & feedback, peripherals, FPGA

• Zack– User interface, communication link

• Alan– Rover assembly & mechanics, motors

Page 19: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Time Schedule

Page 20: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Cost EstimationComponent Quantity Price Per Price

Variable speed DC motor/Gearbox 2 $65 $130

Chassis 1 $200 $200

Battery/Battery charger 1 $150 $150

Digital thermometer 1 $5 $5

Camera (CCD) 1 $100 $100

High power LEDs 10 $1 $10

FPGA 1 $120 $120

Servo for camera rotation (vertically) 1 $40 $40

Keypad/LCD 1 $25 $25

PIC (Microchip 18F6527) 4 $5 $20

PIC programmer 1 $160 $160

Demo board 1 $60 $60

Printed circuit board 2 $100 $200

RS-232 cables 1 $25 $25

RS-232/RF interface 1 $150 $150

H-bridges 2 $25 $50

Optical feedback encoders 2 $60 $120

Quadrature decoder 2 $40 $80

TOTAL $1,680

Page 21: Amr Aldaiel - Andrew Kravitz Katie Noble - Zack Taylor - Alan Yim

Questions?