13
Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Embed Size (px)

Citation preview

Page 1: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Amplifier Design and Modeling

Doug Bouler: CURENT REU

Dr. Daniel Costinett: Mentor

Final CURENT Presentation

7/18/2014

Knoxville, TN

Page 2: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Outline

2

1. Research goals2. Process

• Class A Amplification• Class AB Amplification• Model and Transfer Characteristic

3. Results 4. Future Work

Page 3: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Research Goals

3

• Design and Model a Class AB amplifier using LT-spice and MATLAB

• Make Class AB amplifier capable of amplifying an audio signal

• Test Magnitude and Phase Response

Page 4: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Class A Amplifiers

4

Vgate-source = Vrail x (R2 / R1 + R2)

R1/R2 = (Vrail - Vgs ) / Vgs

Input Signal

Voltage Rail

Output Signal

Vgs

Page 5: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Class A Amplifiers

5

Data of DC Analysis from 0V to 3V DC to find midpoint of slope

Optimal Vgs

Input Signal

Output Signal

VGS

VDD

Cutoff Region

Page 6: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Class A Amplifiers

6

Vgate-source = Vrail x (R2 / R1 + R2)

Vgate-source = Vrail x (R2 / R1 + R2)

Voltage Loss

Page 7: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Class AB Amplifiers

7

Class A

Class AB

Matching Transistors

Page 8: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Class AB Amplifiers

8

Matching Transistors

Class B Output Stage

Class AB Output Stage

Page 9: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Modeling Process

9

Collect Data from Output of Amplifier Stage

Normalize Data in MATLAB

Graph Input and Output

Voltage Response

Develop Transfer

Characteristic

Model Audio Response

Page 10: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Results

10

This figure shows the frequencies at which the magnitude of the output signal begins to attenuate

4000 Hz

Page 11: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Results

11

• η = Pout / Pin = 44.64%

• A = Vout / Vin = 40 V/V

Page 12: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

Future Work

12

• Research methods of Wireless Power Transfer (WPT)

• Research Specific Absorption Rates (SAR) of WPT for Biomedical applications

• Use knowledge gained from this project to begin designing devices capable of WPT

Page 13: Amplifier Design and Modeling Doug Bouler: CURENT REU Dr. Daniel Costinett: Mentor Final CURENT Presentation 7/18/2014 Knoxville, TN

“This work was supported primarily by the Engineering Research Center 

Program of the National Science Foundation and the Department of Energy 

under NSF Award Number EEC-1041877 and the CURENT Industry Partnership 

Program. "

13

Acknowledgements