12
AME 60634 Int. Heat Trans. D. B. Go 1 Fins: Overview Fins extended surfaces that enhance fluid heat transfer to/from a surface in large part by increasing the effective surface area of the body – combine conduction through the fin and convection to/from the fin the conduction is assumed to be one-dimensional Applications fins are often used to enhance convection when h is small (a gas as the working fluid) fins can also be used to increase the surface area for radiation radiators (cars), heat sinks (PCs), heat exchangers (power plants), nature (stegosaurus) Straight fins of (a) uniform and (b) non-uniform cross sections; (c) annular fin, and (d) pin fin of non- uniform cross section.

AME$60634$$ Int.$HeatTrans.$ Fins: Overviewsst/teaching/AME60634/lectures/AME60634_F13... · AME$60634$$ Int.$HeatTrans.$ D.B.Go 1 Fins: Overview • Fins – extended surfaces that

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    1    

    Fins: Overview •  Fins

    –  extended surfaces that enhance fluid heat transfer to/from a surface in large part by increasing the effective surface area of the body

    –  combine conduction through the fin and convection to/from the fin

    •  the conduction is assumed to be one-dimensional

    •  Applications –  fins are often used to enhance convection when h is

    small (a gas as the working fluid) –  fins can also be used to increase the surface area

    for radiation –  radiators (cars), heat sinks (PCs), heat exchangers

    (power plants), nature (stegosaurus)

    Straight fins of (a) uniform and (b) non-uniform cross sections; (c) annular fin, and (d) pin fin of non-uniform cross section.

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    2    

    Fins: The Fin Equation •  Solutions

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    3    

    x2 d2ydx2

    + x dydx+ m2x2 −ν 2( ) y = 0

    Bessel Equations

    with solution x2 d2ydx2

    + x dydx+ m2x2 −ν 2( ) y = 0

    Form of Bessel equation of order ν

    Jν = Bessel function of first kind of order ν Yν = Bessel function of second kind of order ν

    x2 d2ydx2

    + x dydx− m2x2 −ν 2( ) y = 0 with solution y x( ) =C1Iν mx( )+C2Kν mx( )

    Form of modified Bessel equation of order ν

    Iν = modified Bessel function of first kind of order ν Kν = modified Bessel function of second kind of order ν

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    4    

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    5    

    ddx

    Wν mx( )!" #$=mWν−1 mx( )−

    νxWν mx( ) W = J,Y, I

    −mWν−1 mx( )−νxWν mx( ) W = K

    &

    '((

    )((

    Bessel Functions – Recurrence Relations

    OR

    ddx

    Wν mx( )!" #$=−mWν+1 mx( )+

    νxWν mx( ) W = J,Y,K

    mWν+1 mx( )+νxWν mx( ) W = I

    &

    '((

    )((

    AND

    ddx

    xνWν mx( )!" #$=mxνWν−1 mx( ) W = J,Y, I−mxνWν−1 mx( ) W = K

    &

    '(

    )(

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    6    

    Fins: Fin Performance Parameters •  Fin Efficiency

    –  the ratio of actual amount of heat removed by a fin to the ideal amount of heat removed if the fin was an isothermal body at the base temperature

    •  that is, the ratio the actual heat transfer from the fin to ideal heat transfer from the fin if the fin had no conduction resistance

    •  Fin Effectiveness –  ratio of the fin heat transfer rate to the heat transfer rate that would exist

    without the fin

    •  Fin Resistance

    –  defined using the temperature difference between the base and fluid as the driving potential

    η f ≡qfqf ,max

    =qf

    hAfθb

    ε f ≡qfqf ,max

    =qf

    hAc,bθb=Rt,bRt, f

    Rt, f ≡θbqf

    =1

    hAfη f

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    7    

    Fins: Efficiency

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    8    

    Fins: Efficiency

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    9    

    Fins: Arrays •  Arrays

    –  total surface area

    –  total heat rate

    –  overall surface efficiency

    –  overall surface resistance

    At = NAf + Ab

    qt = Nη f hAfθb + hAbθb =ηohAtθb =θbRt,o

    Rt,o =θbqt

    =1

    hAtηo

    N ≡ number of finsAb ≡ exposed base surface (prime surface)

    ηo =1−NAfAt

    1−η f( )

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    10    

    Fins: Thermal Circuit •  Equivalent Thermal Circuit

    •  Effect of Surface Contact Resistance

    Rt,o =1

    hAtηo(c )

    ηo(c ) =1−NAfAt

    1−η fC1

    $

    % &

    '

    ( )

    C1 =1−η f hAf$ $ R t,c

    Ac,b

    %

    & '

    (

    ) *

    qt =ηo(c )hAfθb =θbRt,o(c )

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    11    

    sinh Function

  • AME  60634    Int.  Heat  Trans.  

    D.  B.  Go    12    

    Fourier Series Consider a set of eigenfunctions ϕn that are orthogonal, where orthogonality is defined as

    φm x( )φn x( )dx = 0a

    b

    ∫ for m ≠ n

    An arbitrary function f(x) can be expanded as series of these orthogonal eigenfunctions

    f x( ) = A0φ0 x( )+ A1φ1 x( )+ A2φ2 x( )+... or f x( ) = Anφn x( )n=0

    ∑Due to orthogonality, we thus know

    φn x( ) f x( )dxa

    b

    ∫ = φn x( ) Anφn x( )n=0

    ∑ dxa

    b

    ∫ = φn x( )Anφn x( )dxa

    b

    ∫all other ϕnAmϕm integrate to zero because m ≠ n

    Thus, the constants in the Fourier series are

    φn x( ) f x( )dxa

    b

    ∫ = An φn2 x( )a

    b

    ∫ An =φn x( ) f x( )dx

    a

    b

    φn2 x( )

    a

    b