28
•1 AME 513 Principles of Combustion Paul Ronney Fall 2012 2 AME 513 - Fall 2012 - Lecture 1 - Introduction Administrative details Instructor: Prof. Paul Ronney Office: OHE 430J Phone: (213) 740-0490 Email: [email protected] Website: http://ronney.usc.edu Office hours: Mondays 1 pm – 4 pm Teaching assistant: Ning Liu Office: RRB 207; Lab: RRB 111 Phone: (213) 740-5361 Email: [email protected] Office hours: Tuesdays 1 pm – 4 pm Grader: Thada Suksila Email: [email protected] Grading: 30% homework, 30% midterm, 40% final 7 homework assignments; 10 points per day late penalty; lowest HW grade dropped

AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

  • Upload
    vandien

  • View
    221

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 1

AME 513

Principles of Combustion"

Paul Ronney!Fall 2012!

2 AME 513 - Fall 2012 - Lecture 1 - Introduction

Administrative details"  Instructor:  Prof. Paul Ronney!

Office: OHE 430J!Phone: (213) 740-0490!Email:  [email protected]!Website:  http://ronney.usc.edu!Office hours: Mondays 1 pm – 4 pm!

  Teaching assistant:  Ning Liu!Office: RRB 207; Lab: RRB 111!Phone: (213) 740-5361 !Email:  [email protected]!Office hours: Tuesdays 1 pm – 4 pm!

  Grader:  Thada Suksila!Email:  [email protected]!

  Grading: 30% homework, 30% midterm, 40% final!  7 homework assignments; 10 points per day late penalty;

lowest HW grade dropped!

Page 2: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 2

3 AME 513 - Fall 2012 - Lecture 1 - Introduction

Administrative details"  References!

  PDRʼs lecture notes!  Prof. Egolfopoulosʼs lecture notes (to be distributed)!  Steven R. Turns, An Introduction to Combustion: Concept and

Applications, 3rd Edition, 2012http://www.mhprofessional.com/product.php?isbn=0073380199!

  Optional supplemental material!  Combustion Theory, Forman A Williams, 2nd Edition, Addison-

Wesley, 1985!  Combustion, Flames, and Explosions of Gases, Bernard Lewis and

Guenther von Elbe, 3rd Edition, Academic Press, 1987!  Combustion, Irvin Glassman and Richard Yetter, 4th Edition,

Academic Press, 2008!

4 AME 513 - Fall 2012 - Lecture 1 - Introduction

Tentative course outline"  Introduction (1 week)!  Building blocks of combustion!

  Chemical thermodynamics (2 weeks)!  Chemical kinetics (3 weeks)!  Transport phenomena (1 week)!

  Combining the building blocks!  Conservation equations (1 week)!  Premixed flames (3 weeks)!  Non-Premixed flames (3 weeks)!

Page 3: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 3

5 AME 513 - Fall 2012 - Lecture 1 - Introduction

Helpful handy hints"  Download lectures from website before class!  Each lecture includes!

  Outline!  Examples!  Summary!… make use of these resources!

  Bringing your laptop allows you to add notes & download files from course website as necessary!

  If you don’t have Powerpoint, you can download a free powerpoint viewer from Microsoft’s website!

  … but if you don’t have the full Powerpoint and Excel, you won’t be able to open the imbedded Excel spreadsheets!

  Please ask questions in class - the goal of the lecture is to maintain a 2-way “Socratic” dialogue on the subject of the lecture!

AME 513

Principles of Combustion"

Lecture 1!Introduction: Why combustion?!

Page 4: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 4

7 AME 513 - Fall 2012 - Lecture 1 - Introduction

Outline"  Why study combustion?   What do we want to know?   Types of combustion processes

  Premixed   Nonpremixed

 Alternatives to combustion for transportation vehicles  Brief history of internal combustion engines   “Bonus” material (on your own…)

  Review of thermodynamics   Engineering scrutiny

8 AME 513 - Fall 2012 - Lecture 1 - Introduction

Why study combustion?"  > 80% of world energy production results from combustion

of fossil fuels   Energy sector accounts for 9% of US Gross Domestic

Product   Our continuing habit of burning things and our quest to find

more things to burn has resulted in   Economic booms and busts   Political and military conflicts   Global warming (or the need to deny its existence)   Human health issues

Page 5: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 5

9 AME 513 - Fall 2012 - Lecture 1 - Introduction

US energy flow, 2010, units 1015 BTU/yr"

Each 1015 BTU/yr = 33.4 gigawatts

http://www.eia.gov/totalenergy/data/annual/diagram1.cfm

10 AME 513 - Fall 2012 - Lecture 1 - Introduction

What do we do with combustion?"  Power generation (coal, natural gas)   Transportation (land, air, sea vehicles)   Weapons (rapid production of high-pressure gas)   Heating   Lighting   Cooking (1/3 of the world’s population still uses biomass-

fueled open fires)   Hazardous waste & chemical warfare agent destruction   Production of new materials, e.g. nano-materials   (Future?) Portable power, e.g. battery replacement   Unintended / undesired consequences

  Fires and explosions (residential, urban, wildland, industrial)   Pollutants – NOx (brown skies, acid rain), CO (poisonous),

Unburned HydroCarbons (UHCs, photochemical smog), formaldehyde, particulates, SOx

  Global warming from CO2 & other products

Page 6: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 6

11 AME 513 - Fall 2012 - Lecture 1 - Introduction

What do we want to know?"  From combustion device

  Power (thermal, electrical, shaft, propulsive)   Efficiency (% fuel burned, % fuel converted to power)   Emissions

  From combustion process itself   Rates of consumption

»  Reactants »  Intermediates

  Rates of formation »  Intermediates »  Products

  Global properties » Rates of flame propagation » Rates of heat generation (more precisely, rate of conversion of

chemical enthalpy to thermal enthalpy) » Temperatures » Pressures

12 AME 513 - Fall 2012 - Lecture 1 - Introduction

Why do we need to study combustion?"  Chemical thermodynamics only tells us the end states - what

happens if we wait “forever and a day” for chemical reaction to occur

  We need to know how fast reactions occur   How fast depends on both the inherent rates of reaction and

the rates of heat and mass transport to the reaction zone(s)   Chemical reactions + heat & mass transport = combustion   Some reactions occur too slowly to be observed, e.g. 2 NO → N2 + O2 has an adiabatic flame temperature of 2650K but no one has

ever made a flame with NO because reaction rates are too slow!   Chemical reaction leads to gradients in temperature,

pressure and species concentration   Results in transport of energy, momentum, mass

  Combustion is the study of the coupling between thermodynamics, chemical reaction and transport processes

Page 7: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 7

13 AME 513 - Fall 2012 - Lecture 1 - Introduction

Types of combustion"  Premixed - reactants are intimately mixed on the molecular

scale before combustion is initiated; several flavors   Deflagration   Detonation   Homogeneous reaction

  Nonpremixed - reactants mix only at the time of combustion - have to mix first then burn; several flavors   Gas jet (Bic lighter)   Liquid fuel droplet   Liquid fuel jet (e.g. Kuwait oil fire, candle, Diesel engine)   Solid (e.g. coal particle, wood)

Type! Chemical reaction!

Heat / mass transport!

Momentum transport!

Thermo-dynamics!

Deflagration" ✔" ✔" ✗" ✔"

Detonation" ✗" ✗" ✔" ✔"

Homogeneous reaction" ✔" ✗" ✗" ✔"

Nonpremixed flames" ✗" ✔" ✗" ✗

14 AME 513 - Fall 2012 - Lecture 1 - Introduction

Deflagrations"  Subsonic propagating front sustained by conduction of heat from

the hot (burned) gases to the cold (unburned) gases which raises the temperature enough that chemical reaction can occur; since chemical reaction rates are very sensitive to temperature, most of the reaction is concentrated in a thin zone near the high-temperature side!

  May be laminar or turbulent!  Temperature increases in “convection-diffusion zone” or “preheat

zone” ahead of reaction zone, even though no heat release occurs there, due to balance between convection & diffusion!

  Reactant concentration decreases in convection-diffusion zone, even though no chemical reaction occurs there, for the same reason!

  How can we have reaction at the reaction zone even though reactant concentration is low there? (See diagram…) Because reaction rate is much more sensitive to temperature than reactant concentration, so benefit of high T outweighs penalty of low concentration!

Page 8: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 8

15 AME 513 - Fall 2012 - Lecture 1 - Introduction

Turbulent premixed flame experiment in a fan-stirred chamber (http://www.mech-eng.leeds.ac.uk/res-group/combustion/activities/Bomb.htm)"

Reaction zone

TemperatureReactant

concentration

Productconcentration

2000K

300K

! ≈ "/SL = 0.3 - 6 mm

Distance from reaction zone

Convection-diffusion zone

Direction of propagationSpeed relative to unburned gas = SL

Schematic of deflagration "

Flame thickness (δ) ~ α/SL"(α = thermal diffusivity)"

16 AME 513 - Fall 2012 - Lecture 1 - Introduction

Premixed flames - detonation"  Supersonic propagating front sustained by heating via shock wave!

  After shock front, need time (thus distance = time x velocity) before reaction starts to occur (“induction zone”)!

  After induction zone, chemical reaction & heat release occur!  Pressure & temperature behavior coupled strongly with supersonic/

subsonic gasdynamics!  Ideally only M3 = 1 “Chapman-Jouget detonation” is stable !

! ! !! !(M = Mach number = Vc; V = velocity, !! ! !! !! c = sound speed = (γRT)1/2 for ideal gas)!

!

CJ detonation :

M1 = 1+H(" 2 #1)

2"$

% &

'

( )

1/ 2

+H(" 2 #1)

2"$

% &

'

( )

1/ 2

H =qRT1

(heat release parameter)

q =CP (T3t #T2t ) = fQR

M1

ShockPressure

Temperature

Inductionzone

Heat releasezone

M > 1M < 1M = 1

Pt decreases across shockTt constant across shock

Pt decreases in heat release zoneTt increases in heat release zone

123

Page 9: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 9

17 AME 513 - Fall 2012 - Lecture 1 - Introduction

Premixed flames - homogeneous reaction"  Model for knock in premixed-charge engines!  Fixed mass (control mass) with uniform (in space) T, P and

composition!  No “propagation” in space but propagation in time!  In laboratory, can heat the chamber to a certain T and measure reaction

time, or compress mixture (increases P & T, thus reaction rate) will initiate reaction!

Reactant concentrationTemperature

Time

18 AME 513 - Fall 2012 - Lecture 1 - Introduction

Candle Forest fire

Kuwait Oil fire Diesel engine

“Non-premixed” or “diffusion” flames"  Reaction zone where fuel & O2 fluxes in stoichiometric proportion   Generally “mixed is burned” - mixing slower than chemical reaction   No inherent propagation rate (flame location determined by

stoichiometric location)   No inherent thickness (δ = mixing layer thickness ~ (α/Σ)1/2)

(Σ = strain rate)   Unlike premixed flames with characteristic propagation rate SL and

thickness δ ~ α/SL that are almost independent of Σ

Page 10: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 10

19 AME 513 - Fall 2012 - Lecture 1 - Introduction

Reaction zone

Temperature Fuelconcentration

Productconcentration

2000K

300K

! ≈ ("/#)1/2

Distance from reaction zone Convection-diffusion zone

Oxygenconcentration

300K

δ ≈ (ατ)1/2

20 AME 513 - Fall 2012 - Lecture 1 - Introduction

Diesel engine combustion" Two extremes!

 Droplet combustion - vaporization of droplets is slow, so droplets burn as individuals!

 Gas-jet flame - vaporization of droplets is so fast, there is effectively a jet of fuel vapor rather than individual droplets!

 Reality is in between, but in Diesels usually closer to the gas jet “with extras” – regions of premixed combustion!

Flynn, P.F, R.P. Durrett, G.L. Hunter, A.O. zur Loye, O.C. Akinyemi, J.E. Dec, C.K. Westbrook, SAE Paper No. 1999-01-0509.

Page 11: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 11

21

Alternative #1 - external combustion"  Examples: steam engine, Stirling cycle engine!

  Use any fuel as the heat source!  Use any working fluid (high γ, e.g. helium, provides better efficiency)!

  Heat transfer, gasoline engine!  Heat transfer per unit area (q/A) = k(dT/dx)!  Turbulent mixture inside engine: k ≈ 100 kno turbulence !! !≈ 2.5 W/mK!

  dT/dx ≈ ΔT/Δx ≈ 1500K / 0.02 m!  q/A ≈ 187,500 W/m2!

  Combustion: q/A = ρYfQRST = (10 kg/m3) x 0.067 x (4.5 x 107 J/kg) x 2 m/s = 60,300,000 W/m2 - 321x higher!!

  CONCLUSION: HEAT TRANSFER IS TOO SLOW!!!!  That’s why 10 large gas turbine engines ≈ large (1 gigawatt) coal-

fueled electric power plant!

k = gas thermal conductivity, T = temperature, x = distance, ρ = density, Yf = fuel mass fraction, QR = fuel heating value, ST = turbulent flame speed in engine !

AME 513 - Fall 2012 - Lecture 1 - Introduction

22

Alternative #2 - Electric Vehicles (EVs)"  Why not generate electricity in a large central power plant

and distribute to charge batteries to power electric motors?!  Chevy Volt Li-ion battery – 10.3 kW-hours usable capacity,

435 pounds = 1.88 x 105 J/kg !  Gasoline (and other hydrocarbons): 4.3 x 107 J/kg!  Even at 30% efficiency (gasoline) vs. 90% (batteries),

gasoline has 76 times higher energy/weight than batteries! !  1 gallon of gasoline ≈ 457 pounds of batteries for same

energy delivered to the wheels!  Other issues with electric vehicles!

  "Zero emissions” ??? - EVs export pollution!  50% of US electricity is by produced via coal at 40%

efficiency – virtually no reduction in CO2 emissions!  Battery replacement cost ≈ $8000 ≈ 80,000 miles of gasoline

driving (@ $3.50/gal, 35 mpg)!  Environmental cost of battery materials!  Possible advantage: make smaller, lighter, more streamlined

cars acceptable to consumers!AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 12: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 12

23

“Zero emission” electric vehicles"

AME 513 - Fall 2012 - Lecture 1 - Introduction

24

  Ballard HY-80 “Fuel cell engine” !!(power/wt = 0.19 hp/lb)!

  48% efficient (fuel to electricity)!  MUST use hydrogen (from where? !!H2 is an energy carrier, not a fuel)!

  Requires large amounts of platinum !!catalyst - extremely expensive!

  Does NOT include electric drive system !!(≈ 0.40 hp/lb thus fuel cell + motor !!at ≈ 90% electrical to mechanical efficiency)!

  Overall system: 0.13 hp/lb at 43% efficiency (hydrogen)!  Conventional engine: ≈ 0.5 hp/lb at 30% efficiency (gasoline)!  Conclusion: fuel cell engines are only marginally more efficient, much

heavier for the same power, and require hydrogen which is very difficult and potentially dangerous to store on a vehicle!

  Prediction: even if we had an unlimited free source of hydrogen and a perfect way of storing it on a vehicle, we would still burn it, not use it in a fuel cell"

Alternative #3 - Hydrogen fuel cell"

AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 13: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 13

25

Hydrogen storage" Hydrogen is a great fuel!

 High energy density (1.2 x 108 J/kg, ≈ 3x hydrocarbons)! Much faster reaction rates than hydrocarbons (≈ 10 - 100x at same T)! Excellent electrochemical properties in fuel cells!

 But how to store it???! Cryogenic (very cold, -424˚F) liquid, low density (14x lower than water)! Compressed gas: weight of tank ≈ 15x greater than weight of fuel! Borohydride solutions!

»  NaBH4 + 2H2O → NaBO2 (Borax) + 3H2!»  (mass solution)/(mass fuel) ≈ 9.25 !

 Palladium - Pd/H = 164 by weight! Carbon nanotubes - many claims, few facts…!  Long-chain hydrocarbon (CH2)x: (Mass C)/(mass H) = 6, plus C atoms

add 94.1 kcal of energy release to 57.8 for H2!! MORAL: By far the best way to store hydrogen is to attach it to carbon

atoms and make hydrocarbons, even if you’re not going to use the carbon as fuel!!

AME 513 - Fall 2012 - Lecture 1 - Introduction

26

Alternative #4 - solar"  Arizona, high noon, mid summer: solar flux ≈ 1000 W/m2!  Gasoline engine, 20 mi/gal, 60 mi/hr, thermal power = (60 mi/hr / 20

mi/gal) x (6 lb/gal) x (kg / 2.2 lb) x (4.3 x 107 J/kg) x (hr / 3600 sec) = 97 kilowatts !

  Need ≈ 100 m2 collector ≈ 32 ft x 32 ft - lots of air drag, what about underpasses, nighttime, bad weather, northern/southern latitudes, etc.?!

Do you want to drive one of these every day (but never at night?) AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 14: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 14

27

Alternative #4 - solar"  Ivanpah solar thermal electric generating station!  400 MW maximum power, ≈ 48 MW annual average (small compared

to coal or nuclear, 1,000 MW)!  3 towers, each 460 ft tall!  6 mi2, 17,000 mirrors !  $2.2 billion = $46/watt vs. $2/watt for conventional coal or natural

gas power plants !

AME 513 - Fall 2012 - Lecture 1 - Introduction

28

Alternative #5 - biofuels"  Essentially solar energy – “free” (?)!  Barely energy-positive; requires energy for planting, fertilizing,

harvesting, fermenting, distilling!  Very land-inefficient compared to other forms of solar energy –

life forms convert < 1% of sunʼs energy into combustible material!  Currently 3 subsidies on US bio-ethanol vehicle fuel: !

  45¢/gal (≈ 67¢/gal gasoline) !! tax credit to refines!  54¢/gal tariff on sugar-based !! ethanol imports!  Requirement for 10% ethanol !! in gasoline!

  Displaces other plants – not !!necessarily “carbon neutral”!

  Uses other resources - arable !!land, water – that might !!otherwise be used to grow food!!or provide biodiversity (e.g. in !!tropical rain forests)!

AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 15: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 15

29

Alternative #6 - nuclear"  High energy density

  U235 fission: 8.2 x 1013 J/kg ≈ 2 million x hydrocarbons!   Radioactive decay much less, but still much higher than

hydrocarbon fuel  Carbon neutral  Not practical for vehicles but…

Ford Nucleon concept car (1958)

AME 513 - Fall 2012 - Lecture 1 - Introduction

30

Edison2 vehicle"  http://www.edison2.com!  Won X-prize competition for 4-passenger vehicles (110 MPG)!  Key features - Very low weight (830 lb), very aerodynamic,

very low rolling resistance!  Engine: 1 cylinder, 40 hp, 250 cc, turbocharged ICE!  Ethanol fuel (high octane rating, allows high compression

ratio thus high efficiency)!  Rear engine placement reduces air drag due to radiator!  Beat electric vehicles despite unfair advantage in US EPA

MPG equivalency: 33.7 kW-hr electrical energy = 1 gal, same as raw energy content !!of gasoline (44 x 106 !!MJ/kg) – doesnʼt ""account for fuel ""burned to create ""the electrical energy!"

AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 16: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 16

31

History of automotive engines"  1859 - oil discovered at Drake’s

Well, Titusville, Pennsylvania (20 barrels per day) - 40 year supply!

  1876 - premixed-charge 4-stroke engine – Nikolaus Otto!  1st “practical” ICE!  4-stroke, overhead valve,

crankshaft!  Power: 2 hp; Weight: 1250

pounds; fuel: coal gas (CO + H2)!  Comp. ratio = 4 (knock limited),

14% efficiency (theory 38%)!  Today CR = 9 (still knock limited),

30% efficiency (theory 55%)!  In 136 years, the main efficiency

improvement is due to better fuel!

AME 513 - Fall 2012 - Lecture 1 - Introduction

32

History of automotive engines"  1897 - nonpremixed-charge engine - Diesel

- higher efficiency due to! Higher CR (no knocking)! No throttling loss - use fuel/air ratio to

control power!  1901 - Spindletop Dome, east Texas -

Lucas #1 gusher produces 100,000 barrels per day - ensures that “2nd Industrial Revolution” will be fueled by oil, not coal or wood - 40 year supply!

  1921 - tetraethyl lead anti-knock additive discovered at General Motors!  Enabled higher CR (thus more power,

better efficiency) in Otto-type engines!

AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 17: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 17

33

History of automotive engines"  1938 – oil discovered at Dammam, Saudi Arabia (40 year

supply)!  1952 - A. J. Haagen-Smit, Caltech!

!

NO + UHC + O2 + sunlight → NO2 + O3! (from exhaust) (brown) (irritating)!

!

! !(UHC = unburned hydrocarbons)!  1960s - emissions regulations!

  Detroit won’t believe it!  Initial stop-gap measures - lean mixture, EGR, retard spark!  Poor performance & fuel economy!

  1973 & 1979 - energy crises due to Middle East turmoil!  Detroit takes a bath, Asian and European imports increase!

AME 513 - Fall 2012 - Lecture 1 - Introduction

34

History of automotive engines"  1975 - Catalytic converters, unleaded fuel!

  More “aromatics” (e.g., benzene) in gasoline - high octane but carcinogenic, soot-producing!

  1980s - Microcomputer control of engines!  Tailor operation for best emissions, efficiency, ...!

  1990s - Reformulated gasoline!  Reduced need for aromatics, cleaner (?)!  ... but higher cost, lower miles per gallon!  Then we found that MTBE pollutes groundwater!!!!  Alternative “oxygenated” fuel additive - ethanol - very attractive

to powerful senators from farm states!

AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 18: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 18

35

History of automotive engines"  2000’s - hybrid vehicles!

  Use small gasoline engine operating at maximum power (most efficient way to operate) or turned off if not needed!

  Use generator/batteries/motors to make/store/use surplus power from gasoline engine!

  Plug-in hybrid: half-way between conventional hybrid and electric vehicle!

  2 benefits to car manufacturers: win-win!»  Consumers will pay a premium for hybrids!»  Helps to meet fleet-average standards for efficiency & emissions!

  Do fuel savings justify extra cost? Consumer Reports study: only 1 of 7 hybrids tested showed a cost benefit over a 5 year ownership if tax incentives were removed!»  Dolly Parton: “You wouldnʼt believe how much it costs to look

this cheap”!»  Paul Ronney: “You wouldn’t believe how much energy some

people spend to save a little fuel”   2010 and beyond

  ???!AME 513 - Fall 2012 - Lecture 1 - Introduction

36

Practical alternatives to the status quo"  Conservation!!  Combined cycles: use hot exhaust from internal combustion

engine to heat water for conventional steam cycle - can achieve > 60% efficiency but not practical for vehicles - too much added volume & weight!

  Natural gas!  4x cheaper than electricity, 2x cheaper than gasoline or diesel for

same energy!  Somewhat cleaner than gasoline or diesel, but no environmental

silver bullet!  Low energy storage density - 4x lower than gasoline or diesel!

AME 513 - Fall 2012 - Lecture 1 - Introduction

Page 19: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 19

37

Practical alternatives to the status quo"  Fischer-Tropsch fuels - liquid hydrocarbons from coal or

natural gas   Coal or NG + O2 CO + H2 liquid fuel   Competitive with ≈ $100/barrel oil   Cleaner than gasoline or diesel   … but using coal increases greenhouse gases! Coal : oil : natural gas = 2 : 1.5 : 1   Could use biomass (e.g. agricultural waste) instead of coal or

natural gas as “energy feedstock”   But really, there is no way to decide what the next step is until

it is decided whether there will be a tax on CO2 emissions   Personal opinion: most important problems are (in order of

priority)   Global warming   Energy independence   Environment

AME 513 - Fall 2012 - Lecture 1 - Introduction

38 AME 513 - Fall 2012 - Lecture 1 - Introduction

Summary - Lecture 1"  Combustion is the interaction of thermodynamics, chemical

reaction and heat/mass/momentum transport, but which is/are most important depends on the situation

  Combustion is ubiquitous in our everyday lives and will continue to be for our lifetimes

  Many advantages of fossil fuels over other energy sources   Cheap (?), plentiful (?), clean (?)   Energy/weight of fuel itself   Power/weight of engines   Materials costs (e.g. compared to fuel cells)

  The most important distinction between flames is premixed vs. non-premixed, i.e. whether the reactants are mixed before combustion

Page 20: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 20

39

Discussion point"

Our current energy economy, based primarily on fossil fuel usage, evolved because it was the cheapest system. Is it possible that itʼs also the most environmentally responsible (or “least environmentally irresponsible”) system?!

AME 513 - Fall 2012 - Lecture 1 - Introduction

40 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermodynamics (1)" 1st Law of Thermodynamics (conservation of

energy) - “you can’t win”! 2nd Law of Thermodynamics - “you can’t break

even”! Equation of state (usually ideal gas law) - “you

can’t even choose the game”!

Page 21: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 21

41 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermodynamics (2)"

  1st Law of Thermodynamics for a control mass, i.e. a fixed mass of material (but generally changing volume)!! !dE = δQ - δW !E = energy contained by the mass - a property of the mass!Q = heat transfer to the mass!W = work transfer to or from the mass (see below)!d vs. δ = path-independent vs. path-dependent quantity!  Control mass form useful for fixed mass, e.g. gas in a piston/

cylinder!  Each term has units of Joules!  Work transfer is generally defined as positive if out of the control

mass, in which case - sign applies, i.e. dE = δQ - δW; If work is defined as positive into system then dE = δQ + δW!

  Heat and work are NOT properties of the mass, they are energy transfers to/from the mass; a mass does not contain heat or work but it does contain energy (E)!

42 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (3) - heat & work"  Heat and work transfer depend on the path, but the internal

energy of a substance at a given state doesn’t depend on how you got to that state; for example, simple compressible substances exchange work with their surroundings according to δW = + PdV (+ if work is defined as positive out of control mass)!

  For example in the figure below, paths A & B have different ∫ PdV and thus different work transfers, even though the initial state 1 and final state 2 are the same for both!!!

P

V

1

2A

B

Page 22: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 22

43 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (4) - heat & work"  What is the difference between heat and work? Why do we need to

consider them separately?!  Heat transfer is disorganized energy transfer on the microscopic

(molecular) scale and has entropy transfer associated with it!  Work transfer is organized energy transfer which may be at either the

microscopic scale or macroscopic scale and has no entropy transfer associated with it!

  The energy of the substance (E) consists of !  Macroscopic kinetic energy (KE = 1/2 mV2)!  Macroscopic potential energy (PE = mgz)!  Microscopic internal energy (U) (which consists of both kinetic

(thermal) and potential (chemical bonding) energy, but we lump them together since we can’t see it them separately, only their effect at macroscopic scales!

  If PE is due to elevation change (z) and work transfer is only PdV work, then the first law can be written as!! !dU + mVdV + mgdz = δQ - PdV!

!

V = velocity, V = volume, m = mass, g = gravity!

44 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (5) - types of energy"

Potential energy (PE)

Kinetic energy (KE)

Macroscopic

Microscopic (U)Lump KE and PE together

Energy contained by a substance (E)

Heat transfer (Q)Disorganized

Has associated entropy transferMicroscopic only

Work transfer (W)Organized

Has NO associated entropy transferMicroscopic or macroscopic

Energy transfers to/from a substance

Energy

Page 23: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 23

45 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (6) - 1st law for CV"  1st Law of Thermodynamics for a control volume, a fixed volume

in space that may have mass flowing in or out (opposite of control mass, which has fixed mass but possibly changing volume):!

  E = energy within control volume = U + KE + PE as before!  = rates of heat & work transfer in or out (Watts)!  Subscript “in” refers to conditions at inlet(s) of mass, “out” to outlet

(s) of mass!  = mass flow rate in or out of the control volume!  h ≡ u + Pv = enthalpy!  Note h, u & v are lower case, i.e. per unit mass; h = H/M, u = U/M, V =

v/M, etc.; upper case means total for all the mass (not per unit mass)!  v = velocity, thus v2/2 is the KE term!  g = acceleration of gravity, z = elevation at inlet or outlet, thus gz is

the PE term!  Control volume form useful for fixed volume device, e.g. gas

turbine!  Most commonly written as a rate equation (as above)!

)2()2(22

outout

outoutinin

inin gzvhmgzvhmWQdtdE

++!+++!= !!!!

!

˙ Q , ˙ W

!

˙ m

46 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (7) - 1st law for CV"  Note that the Control Volume (CV) form of the 1st Law looks

almost the same as the Control Mass (CM) form with the addition of (h+ v2/2 + gz) terms that represent the flux of energy in/out of the CV that is carried with the mass flowing in/out of the CV!

  The only difference between the CV and CM forms that isn’t “obvious” is the replacement of u (internal energy) with h = u + Pv!

  Where did the extra Pv terms come from? The flow work needed to push mass into the CV or that you get back when mass leaves the CV!

!

˙ m

Page 24: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 24

47 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (8) - steady flow"  If the system is steady then by definition!

  d[ ]/dt = 0 for all [properties], i.e. ECV, MCV, h, v, z!  All fluxes, i.e. are constant (not necessarily zero)!  Sum of mass flows in = sum of all mass flows out (or

for a single-inlet, single-outlet system) (if we didn’t have this condition then the mass of the system, which is a property of the system, would not be constant)!

  In this case (steady-state, steady flow) the 1st Law for a CV is!

!

0 = ˙ Q " ˙ W + ˙ m (hin " hout ) + vin2

2 " vout2

2#

$ %

&

' ( + (gzin " gzout )

)

* +

,

- .

!

˙ m in = ˙ m out

!

˙ m , ˙ Q , ˙ W

48 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (9) - conservation of mass"  For a control mass!!m = mass of control mass = constant (wasn’t that easy?)!

  For a control volume!

!(what accumulates = what goes in - what goes out)!!

!!

dmCV

dt= ˙ m i

all inlets" # ˙ m j

all outlets"

Page 25: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 25

49 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermodynamics (10) - 2nd law"  The 2nd Law of Thermdynamics states!

The entropy (S) of an isolated system always increases or remains the same!

  By combining !  2nd law!  1st Law!  State postulate - for a system of fixed chemical composition, 2

independent properties completely specify the state of the system!  The principle that entropy is a property of the system, so is additive!

“it can be shown” that !Tds = du + Pdv!Tds = dh - vdP!

!These are called the Gibbs equations, which relate entropy to other thermodynamic properties (e.g. u, P, v, h, T)!!

50 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermodynamics (11) - 2nd law"  From the Gibbs equations, “it can be shown” for a control mass!

= sign applies for a reversible (idealized; best possible) process!> applies if irreversible (reality)!T is the temperature on the control mass at the location where the heat is

transferred to/from the CM!  And for a control volume!

!SCV is the entropy of the control volume; if steady, dSCV/dt = 0!  These equations are the primary way we apply the 2nd law to the

energy conversion systems discussed in this class!  Work doesn’t appear anywhere near the 2nd law - why? Because

there is NO entropy transfer associated with work transfer, whereas there IS entropy transfer associated with heat transfer!

!

dS " #QT

TQ

smsmdtdS

outoutininCV

!!! !"+

Page 26: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 26

51 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (12) - equations of state"  We’ll only consider 2 equations of state in this course!

  Ideal gas - P = ρRT (P = pressure, ρ = 1/v = density, T = temperature (absolute), R = gas constant = ℜ/Mmix, ℜ = universal gas constant (8.314 J/mole-K), Mmix = molecular weight of gas mixture)!

  Incompressible fluid - ρ = constant!  Definition of specific heats (any substance)!

  For ideal gases - h = h(T) and u = u(T) only (h and u depend only on temperature, not pressure, volume, etc.), thus for ideal gases!

  From dh = CPdT, du = CvdT, the Gibbs equations and P = ρRT we can show that (again for an ideal gas only)!

!

CP "#h#T$

% &

'

( ) P

;CV "#u#T$

% &

'

( ) V

;* " CP

CV

!

CP = CV + R

!

CP =dhdT;CV =

dudT;h = u + Pv = u + RT; dh

dT=dudT

+ R"

!

S2 " S1 = CP lnT2T1

#

$ %

&

' ( " R ln

P2P1

#

$ %

&

' ( = CV ln

T2T1

#

$ %

&

' ( + R ln

V2V1

#

$ %

&

' ( = CV ln

P2P1

#

$ %

&

' ( + CP ln

V2V1

#

$ %

&

' (

52 AME 513 - Fall 2012 - Lecture 1 - Introduction

Review of thermo (13) - isentropic relations"  Recall from the 2nd Law, dS ≥ δQ/T!  If a process is reversible dS = δQ/T, and if furthermore the process

is adiabatic δQ = 0 thus dS = 0 or S2 - S1 = 0 (isentropic process) then the previous relations for S2 - S1 can be written as !

!Isentropic processes are our favorite model for compression and expansion in engines!

  But remember these relations are valid only for !  Ideal gas!  Constant specific heats (CP, CV) (note that since for an ideal gas CP =

Cv + R and R is a constant, if any of CP, Cv and γ = CP/Cv are constant then the other two must be constant also)!

  Reversible adiabatic (thus isentropic) process!(Still very useful despite all these restrictions…)!

!

T2

T1

"

# $

%

& ' =

P2

P1

"

# $

%

& '

( )1(

; T2

T1

"

# $

%

& ' =

v1

v2

"

# $

%

& '

( )1

; P2

P1

"

# $

%

& ' =

v1

v2

"

# $

%

& '

(

Page 27: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 27

53 AME 513 - Fall 2012 - Lecture 1 - Introduction

“Engineering scrutiny” 1. Smoke test"See http://ronney.usc.edu/AME101F011/AME101-F11-LectureNotes.pdf

(Chapters 2 & 3) for more details! !

  Equivalent in building electronics: turn the power switch on and see if it smokes!

  For analysis: check the units - this will catch 90% of your mistakes !

  Example: I just derived the ideal gas law as Pv = R/T, obviously units are wrong!

  Other rules!  Anything inside a square root, cube root, etc. must have units

that is a square (e.g. m2/sec2) or cube, etc.!  Anything inside a log, exponent, trigonometric function, etc.,

must be dimensionless!  Any two quantities that are added together must have the

same units!

54 AME 513 - Fall 2012 - Lecture 1 - Introduction

“Engineering scrutiny” 2. Function test"

  Equivalent in building electronics: does the device do what it was designed it to do, e.g. the red light blinks when I flip switch on, the bell rings when I push the button, etc.!

  For analysis: does the result gives sensible predictions?!  Determine if sign (+ or -) of result is reasonable, e.g. if

predicted absolute temperature is –72 K, obviously it’s wrong!

  Determine whether what happens to y as x goes up or down is reasonable or not. For example, in the ideal gas law, Pv = RT:!  At fixed v, as T increases then P increases – reasonable!  At fixed T, as v increases then P decreases – reasonable!  Etc.!

Page 28: AME513-S12-lecture1 - University of Southern Californiaronney.usc.edu/AME513F12/Lecture1/AME513-F12-lecture1.pdf · •4 AME 513 - Fall 2012 - Lecture 1 - Introduction 7 Outline"

• 28

55 AME 513 - Fall 2012 - Lecture 1 - Introduction

“Engineering scrutiny” 2. Function test"  Determine what happens in the limit where x goes to

special values, e.g. 0, 1, ∞ as appropriate!  Example: entropy change (S2 - S1) of an ideal gas!

  For T2 = T1 and P2 = P1 (no change in state) then S2 – S1 = 0 or S2 = S1!

  Limit of S2 = S1, the allowable changes in state are!

which is the isentropic relation for ideal gas with constant specific heats!

!

S2 " S1 = CP lnT2T1

#

$ %

&

' ( " R ln

P2P1

#

$ %

&

' (

!

T2T1

"

# $

%

& ' =

P2P1

"

# $

%

& '

RCP

=P2P1

"

# $

%

& '

( )1(

56 AME 513 - Fall 2012 - Lecture 1 - Introduction

“Engineering scrutiny” 3. Performance test"

 Equivalent in building electronics: how fast, how accurate, etc. is the device!

  For analysis: how accurate is the result?! Need to compare result to something else, e.g. a “careful” experiment, more sophisticated analysis, trusted published result, etc.!

 Example, I derived the ideal gas law and predicted Pv = 7RT - passes smoke and function tests, but fails the performance test miserably (by a factor of 7)!