AMDAR WVSSII

Embed Size (px)

Citation preview

  • 8/10/2019 AMDAR WVSSII

    1/49

    WorldMeteorologicalOrganization

    AMDAR

    ONBOARD

    SOFTWARE

    FUNCTIONALREQUIREMENTS

    SPECIFICATION

    FrankTamis

    3092012

  • 8/10/2019 AMDAR WVSSII

    2/49

    AOSFRSversion04 Page2of49

    RevisionData

    REVISIONSTATUS STATUSDATE DESCRIPTION

    Draft January17,2012 Originalrelease,skeletondraft

    F.C.Tamis,

    AircraftDataEngineering&Consultancy

    01 April18,2012 FirstConcept

    F.C.Tamis,

    AircraftDataEngineering&Consultancy

    02 May15,2012 SecondConcept

    F.C.Tamis,

    AircraftDataEngineering&Consultancy

    03 September29,2012 CompleteDraft

    F.C.Tamis,

    AircraftDataEngineering&Consultancy

    04 October27,2012 RevisionstocompletedraftbasedonWMOinput.

    F.C.Tamis,

    Airdatec

  • 8/10/2019 AMDAR WVSSII

    3/49

    AOSFRSversion04 Page3of49

    TableofContents

    1 INTRODUCTION................................................................................................................. 5

    1.1 BACKGROUND....................................................................................................................... 5

    1.2 OBJECTIVES .......................................................................................................................... 5

    1.3 INTENDEDAUDIENCEANDSCOPE.............................................................................................. 5

    1.4 CONVENTIONS ...................................................................................................................... 6

    1.5 APPLICABLEDOCUMENTS........................................................................................................ 6

    1.6 ABBREVIATIONSANDACRONYMS.............................................................................................. 7

    2 AMDARSYSTEMOVERVIEW.............................................................................................. 8

    2.1 AMDARSYSTEM .................................................................................................................. 82.2 AMDARONBOARDPROCESS.................................................................................................. 9

    2.3 OTHERSPECIFICATIONS......................................................................................................... 10

    2.4 FURTHERREADING.............................................................................................................. 11

    3 AMDARONBOARDSOFTWAREREQUIREMENTS ............................................................. 12

    3.1 DATAACQUISITION.............................................................................................................. 13

    3.2 DATAHANDLING ................................................................................................................. 15

    3.2.1 Dataacquisitionrate...............................................................................................................15

    3.2.2 DataValidation........................................................................................................................16

    3.2.3 DataSmoothing ......................................................................................................................16

    3.2.4 DerivedParameters ................................................................................................................ 163.2.4.1 PhaseofFlight.................................................................................................................16

    3.2.4.1.1 Ground ...................................................................................................................... 16

    3.2.4.1.2 Ascent .......................................................................................................................17

    3.2.4.1.3 EnRoute ...................................................................................................................17

    3.2.4.1.4 Descent .....................................................................................................................17

    3.2.4.2 TurbulenceIndicator .......................................................................................................17

    3.2.4.3 WaterVapor/RelativeHumidity/DewPoint................................................................17

    3.2.4.4 RollAngleFlag.................................................................................................................17

    3.2.4.5 AircraftConfigurationIndicator......................................................................................19

    3.3 AMDAROBSERVATIONS...................................................................................................... 19

    3.4 OBSERVATIONFREQUENCY .................................................................................................... 203.4.1 EnrouteObservations ............................................................................................................20

    3.4.1.1 MaximumWindObservation ..........................................................................................20

    3.4.2 PressureBasedScheme .......................................................................................................... 21

    3.4.2.1 RoutineObservations......................................................................................................21

    3.4.2.2 Ascent..............................................................................................................................21

    3.4.2.2.1 InitialObservation.....................................................................................................21

    3.4.2.2.2 AmbientStaticPressureatTakeOff.........................................................................21

  • 8/10/2019 AMDAR WVSSII

    4/49

  • 8/10/2019 AMDAR WVSSII

    5/49

    AOSFRSversion04 Page5of49

    1 Introduction

    1.1 Background

    TheGlobalAircraftMeteorologicalDataRelay(AMDAR)ProgramisaprograminitiatedbytheWorld

    MeteorologicalOrganization(WMO)incooperationwithaviationpartners,andisusedtocollect

    meteorologicaldataworldwidefromcommercialaircraft.TheWMOAMDARObservingSystemisasub

    componentoftheWMOIntegratedGlobalObservingSystem,whichisdefinedandmaintainedunder

    theWMOWorldWeatherWatchProgram1.

    Existingaircraftonboardsensors,computersandcommunicationssystemsareutilizedtocollect,

    process,formatandtransmitthemeteorologicaldatatogroundstationsviasatelliteorradiolinks.Once

    ontheground,thedataisrelayedtoNationalMeteorologicalServices,whereitisprocessed,quality

    controlledandtransmittedontheWMOGlobalTelecommunicationsSystem(GTS).

    Thedatacollectedisusedforarangeofmeteorologicalapplications,including,publicweather

    forecasting,climatemonitoringandprediction,earlywarningsystemsforweatherhazardsand,

    importantly,weathermonitoringandpredictioninsupportoftheaviationindustry.

    1.2 Objectives

    ThisdocumentprovidesacomprehensivefunctionalspecificationforonboardAMDARsoftware.Itis

    intendedthatthespecificationprovidessufficientinformationtoenabledetailedtechnicalspecifications

    tobeprovidedforAMDAROnboardSoftwareimplementationonsuitableavionicsplatforms.

    1.3 IntendedAudienceandScope

    Thespecificationisprimarilyintendedforusebybothmeteorologicalagenciesandavionicssoftware

    developerstoallowthemtojointlydevelopAMDARsoftwarewithminimaladditionalinformation.It

    definestheFunctionalSpecificationsoftheAMDAROnboardSoftwareonly.FunctionalSpecificationsof

    otherpartsoftheAMDARdataflow,suchasgroundbasedprocessing,areoutsideitsscope.

    Thespecificationwillbeapplicableforallkindsofonboarddataprocessingandcommunicationssystem

    solutions,includingACARSand/orsuccessors.

    Bydefinition,anaircraftbasedmeteorologicalobservingsystemthatconformstothisspecification,and

    mostparticularlytothoserequirementsthataredesignatedasrequired(seeconventions,paragraph

    1.4),canbeconsideredanAMDARobservingsystem.

    1TheWMOWorldWeatherWatchProgramme:http://www.wmo.int/pages/prog/www/index_en.html

  • 8/10/2019 AMDAR WVSSII

    6/49

    AOSFRSversion04 Page6of49

    1.4 Conventions

    Thekeywords"must","mustnot","required","shall","shallnot","should","shouldnot",

    "recommended","may",and"optional"inthisdocumentaretobeinterpretedasfollows:

    1.ThetermsSHALL,"REQUIRED"or"MUST"meanthatthedefinitionisanabsoluterequirementof

    thespecification.

    2.ThephrasesSHALLNOTor"MUSTNOT"meanthatthedefinitionisanabsoluteprohibitionofthe

    specification.

    3.ThetermsSHOULDor"RECOMMENDED"meanthatthere mayexistvalidreasonsinparticular

    circumstancestoignoreaparticularitem,butthefullimplicationsmustbeunderstoodand carefully

    weighedbeforechoosingadifferentcourse.

    4.ThephrasesSHOULDNOT or"NOTRECOMMENDED"meanthattheremayexistvalidreasonsin

    particularcircumstanceswhentheparticularbehaviorisacceptableorevenuseful,butthefull

    implicationsshouldbeunderstoodandthecasecarefullyweighedbeforeimplementinganybehavior

    describedwiththislabel.

    5.ThetermsMAYor"OPTIONAL"meanthatanitemistrulyoptional. Onevendormaychooseto

    includetheitembecauseaparticularmarketplacerequiresitorbecausethevendorfeelsthatit

    enhancestheproductwhileanothervendormayomitthesameitem.Animplementationwhichdoes

    notincludeaparticularoptionMUSTbepreparedtointeroperatewithanotherimplementationwhich

    doesincludetheoption,thoughperhapswithreducedfunctionality.Inthesameveinanimplementation

    whichdoesincludeaparticularoptionMUSTbepreparedtointeroperatewithanotherimplementation

    whichdoesnotincludetheoption(except,ofcourse,forthefeaturetheoptionprovides.)

    1.5 ApplicableDocuments

    Whereappropriate,referencesareprovidedtoWMO,InternationalCivilAviationOrganization(ICAO),

    AeronauticalRadioIncorporated(ARINC)orotherdocumentsthataresubjecttoissueandreviewbythe

    respectiveorganizations.Norecommendationsorotherinformationinthisspecificationoverridesor

    supersedestherequirementscontainedinreferenceddocuments,unlessspecifiedotherwise.

  • 8/10/2019 AMDAR WVSSII

    7/49

    AOSFRSversion04 Page7of49

    1.6 AbbreviationsandAcronyms

    ACARSAircraftCommunicationAddressingandReportingSystem

    ACMSAircraftConditionMonitoringSystem

    AMDAR

    Aircraft

    Meteorological

    Data

    Relay

    ARINCAeronauticalRadio,Incorporated

    ASDARAircrafttoSatelliteDataRelay

    DASDataAcquisitionSystem

    DEVGDerivedEquivalentVerticalGust

    EDREddyDissipationRate

    GNSSGlobal Navigation Satellite System

    IATAInternationalAirTransportAssociation

    ICAOInternationalCivilAviationOrganization

    Q/CQualityControl

    SATStaticAirTemperature

    TATTotalAirTemperature

    UTCUniversalTimeCoordinate

    WMOWorldMeteorologicalOrganization

    VHFVeryHighFrequency

  • 8/10/2019 AMDAR WVSSII

    8/49

    AOSFRSversion04 Page8of49

    2 AMDARSystemOverview

    2.1 AMDAR

    system

    TheAMDARsystemisdefinedbythecharacteristicthatitisameteorologicalobservingsystemthat

    utilizesaircraftinnatesensorsandonboardavionicsandcommunicationssystemsinordertocollect

    processandtransmitmeteorologicaldatathathasbeendefined,sampledandprocessedaccordingto

    WMOmeteorologicalspecifications.

    ThefullAMDARsystemcomprisestheendtoendsystemofprocessesandpractices,startingfrom

    measurementbyaircraftsensorsrightthroughtothedeliveryofthedatatoDataUsers.Ontheaircraft,

    AircraftDataComputersobtainprocessandformatdatafromonboardsensors,andtransmitdatato

    groundviastandardaircraftcommunicationsystems.Onceontheground,thedataarerelayedtothe

    NationalMeteorologicalServices(NMS)andotherauthorizedusersasshowninFigure1.Dataare

    receivedatthedataprocessingcentersoftheNMSwheretheyaredecodedandundergobasicquality

    controlchecksbeforebeingreformatted fordistributiontoDataUsersbothinternaltotheNMSand

    externallytootherNMSsviatheWMOGlobalTelecommunicationSystem(GTS).

    Figure1:AMDARDataFlow

    Thisdocumentisconcernedonlywiththespecificationoffunctionalrequirementsfortheairborneor

    onboardsoftwarecomponentoftheAMDARsystem,theAMDAROnboardSoftware.

  • 8/10/2019 AMDAR WVSSII

    9/49

    AOSFRSversion04 Page9of49

    2.2 AMDAROnboardProcess

    ThepurposeoftheairbornepartoftheAMDARProcess,henceforthreferredtoastheAOP,istocollect,

    processandtransmitmeteorologicaldatafromsensorsonboardtheaircraft.Theprimaryfunctionsof

    theAOPare:

    Interfacetoandacceptinputdatafromavarietyofaircraftinnateavionicsequipment;

    Performhighlevelqualitychecksontheinputdata;

    Performcalculationsupontheinputdatatoderiverequiredmeteorologicalvariables;

    Atsetintervals,processcollecteddataintostandardoutputmessagesfortransmissionto

    groundstations;and,

    Acceptandprocessinputs,allowinguserstoaltertheAOSbehavior.

    To meet these primary functional requirements, AMDAR relies on the availability of onboard data

    acquisitionsystemsthatarecapableofbeingprogrammedtoperformtherequiredfunctions.Therefore,

    the firstandmost fundamental requirementof theAMDAROnboardSystem is that theaircraftmusthaveaDataAcquisition System (DAS) thatmustbeprogrammableand support interfacing toall the

    requireddatainputsandtotheaircraftscommunicationssystem.

    AnexampleofsuchanonboardsystemisillustratedinFigure2,whichshowsschematicallytheprincipal

    datasourcesfeedingintoaDAS.Notethattheconfigurationsandavailabilityofsystemsvarieswidely

    betweenaircraftmodelsandairlinefleets.

    Data Aqcuisition

    System

    (programmable)

    ACARS

    Clock

    1. Temperature

    Wind Speed

    Wind Direction

    Altitude

    2. Latitude

    Longitude

    3. Tail Number

    Flight Number

    4. Time (UTC)

    5. Vertical Acceleration

    6. AMDAR report

    CENTRAL

    MAINTENANCE

    COMPUTER

    1

    3AIR DATA

    COMPUTERS

    6

    2

    INERTIAL

    REFERENCE

    UNITS

    4 5

    Flight Data

    Recorder

    Figure2:ExampleDataAcquisitionSystem

    TypicalinputstotheDASare,forexample,PressureAltitudeorStaticAirPressure,WindSpeed/

    Directionandothers.Theseinputparametersareprocessedbythesoftwareaccordingtopredefined

  • 8/10/2019 AMDAR WVSSII

    10/49

    AOSFRSversion04 Page10of49

    samplingfrequenciesandtheresultingdatavariablesarestoredasameteorologicalobservation.

    Then,dependingonthecommunicationssystemusedandrequirementsassociatedwithmessagecosts

    andefficiency,datalatency,phaseofflightandotherparameters,whentherequirednumberof

    observationshasbeenobtained,theyarewrittentoastandardizedmessagethatissubsequentlysentto

    theground.

    Theactualtriggeringoftheprogrammaticprocessesthatcreatetheseobservationsdependsonseveral

    parametersthatareembeddedinthesoftware,manyofwhichareconfigurablethroughaninterfaceto

    theAMDARsoftwareprogram.Theseparameterstellthesoftwarewhentoreportornottoreport.

    Examplesofsuchparametersarephaseofflight,i.e.whethertheaircraftisascending,descendingorin

    levelflight, pressurealtitude,geographicalpositionoftheaircraft,i.e.observationsaremadeonly

    withinoroutsideofpredefinedgeographicallocations,andtimeofday,i.e.reportingisonlydonewithin

    adefinedtimeframe.Bymakingtheseparametersconfigurable,theobservingandreportingregimefor

    AMDARisabletobemodifiedaccordingtochangingmeteorological,programmaticoreconomic

    requirements.

    Additionally,bytakingadvantageoftwowayaircrafttogroundcommunicationsthatareoften

    availablewithmodernaircraftavionicsandcommunicationssystems,itispossibletofacilitate

    modificationoftheseprogramparametersviacommandsembeddedwithinuplink messages,whichare

    usuallycompiledandsentbyautomated,groundbasedcontrolsystemsinnearrealtime.Thisprocessis

    knownasAMDARdataoptimization.AMDARoptimizationsystemsallowNMSandairlinestomanage

    datavolumesandeliminateredundantobservationsandmessagesthroughrealtimeAMDARsoftware

    modificationeitherpriortoorduringaircraftflightandonaflightbyflightbasis.

    TheendresultoftheAMDARonboardsystemistheproductionoftheAMDARmessagescontainingthe

    meteorologicalobservations.Thesemessagesaretransmittedtothegroundbysuitabledatalink

    communicationsystemsandrelayedbyaviationDataServiceProviderstotheNMS. Thecontentsofthe

    messagesareprocessedandthedataareingestedintometeorologicaldatabasesandapplications.

    2.3 OtherSpecifications

    Therearemanypossibleformatspecificationsformeteorologicalmessagesfromaircraft. Inorderto

    avoidtheproliferationofdataformatsandreducetheoverheadsandcomplexityforcomplianceby

    groundprocessingsystems,thisdocumentprovidesafunctionalrequirementsspecificationthatwillbe

    knownasAMDAROnboardSoftwareFunctionalRequirementsSpecification(AOSFRS)Version1.0.This

    specificationisbasedontheASDARSpecification2,theEAMDARAAAVersion2.0Specification(AAA

    V2)3andtheAMDARAAAVersion3.0specification(AAAV3)4. Allinformationinthisdocument

    supersedesthepreviouslymentioneddocuments.Someinformationinthisdocumentisderivedfrom

    2SoftwareRequirementsSpecificationfortheASDARProject,Issue3,MatraMarconiSpaceUKLimited,October

    1994(reference116300016444).

    3EUMETNETAMDARAAAAMDARSoftwareDevelopmentsTechnicalSpecification,Version2,1August2000.

    4PROGRAMOPERATIONSANDSTANDARDSOBSERVATIONSSPECIFICATION20061,AMDARAAAVersion3.0

    SoftwareRequirementsSpecification,23November2006

  • 8/10/2019 AMDAR WVSSII

    11/49

    AOSFRSversion04 Page11of49

    ARINCspecification620(meteorologicalreportversion1thru5).TheARINCspecificationhoweverisnot

    supersededbythisdocument.

    Sincemostmeteorologicalmessagesshareacommonapproachtoprocessing,triggeringand

    transmittingdataitispossibletousethisspecificationinconjunctionwithotherspecifications.In

    particular,theARINC620MeteorologicalReportspecificationisarecognizedstandardforAMDARanditisthereforefeasibleandacceptabletospecifythatparticulardownlinkformatstandardasanalternative

    tothosespecifiedwithinthisdocument.

    Toallowtheusertochoosebetweenoptionalformats,thisspecificationshallrefertotheARINC620

    (latestversion)specificationwhereappropriate.

    2.4 FurtherReading

    AdetaileddescriptionoftheAMDARsystemisgivenintheAircraftMeteorologicalDataRelay(AMDAR)

    ReferenceManual(WMONo958)availablefromtheWorldMeteorologicalOrganization,Geneva,

    Switzerland:

    http://www.wmo.int/amdar/Publications/AMDAR_Reference_Manual_2003.pdf

    andintheWMOGUIDETOMETEOROLOGICALINSTRUMENTSANDMETHODSOFOBSERVATION,Part2,

    Chapter3,AircraftObservations:

    http://www.wmo.int/pages/prog/www/IMOP/CIMOGuide.html

    http://www.wmo.int/amdar/Publications/AMDAR_Reference_Manual_2003.pdfhttp://www.wmo.int/amdar/Publications/AMDAR_Reference_Manual_2003.pdfhttp://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.htmlhttp://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.htmlhttp://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.htmlhttp://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.htmlhttp://www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.htmlhttp://www.wmo.int/amdar/Publications/AMDAR_Reference_Manual_2003.pdf
  • 8/10/2019 AMDAR WVSSII

    12/49

    AOSFRSversion04 Page12of49

    3 AMDAROnboardSoftwareRequirementsAsdescribedinchapter2,theprimaryfunctionsoftheAMDAROnboardProcessare:

    Acceptinputdatafromavarietyoftheaircraftinnateavionicsequipment.

    Performhighlevelqualitychecksontheinputdata

    Performcalculationsupontheinputdatatoderiverequiredmeteorologicalparameters

    Atsetintervals,processcollecteddataintostandardoutputmessagesfortransmissionto

    groundstationsand

    Acceptinputs,allowinguserstoaltertheAMDAROnboardSoftwarebehavior.

    Figure3showsahighlevelschematicoftheAMDARonboardprocess. Thischapteraimstotranslatethe

    functionsinthisschematicintofunctionalrequirementsfortheAMDARonboardsoftware.

  • 8/10/2019 AMDAR WVSSII

    13/49

    AOSFRSversion04 Page13of49

    Data Handling

    AMDARMessage

    Compiler

    AMDAR MessageConfiguration

    Message

    SoftwareConfiguration

    ConfigurationModule

    ConfigurationMessage

    Compiler

    Observations

    Observation

    Scheduler

    Aircraft Avionics Data In

    AMDAR Inf ormation Out AMDAR Messages, AMDAR Configurati on

    Message

    Configuration

    Setting

    s(uplink/flightdeck/codechanges)

    Data Aqcuisition

    AMDAR ONBOARD SOFTWARE

    Figure3:AMDAROnboardProcess

    3.1 DataAcquisition

    Thedataacquisitionsystemshallprovideadatainterfacetothehighestqualitydatasourcesavailable

    fromtheaircraft.Incasethedirectsourceisnotavailabletotheacquisitionsystemitisacceptableto

    useanindirectsource,aslongasthequalityofthedataismaintained(e.g.thelatitudecomesfromthe

    inertialreferencesystembutthissourceisnotconnecteddirectly totheAOS.Latitudeishowever

    transmittedtotheFMCandthissourceisavailabletotheAOS.Aslongasdataqualityismaintainedthe

    latitudecanbeobtainedfromtheFMCinsteadofdirectlyfromtheIRS)

    Thetablesbelowprovidetheinputsignalsthatneedtobeacquired.Distinctionismadebetweensignals

    thatshallbeacquired(Table1

    Table1:InputSignals Required

    ),shouldbeacquired(Table2)andsignalsthatareoptional(Table3).

    DESCRIPTION UNIT RANGE ACQRATE

    PREFERRED MAX

  • 8/10/2019 AMDAR WVSSII

    14/49

    AOSFRSversion04 Page14of49

    AIRCRAFTID INT N/A N/A N/A

    AIR/GROUNDSWITCHORWEIGHTONWHEELS DISCRETE N/A 1HZ 1HZ

    COMPUTEDAIRSPEED KTS 0TO800KNOTS 1HZ 2HZ

    DATEDAY DD 031 1HZ 4HZ

    GMTHOURS HH 0023 1HZ 2HZ

    GMTMINUTES MM 0059 1HZ 2HZ

    GMTSECONDS SS 0059 1HZ 2HZ

    LATITUDE DEGR 90STO90N 1HZ 4HZ

    LONGITUDE DEGR 180ETO180W 1HZ 4HZ

    PRESSUREALTITUDEINICAOSTANDARDATMOSPHERE1)

    BAROMETRICALTITDUEINQNHADJUSTEDATMOSPHERE1)

    FT1,000TO50,000

    FEET1HZ 2HZ

    STATICAIRTEMPERATURE DEGR.C 99CTO+99C 1HZ 2HZ

    STATICPRESSURE2) HPA(=MB) 1HZ 1HZ

    WINDDIRECTIONTRUE DEGR 0TO360 1HZ 2HZ

    WINDSPEED KTS 0TO800KNOTS 1HZ 2HZ

    Note1: PressureAltitudeinICAOStandardAtmosphere=PALT

    BarometricAltitudeinQNHadjustedatmosphere=BALT

    IfbothPALTandBALTareavailable,PALTshouldbeused.

    Note2: Ifstaticpressureisnotavailablefromtheaircraftsystemsitcanbecalculatedfrompressurealtitude

    ForPALTequaltoorlessthan36089ft.,staticpressure(SP)isrelatedtoPALT(ft)bythefollowingexpression:

    SP(hPa)=1013.25[1106x6.8756(PALT)]

    5.2559

    IfPALTisgreaterthan36089ft,staticpressureisgivenby:SP(hPa)=226.32exp((PALT36089)/20805)

  • 8/10/2019 AMDAR WVSSII

    15/49

    AOSFRSversion04 Page15of49

    Table2:InputSignals Recommended

    DESCRIPTION UNIT RANGE ACQRATE

    PREFERRED MAX

    DEPARTURESTATION CHAR N/A N/A N/A

    DESTINATIONSTATION CHAR N/A N/A N/A

    VERTICALSPEED3)

    FT/MIN 2000TO2000 1HZ 1HZ

    GROSSWEIGHT KG N/A 1HZ 16HZ

    VERTICALACCELERATION G 3GTO+6G 8HZ 4HZ

    ROLLANGLE DEGR 180TO180 1HZ 1HZ

    PITCHANGLE DEGR 90TO90 1HZ 1HZ

    Note3: Verticalspeedisusedinphaseofflightdetermination.Verticalspeedmaybederivedfromaltituderateofchange

    Table

    3:

    Input

    Signals

    Optional

    DESCRIPTION UNIT RANGE ACQRATE

    PREFERRED MAX

    WATERVAPORDATA/RELATIVEHUMIDITY NOTE4 1HZ 4HZ

    ICINGDATA DISCRETE N/A 1HZ 4HZ

    FLAPS DEGR 1HZ 4HZ

    GEARDOWN/UP DISCRETE N/A 1HZ 2HZ

    GNSSALTITUDE FT 1,000TO50,000FEET 1HZ 1HZ

    GROUNDSPEED KTS 0TO800KNOTS 1HZ 2HZ

    TRUETRACK DEGR 1HZ 2HZ

    TRUEHEADING DEGR 0TO360 1HZ 2HZTRUEAIRSPEED KTS 0TO800KNOTS 1HZ 2HZ

    Note4: WaterVapor/Humidityismeasuredandreportedeitherasmixingratioorrelativehumidity,dependingonthetypeof

    sensoremployed.Themassmixingratiovalueistobereportedasnnnnn=n1n2n3n4n5whichimpliesamassmixingratio

    valueof(n1n2n3n4)x10(3n5)

    kg/kg;e.g.,ifnnnnn=12345,thenthemassmixingrationisgivenby1234x10(3 5)

    =1234x108

    kg/kg.

    RelativeHumidityisreportedasnnnnnwheretherangeofnnnnnisbetween00000and10000inhundredsofpercent.

    3.2 DataHandling

    3.2.1 Dataacquisitionrate

    Input

    data

    can

    be

    acquired

    at

    different

    acquisition

    rates.

    For

    instance,

    data

    can

    be

    acquired

    8

    times

    per

    secondbutitisalsopossibletohaveparametersacquiredonceeverytwoorfourseconds.Following

    rulesdescribehowtohandleacquisitionrates.

    1. Forinputdataacquiredoncepersecond,nospecialruleapplies

    2. Forinputdataacquiredmorethanoncepersecond,thelastvalidsamplewithinthatsecond

    shallbeused

  • 8/10/2019 AMDAR WVSSII

    16/49

    AOSFRSversion04 Page16of49

    3. Forinputdataacquiredlessthanoncepersecond,thelastvalidsampleshallbeused.

    3.2.2 DataValidation

    InputDatashouldonlybeusedwhen:

    1. Itisvalidatedusingapplicableavionicsvalidationstandardsand,

    2. ItpassestheoutofRangecheck.Inputdatavaluesshouldbecheckedagainsttherangegivenin

    Table1,Table2andTable3.Whentheinputdatavaluefallsoutsidethisrangeitisconsidered

    invalid.

    Datathatisinvalidshallnotbeusedinanycalculation.Observationsshallcontinuebutinvaliddatashall

    eithernotreported,orbemaskedasspecified,usuallywithasolidi(/).

    3.2.3 DataSmoothing

    WhilepreviousspecificationsfortheAOShaveincorporatedalgorithmsforsmoothingoraveragingdata

    parameters,thispracticeisnotrecommendedwithoutclearscientificallybasedjustification.Smoothing

    oraveragingshouldnotbeimplemented.

    3.2.4 DerivedParameters

    3.2.4.1PhaseofFlight

    AMDARobservationintervalsshouldbelinkedtoaircraftflightphase.Thefollowingphasesofflight

    conditionsshouldberecognized:

    a) Ground

    b) Ascent

    c) Level

    flight

    (or

    Cruise

    or

    En

    route)

    d) Descent

    AnassessmentofthePhaseofFlightshouldbemadeatregularonesecondintervals.Theaircraftwillbe

    consideredtooccupyoneofthephasesofflightatanytime,buttransitionfromonephasetoanother

    doesnotnecessarilyfollowtheorderlistedabove,exceptthatPhaseAscentshallalwaysfollowPhase

    or60se inimum.Groundf condsm

    3.2.4.1.1 Ground

    Theaircraftisconsideredonthegroundwhenitisnotinoneofthereportingflightmodes(ascent,en

    routeordescent).Theaircraftisingroundphasewhen:

    1. ComputedAirspeedisequaltoorlessthan100knotsorComputedAirspeeddataisinvalid,and

    2. Air/groundswitchindicatesgroundorweightonwheelsistrue

    Duringthisphasethesoftwareprocessesdatabutnoobservationnoraretransmissionsmade

  • 8/10/2019 AMDAR WVSSII

    17/49

    AOSFRSversion04 Page17of49

    3.2.4.1.2 Ascent

    Theaircraftisinascentwhen:

    1. ComputedAirspeed>100ktsand

    2. AltitudeRate>+200feet/minand

    3. a.Pressurebasedscheme:PressureAltitudeTopofClimb(seeTable7)or

    .Time eme:Flighttimesincetakeoff>Ascenttotalduration(seeb basedsch

    3.2.4.1.4 Descent

    )

    Theaircraftisindescentwhen:

    1. ComputedAirspeed>100ktsand

    2. AltitudeRate

  • 8/10/2019 AMDAR WVSSII

    18/49

    AOSFRSversion04 Page18of49

    Theflagisusedinoneoftwomodes:

    Mode1:eitherasaqualityindicatorforwindspeedanddirectionbasedontheaircraftrollangle(RA)

    andpitchangle(PA)(Mode1),or,

    Mode2: toprovideanindicationofwhichrangebintheaircraftrollanglevaluelieswithin.

    InMode1,theRollAngleFlagwilltakethevalueB,G,H,WorU,withthecorrespondingmeaning

    providedinthetablebelow.

    InMode2,theRollAngleFlagwilltakeeitherthevalueH,WorUwiththesamemeaningforMode1,or

    anintegervaluefrom0to9.

    ThevaluesWandUareusedwithinanEnrouteWeathermessageonlytoindicatethattheWindSpeed

    constitutesaMaximumWindReportasperthecriteriadefinedinParagraph3.4.1.1.

    Table4:RollAngleFlagvalues

    ROLLANGLEFLAGVALUE MEANING MODE

    B |RA| 5OR(|RA|3AND|PA| 3) 1

    G |RA|

  • 8/10/2019 AMDAR WVSSII

    19/49

    AOSFRSversion04 Page19of49

    3.2.4.5AircraftConfigurationIndicator

    Aderivedparameterrepresentingtheaircraftconfigurationstatusmaybeaddedtothemeteorological

    observationdata.Whenused,theparametershallbeassignedavalueaccordingtotheconfiguration

    statusoftheaircraftasinthefollowingtable:

    Table5:AircraftConfigurationIndicatorValues

    VALUE MEANING

    0 CONFIGURATIONUNDEFINED/NOTREPORTABLE

    1 CLEANCONFIGURATION,GEARRETRACTED

    2 FIRSTPOSITIONOFFLAPSEXTENSION,GEARRETRACTED

    3 SECONDPOSITIONOFFLAPSEXTENSION,GEARRETRACTED

    4 THIRDPOSITIONOFFLAPSEXTENSION,GEARRETRACTED

    5TO7 RESERVED

    8 ONLYLANDINGGEARDOWNANDINPLACE

    9 FIRSTPOSITIONOFFLAPSEXTENSION+LANDINGGEARDOWNANDINPLACE

    10 SECONDPOSITIONOFFLAPSEXTENSION+LANDINGGEARDOWNANDINPLACE

    11 THIRDPOSITIONOFFLAPSEXTENSION+LANDINGGEARDOWNANDINPLACE

    12TO14 RESERVED

    15 WEIGHTONWHEELS=TRUE

    3.3 AMDARObservations

    AcrucialfunctionoftheAMDARsoftwareistotriggerandstoreobservations.Anobservationisasingle

    setof(calculated)parametervaluesatapointinspaceandtime.

    Observationsaremadeduringfollowingphasesofflightonly:

    Ascent

    Enroute(orCruise) Descent

    Observationsshallbemadeeither:

    1) Whenapresetstaticpressurelevelisreached(Pressurebasedscheme,default)

    2) Whenapresettimeperiodhaselapsed(TimeBasedscheme)

    Thesoftwareshallbecapableofswitchingbetweeneitherschemebutonlyoneschemeshallbeactive

    atanygiventime.

    Observationsshallbestoredinadedicatedareaofmemoryuntilrequired.

  • 8/10/2019 AMDAR WVSSII

    20/49

    AOSFRSversion04 Page20of49

    3.4 ObservationFrequency

    Thefrequenciesatwhichmeteorologicalobservationsaremadedependonthephaseofflightthe

    aircraftisin.Eachobservationhasthesameorderingofmeteorologicalinformationbutthetriggering

    frequencycanvarywithphase.

    ThefigurebelowillustrateshowAMDARshoulddifferentiatebetweenthevariousflightphases.

    Ascent

    Part 1

    Ascent

    Part 2En-route

    Descent

    Part1

    Descent

    Part 2

    Top of Climb

    100hPa

    Top of Descent

    Figure4:AMDARflightphases

    Thetablebelowdescribestheobservingfrequencyforthevariousflightphases.Paragraphsfollowing

    providedetailedinformationontheobservingfrequency

    Table6:AMDARobservingIntervalbyflightphase

    Table6

    PRESSUREBASEDSCHEME TIMEBASEDSCHEME

    ASCENTPART1 5OR10HPAINTERVALSFORFIRST100HPA 3TO20SECSINTERVALS(DEFAULT6)FOR30TO200SECS

    (DEFAULT90)

    ASCENTPART2 25OR50HPAINTERVALSABOVEFIRST100HPA 20TO60SECSINTERVALS(DEFAULT20)FOR490TO

    1050SECS(DEFAULT510)

    EN

    ROUTE: 1TO60MINUTEINTERVALS(DEFAULT7)

    DESCENTPART1 25OR50HPAINTERVALSFROMTODTOLAST

    100HPA

    20TO300SECSINTERVALS(DEFAULT40)FROMTOPOF

    DESCENTTOTOUCHDOWN.

    DESCENTPART2 5OR10HPAINTERVALSFORLAST100HPA

    Theparagraphsbelowprovidedetailedinformationonthecontentof .

    3.4.1 En-routeObservations

    TheEnrouteobservationfrequencyisgenerictoboththepressureandtimebasedscheme.

    Observationsshallbetriggeredatsettimeintervalsonly. Enroutedatameasurementsshouldbeginat

    theconclusionofAscentandterminatewhenDescentobservationmeasurementsbegin.

    FortimeintervalvaluesseeTable8.

    3.4.1.1MaximumWindObservation

    Thisfacilityisrequiredtoaidinlocatingjetstreamcoresandisappliedinenrouteflightphaseonly.The

    highestwindspeedmeasuredbetweenasequentialpairofroutineobservationsislabeledmaximum

    wind.Maximumwindisderivedaccordingtothefollowingcriteria:

  • 8/10/2019 AMDAR WVSSII

    21/49

    AOSFRSversion04 Page21of49

    1. Observationsofwindspeedmaximawillonlybereportedwhentheambientpressureis lower

    than600hPa,and

    2. Theaircraftisinenroute,and

    3. Thewindspeedexceeds60knotsabsolute,and

    4. The wind speed exceeds by 10 knots or more the value observed at the previous routine

    observation,and

    5. Thewind speedexceedsby10 knots ormore the valueobservedat the subsequent routine

    observation.

    TheMaximumWindoption,providesanadditionalobservationthatistakenatthetimeofoccurrence

    ofthepeakwindmeasurement,usingthemaximumwindindicator(seeTable4)

    3.4.2 PressureBasedScheme

    3.4.2.1RoutineObservations

    Routineobservationwillensuredataisstillcollectedatregulartimeintervalsinthecasewherethe

    aircraftlevelsoffduringascentand/ordescentandstaticpressuretriggeringcannotbeusedsincethe

    staticpressuredoesnotchangeduringlevelflight.Itwillalsoensurethatobservationsaretakenifthe

    aircraftdoesnotreachthesetaltitudefortopofclimb.

    Routineobservationsshallbemadeatsettimeintervalsduringflightphaseascentanddescent. The

    intervaltimerresetsandcommencesfollowingeachobservation.Ifnopressurelevelchangeis

    encounteredduringthepresettimeinterval,anobservationistriggeredandthetimerisreset.Thetime

    intervalisthesameastheenrouteobservationtimeinterval(seeparagraph3.4.1)

    3.4.2.2

    Ascent

    DuringPhaseofFlightAscent,observationsshallbemadeatdefinedAmbientStaticPressurelevels

    whichwillbeknownas"AscentTargetPressures".ThesewillbereferencedtotheAmbientPressureat

    takeoff.

    3.4.2.2.1 Initial Observation

    Meteoro dalogical (takeoff).tameasuredatthetimeoftheOFFevent

    3.4.2.2.2 Ambient Static Pressure at TakeOff

    Atthetimeoftakeoff,theAmbientStaticPressureshallbedeterminedbynotingtheaveragevalueofp

    takenbetweenthesecondsuccessivemeasurementoftheComputedAirspeedthatexceeds60knots

    andthesecondsuccessivemeasurementoftheComputedAirspeedthatexceeds90knots.TheAmbient

    StaticPressureattake offwillbestored.

    IftheComputedAirspeedfallsbackbelow60knotsbeforeAscentisentered,butafteranAmbientStatic

    Pressureattakeoffvalueisstored,thenthevaluestoredshallbeoverwrittenwhentheComputed

    Airspeednextincreasesfrom60through90knots.

  • 8/10/2019 AMDAR WVSSII

    22/49

    AOSFRSversion04 Page22of49

    3.4.2.2.3 Ascent Part 1

    ObservationsshallbemadewhentheAmbientStaticPressurefirstfallsbelowtheAscentTarget

    Pressure.ThefirstAscentTargetPressureshallbethenearestmultipleof10hPa(modifiableto5hPa)

    belowtheAmbientStaticPressureattakeoff.Thenextnine(modifiableto19if5hPaisused)Ascent

    TargetPressuresshallfollowat10hPa(modifiableto5hPa)intervalsdecrementingfromthefirstAscent

    essureTargetPr level.

    3.4.2.2.4 Ascent Part 2

    TheeleventhAscentTargetPressureshallbethenearestmultipleof50hPa(modifiableto25hPa)below

    thetenthAscentTargetPressure.ThetwelfthandsubsequentAscentTargetPressuresshallfollowat50

    hPa(modifiableto25hPa)intervalsdecrementingfromtheeleventhAscentTargetPressure.

    Observationswillcontinueat50hPa(modifiableto25hPa)intervalsthroughouttheremainderofthe

    AscentPhase.

    ThecompleteAscentdataprofilewillthusconsistoftenobservationsat10hPa(ortwentyat5hPa)

    intervalsoverthefirst100hPa,andObservationsat50hPa(or25hPa)intervalsthereafteruntilthe

    Ascentiscomplete.

    3.4.2.3Descent

    DuringPhaseofFlightDescent,ObservationsshallbemadeatdefinedAmbientStaticPressurelevels,

    whichwillbeknownas"DescentTargetPressures".

    ThefirstDescentTargetPressureshallbethefirstmultipleof50hPa(modifiableto25hPa)abovethe

    pressurerecordedwhentheDescentphasewasestablished.SubsequentDescentTargetPressuresshall

    beat50hPa(modifiableto25hPa)intervals.ObservationsshallbemadewhentheAmbientStatic

    PressurefirstrisesabovetheDescentTargetPressure.

    Atandabove700hPathesoftwareshall,inadditiontothecontinuedformationofObservationsat50

    hPaintervals,formObservationsat10hPaintervalsincrementingfrom700hPa.Onlythetenmost

    recentObservationsat10hPaintervalsareretained.Thisadditionalsamplingshallcontinueuntilthe

    Descentiscompleted.Intheeventoftheaircraftlandingbeforeacompletesetof50hPa(modifiableto

    25hPa)observationshavebeenmadethemessagewillbepaddedoutwiththe/characterfollowedby

    anewmessagewhichcontainsthetenObservationsmadebeforetouchdown.Thecompletesetof

    DescentObservationsisthusaseriesofobservationsat50hPaintervals,augmentedbyadetailed

    verticalsurveyofthelast100hPain10hPaincrements,whichshallnotincluderepeatsofobservations

    at50hPaintervals.

  • 8/10/2019 AMDAR WVSSII

    23/49

    AOSFRSversion04 Page23of49

    3.4.3 TimeBasedScheme

    3.4.3.1A

    3

    scent

    .4.3.1.1 Initial ObservationAninitial ationis

    3.4.3.1.2 Part 1

    observ triggeredattheOFFevent.

    FollowingtheInitialobservation,observationsareaccumulatedatsettimeintervalsuntilthepart#1

    limitis d,countedfromtheOFFevent.Forintervalanddurationvaluesseeduration reache

    3.4.3.1.3 Part 2

    Table7

    Table7

    ObservationsareaccumulatedfromtheexpirationofthePart#1dataacquisitionperiod.Part#2data

    observationsaretakenatsettimeintervalsuntiltheAscenttotaldurationlimitisreached,countedfrom

    theOFFevent.Forintervalanddurationvaluessee

    3.4.3.2Descent

    DescentdatameasurementsbeginatTopofDescentandareaccumulatedatasettimeinterval.Topof

    Descentismodifiable.

    ForTopofDescentandintervalvaluesseeTable9.

    3.5 MessageCompilation

    3.5.1 Content

    Observationsarecollectedandstoredduringflight.Whenapresetnumberofobservationsarestored,

    amessageshallbeformedcontainingtheseobservations.Afteramessageistransmitted,the

    observationsshallbediscarded.Themessageshallhaveatleastthefollowinginformation:

    IdentificationasAMDARdata

    Softwareversionindicatori.e.whatspecificationitconformsto

    Reportingscheme(timebasedorpressurebased)

    Observationdata

  • 8/10/2019 AMDAR WVSSII

    24/49

    AOSFRSversion04 Page24of49

    3.5.2 Format

    Themessageformatdependsonthestandardadopted.ForAOSFRS(thisdocument)seeAppendixA.

    3.5.3 Transmission

    Regardlessoftheformat,messagesshallbesendtothegroundassoonastheyarecompleteviathe

    bestmeanspossible.

    Pendingmessagesshallbesendeventhoughthepresetnumberofobservationshasnotbeenreached

    insituationsoutlinedbelow:

    1. Flightphasetransitions

    Forexample;theaircrafttransitionsfromflightphaseascenttoflightphaseenroute,thepre

    setnumberofobservationsistenbutonlyfiveobservationsarestored.Inthiscase,amessage

    shallbesendwithonlyfiveobservations.

    2. Reportingturnedoffbysoftwarecontrol

    Forexample;reportingduringdescentisturnedoninitially.Duringdescent,reportingis

    switchedoffbyuplinkcommand.Atthattimeonlysevenobservationswerestored.Inthiscase,

    amessageshallbesendwithonlysevenobservations.Moreinformationonsoftware

    configurationcontrolcanbefoundinparagraph3.6.

  • 8/10/2019 AMDAR WVSSII

    25/49

    AOSFRSversion04 Page25of49

    3.6 SoftwareConfigurationControl

    Itshallbepossibletoconfigurethesoftwaretoallowreportingbehaviortobealtered.

    Changesinconfigurationareestablishedbyanycombinationofthefollowingmethods(inorderof

    preference):

    1. ACARSuplinkcommands

    2. Manualentrythroughflightdeckinterfacedisplays

    3. Codechanges

    Changestotheconfigurationbyoneofthemethodsdescribedaboveareconsideredpermanentuntil

    changedagain.Ifforwhateverreasontheconfigurationsettingsarelost,thesettingsshallrevertto

    default.

    3.6.1 ObservationFrequency

    Control

    FollowingtablesdescribetherequiredobservationfrequencycontrolparametersforAscent,Enroute

    andDescent.

    Table7:Ascentobservationcontrolparameters

    CHARACTERS DATA DESCRIPTION REMARKS

    1 0OR1 PRESSUREBASEDSCHEME(0)ORTIMEBASEDSCHEME

    (1)

    DEFAULT =0

    2 SS ASCENTPART1TIMEINTERVAL(SECONDS) TIMEBASEDSCHEME

    DEFAULT=06

    RANGE=0320

    3 SSS ASCENTPART1DURATION(SECONDS) TIMEBASEDSCHEMEDEFAULT=090

    RANGE=030200

    2 SS ASCENTPART2TIMEINTERVAL(SECONDS) TIMEBASEDSCHEME

    DEFAULT=20

    RANGE=2060

    3 SSS ASCENTTOTALDURATION(SECONDSX10) TIMEBASEDSCHEME

    DEFAULT =051

    RANGE=051111

    2 NN PART1PRESSUREINTERVAL(HPA) PRESSUREBASEDSCHEME

    VALUE=5OR10

    DEFAULT=10

    2 NN NUMBEROFOBSERVATIONSMADEDURINGASCENTPART1.

    PRESSUREBASEDSCHEMEVALUE=10OR20

    DEFAULT=10

    NOTE:PART1PRESSUREINTERVALXPART

    1NUMBEROFOBSERVATIONSMUSTBE100

    2 NN PART2PRESSUREINTERVAL(HPA) PRESSUREBASEDSCHEME

    VALUE=25OR50

    DEFAULT=50

    3 NNN TOPOFCLIMB(X100FT) DEFAULT=200

  • 8/10/2019 AMDAR WVSSII

    26/49

    AOSFRSversion04 Page26of49

    RANGE=1503501)

    1 0OR1 ROUTINEOBSERVATIONSENABLED(1)ORDISABLED(0) DEFAULT=1

    Note1:DefaultsettingsfortheTopOfClimbmustbechosentomatchoperationalprofilesoftheaircrafttype,i.e.

    theymustbesetlowerthanthecommoncruisealtitudefortheaircrafttypethesoftwarewillbeinstalledon.

    Table8:

    En

    route

    observation

    control

    parameters

    CHARACTERS DATA DESCRIPTION REMARKS

    2 MM OBSERVATIONINTERVAL(MINUTES) DEFAULT=7

    RANGE=160

    1 0OR1 ENABLE(1)ORDISABLE(0)MAXIMUMWIND

    REPORTING

    DEFAULT=1

    Table9:Descentobservationcontrolparameters

    CHARACTERS DATA DESCRIPTION REMARKS

    1 0OR1 PRESSUREBASEDSCHEME(0)ORTIMEBASEDSCHEME

    (1)

    0=DEFAULT

    3 SSS DESCENTTIMEINTERVAL(SECONDS) TIMEBASEDSCHEMEDEFAULT=040

    RANGE=010300

    2 NN DESCENTPRESSUREINTERVAL(HPA) PRESSUREBASEDSCHEME

    VALUE=25OR50

    DEFAULT=50

    3 NNN TOPOFDESCENT(X100FT) DEFAULT=200

    RANGE=150350

    1 0OR1 ROUTINEOBSERVATIONSENABLED(1)ORDISABLED(0) DEFAULT=1

    3.6.2 ReportingControl

    3.6.2.1

    Reporting

    on/off

    Itshallbepossibletoturnreportingonoroffcompletelyorbyflightphase,inaccordancewiththetable

    below:

    Table10:AMDARswitch

    CHARACTERS DATA DESCRIPTION REMARKS

    1 N REPORTACTIVATIONFLAG 0=REPORTINGOFF(DEFAULT)

    1=DESCENTPHASEONLYACTIVE

    2=ENROUTEPHASEONLYACTIVE

    3=ENROUTE&DESCENTPHASESACTIVE

    4=ASCENTPHASEONLYACTIVE

    5=ASCENT&DESCENTPHASESACTIVE

    6=ASCENT&ENROUTEPHASESACTIVE

    7=ALLFLIGHTPHASESON

  • 8/10/2019 AMDAR WVSSII

    27/49

    AOSFRSversion04 Page27of49

    3.6.2.2GeographicalControlboxes

    Itshallbepossibletoconfigureaminimumof10geographicalboxesinwhichreportingisenabledor

    disabled.Outsidetheseboxesreportingisdisableddependingontheairportlimitation(see

    paragraph0).

    Aboxisdefinedbysettingtwolateralandtwolongitudinalboundariesindegrees.Whendefiningthe

    boundaries,SOUTHandWESTarenegativei.e.20Sis20and40Wis040

    TheareawillalwaysbedefinedasthatbetweenLAT1toLAT2inasoutherlydirection,andLON1to

    LON2inaneasterlydirection(20N80S,120W50Eforexample).

    Figure5:GEOboxdescription

    Theorderofpriorityfortheseboxesshouldbefrom10(ormoreifimplemented)to1,thusallowinga

    largeareatobeenabledforreportingusingbox1andasmallerregiontobedisabledwithinthisbox,

    usingbox2forexample. Defaultsettingsareasfollows:

    Table11:Geographicalcontrolboxdefaultsettings

    BOX LAT1 LAT2 LON1 LON2 STATUS

    1 90 90 180 180 DISABLEREPORTING

    2 90 90 180 180 DISABLEREPORTING

    3 90 90 180 180 DISABLEREPORTING

    4 90 90 180 180 DISABLEREPORTING

    5 90 90 180 180 DISABLEREPORTING

    6 90 90 180 180 DISABLEREPORTING

    7 90 90 180 180 DISABLEREPORTING

    8 90 90 180 180 DISABLEREPORTING

    9 90 90 180 180 DISABLEREPORTING10 90 90 180 180 ENABLEREPORTING

  • 8/10/2019 AMDAR WVSSII

    28/49

    AOSFRSversion04 Page28of49

    3.6.2.3Airportspecificreporting

    Itshallbepossibletoconfigureaminimumof20airportsaroundwhichreportingforascent,descentor

    both,canbeenabledordisabled.Thesettingsappliedtothesespecificlocationsshalltakepriorityover

    thegeographicallimitingfunction.

    EachairportshallbedescribedbyitsfourletterICAOairportdesignator.Aflagisusedtocontrol

    whetherobservingduringascent,descentorbothisactivatedordeactivatedforthislocation.Following

    tableshowstheparameterconfigurationforthefirstairport.Thisistoberepeated19times.

    Table12:Airportcontrolparameters

    CHARACTERS DATA DESCRIPTION REMARKS

    4 IAIAIAIA ICAOAIRPORTDESIGNATOR 0000 =DEFAULT

    1 FA AIRPORTACTIVATIONFLAG 0=ASCENTON/DESCENTON(DEFAULT)

    1=ASCENTON/DESCENTOFF

    2=ASCENTOFF/DESCENTON3=ASCENTOFF/DESCENTOFF

    3.6.2.4TimeLimiting

    Itshallbepossibletoconfigureasingletimewindowduringwhichreportingisinhibited.

    Table13:Timelimitcontrolparameters

    CHARACTERS DATA DESCRIPTION REMARKS

    4 H1H1H2H2 DISABLEOBSERVATIONSBETWEENSELECTED

    HOURS(0023)UTC,EVERYDAY

    H1H1=STARTOFINHIBITPERIOD

    H2H2=ENDOFINHIBITPERIOD

    DEFAULT=0000Thedefaultvalueisinterpretedasnointervalselectedandreportthoughall24hourperiods.Theinhibit

    periodstartsatthefirstdesignatedhourinthedayandendswhenthenextdesignatedhourisreached

    thesameornextday.Thus2301meansinhibitbetween2300hoursand0100hoursthenextday,every

    day.(twohoursspanningmidnightUTC).

    3.6.3 ConfigurationMessage

    Thesoftwareshallprovideforamessagethatliststhecurrentsettingsforallofthecontrolparameters

    mentionedinpreviousparagraph.

    Themessagecanberequestedviaeither(inorderofpreference)

    1. Anuplinkcommand.

    2. Manualrequestthroughflightdeckinterfacedisplays

    ForcontentsandformatoftheconfigurationmessageseeAppendixB

  • 8/10/2019 AMDAR WVSSII

    29/49

    AOSFRSversion04 Page29of49

    3.6.4 AMDAROptimizationMessage

    AnAMDARoptimizationmessagemaybesenttotheNMSand/orairlinepriortodepartureofevery

    flight.ThismessageallowstheNMSand/orairlinetoalterthesoftwareconfigurationpriortoflightand

    therebymanagedatavolumesandeliminateredundantobservationsandmessages.

    Forexample,anascentprofileisrequiredforanairportonlyonceperhour.Butifduringthathourmore

    thenoneAMDARequippedaircrafttakesoff,thesystemisfilledwithdatathatisnotrequired.Inorder

    topreventmultipleaircraftsendingAMDARmessages,agroundbasedsystemdetermineswhataircraft

    toswitchoffbyusingtheinformationintheoptimizationmessage.

    TheoptimizationmessagemaybeastandardOOOImessagebutshouldatleastcontain:

    AircraftIndicator

    TimeOut(leavinggateorparkingposition)

    Departure/ArrivalStation

  • 8/10/2019 AMDAR WVSSII

    30/49

    AppendixA AOSFRSmessageformatversion04

    A.1 Introduction

    ThisappendixspecifiestheAOSFRSmessageformat.TheAOSFRSmessageformatprovidesabasicmeteorologicalmessagewithonlytheminimumamountofinformationthatwillstillrenderamessage

    usefulasameteorologicalmessage.Atthesametimeitallowsmaximumflexibilitytoaddinformation

    thatenhancesthebasicreport,ifthisinformationisavailable.

    Reasonforthisapproachistoallowtheformattobeusedonawidevarietyofaircraft/airlineswhere

    somemayonlyhavethebasicinformationavailable,andothersmaybeabletoprovidealotmore

    information.

    Thedatathatissendtothegroundissetupintwosections,thefirstaheadersectionwithinformation

    suchastheAOSFRSmessageversionandtheaircraftidentifier,thesecondpartconsistsof10

    observationswiththerelevantparametervalues.Adetaileddescriptionisgivenbelow.

    A.2 Header

    Eachmessageshallhaveaheadercontainingtheinformationasdescribedinthetablebelow.

    Table14:AOSFRSmessageheader

    LINE

    NUMBER

    CHARACTER

    NUMBER

    #OFCHAR CONTENT FORMAT NOTES

    1 13 3 AMDARMESSAGEVERSION A04

    2 126 1TO26 OPTIONALPARAMETERINDICATION #ORATHRUZ SEEOPTIONAL

    PARAMETERS

    3 17 8 AMDARAIRCRAFTIDENTIFIER AAAAAAAA 1

    3 8 1 NORMAL(N)ORCOMPRESSED(C) NORC 2

    3 9 1 TIMEBASED(0)ORPRESSUREBASEDSCHEME

    (1)

    0OR1

    3 10 1 ALTITUDEREFERENCE:PRESSUREALTITUDE

    (P)ORBAROMETRICALTITUDE(B)

    PORB 3

    3 1114 4 DEPARTUREAIRPORT AAAA 4

    3 1518 4 ARRIVALAIRPORT AAAA 4

    Notes:

    1. TheAMDARidentifierisassignedbytherequestingmetoffice.

    2.

    Normal means the data is not compressed. Compressed means the data is encoded using the

    compressionschemedescribedinAppendixD.

    3. PressureAltitudeinICAOStandardAtmosphere=PALT;

    BarometricAltitudeinQNHadjustedatmosphere=BALT;

    IfBALTisreported,conversiontothePressureAltitude(PALT)scalewillbenecessaryingroundprocessing

    usingrunwayorareaQNHatthetimeoftheobservation.Thisisessentialbeforedatacanbeusedor

    exchanged.IfbothPALTandBALTareavailable,PALTispreferred.

  • 8/10/2019 AMDAR WVSSII

    31/49

    AOSFRSversion04 Page31of49

    4. DepartureandArrivalairportarerepresentedbytheirICAOcode.Reportingofthesefieldsisoptionalbut

    ifavailable,stronglyrecommended.

    A.3 Body

    Theheadershallbefollowedby10meteorologicalobservations,eachobservationononeline.The

    observationsshallcontaintheBasicObservationSequenceasdescribedin .Allparametersshallberightjustified.

    Table15

    Table15:AOSFRSBasicObservationSequenceformat

    A.3.1 BasicObservationsequence

    CHARACTER

    NUMBER

    #OF

    CHAR

    CONTENT FORMAT NOTES EXAMPLE

    1 1 PHASEOFFLIGHTINDICATOR A 1 R

    26 5 LATITUDEINMINUTES SNNNN SOUTHISNEGATIVE 2976

    712 6 LONGITUDEINMINUTES SNNNNN WESTISNEGATIVE 6081

    1319 7 DAY/TIME NNNNNNN 2 8796612023 4 ALTITUDEINTENSOFFEET NNNN 3899

    2427 4 STATICAIRTEMPERATURETENTHSOFC SNNN 525

    2830 3 WINDDIRECTION NNN 160

    3133 3 WINDSPEED NNN 025

    Notes:

    1. PhaseofFlightisindicatedasfollows:

    Ascent =A

    Enroute=R

    Descent=D

    2. The

    day/time

    is

    presented

    as

    seconds

    into

    the

    month,

    and

    is

    calculated

    as

    follows:

    ( ( DATEDD- 1) *86400) + ( GMTHH*3600) + ( GMTMM*60) + GMTSS

    Example1:

    AnobservationismadeonJuly1stat20:53:22UTC,thecorrespondingday/timewillbe

    ((11)*86400)+(20*3600)+(53*60)+22=75202secondsintothemonth

    Example2:

    AnobservationismadeonNovember11that04:21:01UTC,thecorrespondingday/timewillbe((11

    1)*86400)+(4*3600)+(21*60)+1=879661secondsintothemonth

    A.3.2 OptionalParameters

    TheBasicObservationSequencemaybeamendedwithoptionalparameters,iftheyareavailable.

    OptionalparametersareassignedaHeaderIndicator(A,B,Cetc.)Thisletterisusedintheheaderto

    indicatethatthebasicobservationsequenceisfollowedbyoneormoreoptionalparameter.Foreach

    optionalparameterthatisaddedtothebasicobservationsequence,theHeaderIndicatorassociated

    withtheoptionalparametershallbeaddedinline2intheheader.Thesequenceoftheletters

    determinestheorderinwhichtheoptionalparametersareadded.A#inline2indicatesnoadditional

    parametersfollowthebasicobservationsequence.

  • 8/10/2019 AMDAR WVSSII

    32/49

    AOSFRSversion04 Page32of49

    OptionalparametersaredescribedinTable16

    Table16:AOSFRSOptionalParametersFormat

    below.Allparametersshallberightjustified.

    HEADERINDICATOR

    #OFCHAR

    CONTENT

    FORMAT

    NOTES

    EXAMPLE

    A 1 ROLLANGLEFLAG N SEEPARAGRAPH3.2.4.4 U

    B 1OR9 EDR C

    ORCNNNNNNNN

    E12345678

    C 3 DEVG NNN 7

    D 3 TRUEAIRSPEED NNN 854

    E 3 TRUEHEADING NNN 145

    F GNSSALTITUDE NNNN 3750

    G 1 ANTIICE(ENGINEORWINGORBOTH?) N 1 1

    H 2 A/CCONFIGURATIONINDICATOR NN SEEPARAGRAPH0 01

    I 6 WATERVAPOR NNNNNQ SEEAPPENDIXC.2ORCIMO? 123450

    J

    6

    RELATIVE

    HUMIDITY

    NNNNNQ

    SEE

    APPENDIX

    C.2

    OR

    CIMO?

    05000U

    K 1 ICING N 2 1

    Notes

    1.Antiice

    Antiiceshallbereportedusingthefollowinglogic:

    1 = Antiicenotactivated

    2 = Antiiceactive

    / = Antiiceundeterminedorinvalid:

    2.Icing

    Icingwillbereportedasvalue1whentheaircrafticingsensorindicatesnoiceaccretion,asvalue2when

    thesensorindicatesiceaccretionisoccurring,andasvalue0whenthestatusoficingisnotabletobe

    determined(noterequiresseparatesysteminstalled,movenotetotable3inCH3)

    Example1

    Amessagewithonlythebasicobservationsequencewouldlookasfollows:

    A4#AZ0001N1PEHAMKJ FKR- 2976 6081 8796613899- 525160 25R- 2976 6081 8796613899- 525160 25R- 2976 6081 8796613899- 525160 25

    R- 2976 6081 8796613899- 525160 25R- 2976 6081 8796613899- 525160 25R- 2976 6081 8796613899- 525160 25R- 2976 6081 8796613899- 525160 25D- 2976 6081 8796613899- 525160 25D- 2976 6081 8796613899- 525160 25D- 2976 6081 8796613899- 525160 25

  • 8/10/2019 AMDAR WVSSII

    33/49

    AOSFRSversion04 Page33of49

    Thisindicatesthattheobservationsinthemessagearebasicobservationsonly,aircraftAZ0001isflying

    fromAmsterdamtoNewYork,thedataisnotcompressedandtheobservationsinascentanddescent

    arebasedonthepressurescheme,usingBarometricaltitude.

  • 8/10/2019 AMDAR WVSSII

    34/49

    AOSFRSversion04 Page34of49

    Example2:

    GNSSandAntiiceareavailableandareaddedtothebasicobservationsequence.Amessagewould

    thenlookasfollows

    A04FGAZ0001N1BEHAMKJ FKA- 2976 6081 8796613899- 525160 25U38540A- 2976 6081 8796613899- 525160 2538540A- 2976 6081 8796613899- 525160 2538540A- 2976 6081 8796613899- 525160 2538540A- 2976 6081 8796613899- 525160 2538540A- 2976 6081 8796613899- 525160 2538540A- 2976 6081 8796613899- 525160 2538540

    A- 2976 6081 8796613899- 525160 2538540A- 2976 6081 8796613899- 525160 2538540R- 2976 6081 8796613899- 525160 2538540

    ThisindicatesthattheobservationsinthemessagearebasicobservationsamendedwithGNSSandAnti

    iceinformation,aircraftAZ0001isflyingfromAmsterdamtoNewYork,thedataisnotcompressedand

    theobservationsinascentanddescentarebasedonthepressurescheme,usingBarometricaltitude.

    Example3:

    WaterVapor,TrueAirspeed,Antiice,A/CconfigandEDRareavailableandaddedtothebasic

    observationsequence,inthatorder.Themessagewouldlooklike:

    A04I DGHBNL0032N0BWMKKYMMLA- 2976 6081 8796613899- 525160 25123450854101E12345678A- 2976 6081 8796613899- 525160 25123450854101E12345678R- 2976 6081 8796613899- 525160 25123450854101E12345678R- 2976 6081 8796613899- 525160 25123450854101E12345678R- 2976 6081 8796613899- 525160 25123450854101E12345678R- 2976 6081 8796613899- 525160 25123450854101E12345678R- 2976 6081 8796613899- 525160 25123450854101E12345678R- 2976 6081 8796613899- 525160 25123450854101E12345678D- 2976 6081 8796613899- 525160 25123450854101E12345678D- 2976 6081 8796613899- 525160 25123450854101E12345678

    ThisindicatesthattheobservationsinthemessagearebasicobservationsamendedwithWaterVapor,

    TrueAirspeed,Antiice,A/CconfigurationandEDRinformation,aircraftNL0032isflyingfromKuala

    Lumpur toMelbourne,thedataisnotcompressedandtheobservationsinascentanddescentare

    basedonthetimebasedscheme,usingBarometricaltitude

  • 8/10/2019 AMDAR WVSSII

    35/49

    AOSFRSversion04 Page35of49

    AppendixB AOSFRSConfigurationMessageAconfigurationmessagecanberequestedtoallowausertocheckthecurrentstatusofthe

    configurationparametersusedbytheAOS.Theconfigurationmessageisonlyrequiredwhenitcanactuallyberetrievedfromtheaircraftsomehow.Adetaileddescriptionisgivenbelow.

    SA4

    I AI A DDDDAAAA Sp AsI phAaG:IsgA:IsaT:Ist

    AI ntA1/N/I nt

    A2RI nt

    RDI nt

    D1/ I nt

    D2

    TOCTL1

    TODTL2

    H1H2H3H4

    BBN

    LatY1/Lat

    Y2Long

    X1/Long

    X2S

    BBB

    NLat

    Y1/Lat

    Y2Long

    X1/Long

    X2S

    B

    BBN

    LatY1/Lat

    Y2Long

    X1/Long

    X2S

    BBB

    NLat

    Y1/Lat

    Y2Long

    X1/Long

    X2S

    B

    BBN

    LatY1/Lat

    Y2Long

    X1/Long

    X2S

    BBB

    NLat

    Y1/Lat

    Y2Long

    X1/Long

    X2S

    B

    BBN

    LatY1/Lat

    Y2Long

    X1/Long

    X2S

    BBB

    NLat

    Y1/Lat

    Y2Long

    X1/Long

    X2S

    B

    BBN

    LatY1/Lat

    Y2Long

    X1/Long

    X2S BB

    NLat

    Y1/Lat

    Y2Long

    X1/Long

    X2S

    B

    B

    A1I CAON/S

    AA5I CAO

    N/S

    AA9I CAO

    N/S

    AA13I CAO

    N/S

    AA17I CAO

    N/S

    A

    A2I CAON/S

    AA6I CAO

    N/S

    A10I CAO

    N/S

    A14I CAO

    N/S

    A18I CAO

    N/S

    A A A A

    A3 I CAON/S

    AA7 I CAO

    N/S

    AA11I CAO

    N/S

    AA15I CAO

    N/S

    AA19I CAO

    N/S

    A

    A4 I CAON/S

    AA8 I CAO

    N/S

    AA12I CAO

    N/S

    AA16I CAO

    N/S

    AA20I CAO

    N/S

    A

    TheBoldand/charactersarefixedcharacters.

    Table

    17:

    AOSFRSconfigurationmessage

    contents

    PARAMETER DESCRIPTION FORMAT NOTES EXAMPLE

    SA04 STATUSFORAOSFRSMESSAGEVERSION AAAA SA04

    I AI A AMDARIDENTIFIER(MAX8CHARACTERS) AAAAAAAA AU0013

    DDDD DEPARTUREAIRPORT AAAA ICAOCODE EHAM

    AAAA ARRIVALAIRPORT AAAA ICAOCODE KJFK

    SP PRESSUREBASED(P)ORTIMEBASED(T)SCHEME A P

    AS AMDARSWITCHSETTING N 7

    IPH FLIGHTPHASEATTIMEOFREQUEST A 1 A

    AA AMDARACTIVEATTIMEOFREQUEST(Y/N) A 2 Y

    ISG GEOGRAPHICALINRANGEATTIMEOFREQUESTY/N A N

    ISA AIRPORTACTIVEATTIMEOFREQUESTY/N A Y

    IST TIMEWINDOWACTIVEATTIMEOFREQUEST A Y

    INTA1 OBSERVINGINTERVALDURINGASCENTPART1,INHPAORSECONDS NN 10

    N NUMBEROFOBSERVATIONSMADEDURINGASCENTPART1 NN 10

    INTA2 OBSERVINGINTERVALDURINGASCENTPART2,INHPAORSECONDS NN 50

    INTR OBSERVINGINTERVALDURINGLEVELFLIGHTINSECONDS NNN 420

    INTD1 OBSERVINGINTERVALDURINGDESCENTPART1,INHPAORSECONDS NN 50

    INTD2 OBSERVINGINTERVALDURINGDESCENTPART2,INHPA NN 10

    TL1 TOPOFCLIMBSETTINGINTHOUSANDSOFFEET NNNN 2000

  • 8/10/2019 AMDAR WVSSII

    36/49

    AOSFRSversion04 Page36of49

    TL2 TOPOFDESCENTSETTINGINTHOUSANDSOFFEET NNNN 2000

    H1H2H3H4 TIMEWINDOWSETTING NNNN 0000

    BN GEOGRAPHICALBOXNUMBER(0TO9) N 1

    LATY1 LATITUDEVALUEY1APPLIEDTOBOXBNINDEGREES SNN 30

    LATY2 LATITUDEVALUEY2APPLIEDTOBOXBNINDEGREES SNN 50

    LONGX1 LONGITUDEVALUEX1APPLIEDTOBOXBNINDEGREES SNNN 40

    LONGX2 LONGITUDEVALUEX2APPLIEDTOBOXBNINDEGREES SNNN 120

    SB STATUSOFBOXBN(1=REPORTINGACTIVE, 0=REPORTING

    DISABLED)

    N 1

    ICAON ICAOCODEOFAIRPORTNUMBERAN AAAA EHAM

    SA STATUSOFAIRPORT(1=REPORTINGACTIVE,0=REPORTING

    DISABLED)

    N 1

    Notes:

    1. Flightphasecharacters

    G = Ground

    A = Ascent

    R = Enroute

    D = Descent

    2. AMDARactiveshowsifAMDARisreporting,asfollows

    Y = AMDARisreporting

    N = AMDARisinactive

    MessageExample

    SA04AU0113 EHAMKJ FK P 7 A Y G:0A:1 T:1

    A10/ 10/ 50R420 D50/ 10TOC 20TOD20 0000B060/ 20 - 100/ 601 B5 0/ 0 0/ 0 0B1 0/ 0 0/ 0 0B6 0/ 0 0/ 0 0B2 0/ 0 0/ 0 0B7 0/ 0 0/ 0 0B3 0/ 0 0/ 0 0B8 0/ 0 0/ 0 0B B9 0/ 0 0/ 0 04 0/ 0 0/ 0 0

    A1 EHAM/ 1A5 0000/ 0A9 0000/ 0A130000/ 0A170000/ 0A2KJ FK/ 0A6 0000/ 0A100000/ 0A140000/ 0A180000/ 0A A A A A3 0000/ 0 7 0000/ 0 110000/ 0 150000/ 0 190000/ 0A4 0000/ 0A8 0000/ 0A120000/ 0A160000/ 0A200000/ 0

  • 8/10/2019 AMDAR WVSSII

    37/49

    AOSFRSversion04 Page37of49

    AppendixC OptionalDerivedParametersThisappendixdescribesthederivationforparametersthatarenotpartofthebasicobservation

    sequence.

    C.1 Turbulence

    C.1.1 DerivedEquivalentVerticalGust

    TheDerivedEquivalentVerticalGustVelocity(DEVG)isaturbulenceindicatordefinedasthe

    instantaneousverticalgustvelocitywhich,superimposedonasteadyhorizontalwind,wouldproduce

    themeasuredaccelerationoftheaircraft.Theeffectofagustonanaircraftdependsonthemassand

    othercharacteristics,butthesecanbetakenintoaccountsothatagustvelocitycanbecalculatedwhich

    isindependentoftheaircraft.

    TheinformationbelowisanextractfromtheAustralianDepartmentofDefence,StructuresReport418,

    TheAustralianImplementationofAMDAR/ACARSandtheuseofDerivedEquivalentGustVelocityasa

    TurbulenceIndicator,DouglasJ.Sherman,1985.

    Thevelocityofthederivedequivalentverticalgust,U ,(intenthsofmeterspersecond)maybe

    calculatedbytheformula:

    de

    V

    nAmDEVG

    =10

    wheren = peakmodulusvalueofdeviationofaircraftnormalaccelerationfrom1ginunitsofg.

    m= totalaircraftmassin(metric)tonnes

    V= calibratedairspeedatthetimeofoccurrenceoftheaccelerationpeak,inknots.

    A= Anaircraftspecificparameterwhichvarieswithflightconditions,andmaybeapproximatedbythe

    following

    formulae:

    A A c A cm

    m= +

    4 5 1( )

  • 8/10/2019 AMDAR WVSSII

    38/49

    AOSFRSversion04 Page38of49

    A cc

    c H kft = +

    +12

    3 ( )

    =ValueofAwhenmassofaircraftequalsreferencemass

    H= altitudeinthousandsoffeet

    m= Referencemassofaircraftin(metric)tonnes

    Theparameters dependontheaircraft'stypicalflightprofile.Forvariousaircraft,the

    appropriateconstants,basedontheflightprofilesindicated,areshownin

    c c c1 2 5, , ,K

    Table18.

  • 8/10/2019 AMDAR WVSSII

    39/49

    AOSFRSversion04 Page39of49

    Table18:DEVGaircraftconstants

    Aircraft V1 Vc Mc h1 hc m c1 c2 c3 c4 c5

    knot knot Mach ft ft Tonne kft

    A300B4 130 300 0.78 5000 30000 120 0.971 2690 79 0.49 19.6

    A310 130 300 0.78 5000 35000 120 19.6 574 32 0.52 23.5

    A318 120 300 0.78 5000 35000 40 34.7 878 28 0.52 40.3

    A319 120 300 0.78 5000 35000 50 33.9 846 29 0.45 39.6

    A320-200 120 300 0.78 5000 35000 55 35.9 771 27 0.44 40.7

    A321 120 300 0.78 5000 35000 60 34.8 716 28 0.41 39.3

    A330-200 120 300 0.82 5000 35000 170 5.88 1010 55 0.44 13.7

    A330-300 120 300 0.82 5000 35000 170 5.89 1010 54 0.44 13.6

    A340-200 120 300 0.82 5000 35000 190 6.36 949 54 0.41 13.7

    A340-300 120 300 0.82 5000 35000 190 6.34 948 54 0.41 13.6

    B727 120 300 0.84 5000 30000 50 6.45 4580 83 0.54 37.3

    B737-200 120 300 0.73 3000 35000 30 62.0 351 14 0.64 59.4

    B737-300 120 300 0.73 3000 35000 40 56.4 328 15 0.56 54.7

    B737-400 120 300 0.73 3000 35000 40 56.3 329 15 0.56 54.5

    B737-500 120 300 0.75 3000 35000 40 56.4 303 14 0.57 54.3

    B737-600 120 300 0.78 3000 35000 40 45.4 420 18 0.57 45.3

    B737-700 120 300 0.78 3000 35000 50 42.4 374 19 0.54 42.4

    B737-800 120 300 0.78 3000 35000 50 42.2 350 18 0.57 41.9

    B747-200 140 300 0.85 5000 40000 250 -2.41 2230 97 0.65 11.5

    B747-300 140 300 0.85 5000 40000 200 2.27 1630 81 0.69 13.3

    B747-400 140 300 0.85 5000 40000 250 -7.78 3260 120 0.62 10.2

    B747SP 140 300 0.85 5000 40000 250 7.44 644 48 0.74 12.4

    B757-200 140 300 0.8 3000 40000 100 29.2 298 22 0.55 30

    B757-300 140 300 0.8 3000 40000 100 28.9 292 21 0.55 29.7

    B767-200 140 300 0.8 3000 40000 110 12.8 918 46 0.65 19.8

    B767-300 140 300 0.8 3000 40000 100 13.1 821 42 0.69 19.4

    B767-400 140 300 0.8 3000 40000 150 12.9 701 45 0.54 18.3

    B777-200 140 300 0.82 3000 40000 170 12.6 198 21 0.72 13.0

    B777-300 140 300 0.82 3000 40000 210 13.1 147 19 0.65 12.9

    BAC111-200 120 280 0.7 3000 30000 30 55.8 924 27 0.54 60.1

    BAC111-475 120 280 0.7 3000 30000 30 50.6 930 28 0.54 55.3

    DC10-30 150 300 0.82 5000 30000 200 -6.45 4080 130 0.56 15.0

    Electra 100 350 0.7 5000 30000 30 48.9 220 9.1 0.57 41.2

    Fokker-100 130 280 0.7 3000 30000 35 52.9 917 27 0.52 57.2

    KingAir 100 110 200 0.6 9000 25000 3 70.6 2280 89 0.74 223.

    L1011-500 120 300 0.83 5000 35000 150 11.7 712 47 0.59 17.1

  • 8/10/2019 AMDAR WVSSII

    40/49

    AOSFRSversion04 Page40of49

    C.1.2 EddyDissipationRate(EDR)

    DetailsoftheEDRalgorithmandtheencodingprocesswillbeprovidedinafuturesupplementtothis

    standard.

  • 8/10/2019 AMDAR WVSSII

    41/49

    AOSFRSversion04 Page41of49

    C.2 AtmosphericWaterVaporContent

    Dependingonthewatervaporsensorinstalled,thesoftwarewillbecapableofreportingatmospheric

    watervaporcontentfordownlinkin3ways:

    1. Mixingratio(r):definedtobetheratioofthemassofwatervaporcontenttothemassofdryair

    ofanairsample.Theunitsofrareg/kg.

    Resolution:1x103

    g/kg.

    Range:0to38g/kg.

    2. Relativehumidity(RH):definedtobethedensityofwatervaporpresentintheatmosphere

    expressedasapercentageofthedensityofwatervaporpresentwhentheairsampleis

    saturated(airpressureandtemperatureheldconstant).Thatis:

    RH=100x(densityofactualwatervapor/densityofsaturatedwatervapor)

    Resolution:0.1%.

    Range:0to100%

    3. Dewpointtemperature(DPT):thetemperaturetowhichairmustbecooledinorderforitto

    becomesaturated(airpressureheldconstant.TheunitsofDPTaredegreesCelsius(C).

    Resolution:0.1C

    Range: 99to49C

    Thesoftwarewillrequireaconfigurationparametertodeterminefromwhichsensorthewatervapor

    contentshouldbeacquiredand,asaconsequence,howthewatervaporcontentshouldbeencoded.

    WatervaporcontentwillbereportedinthedownlinkmessageasnnnnnQ.Wherennnnisthecoded

    watervaporcontentandQisaqualitycontrolparameter.ThevalueofQwillbedependentonthetype

    ofsensoremployedandtheunitsinwhichthewatervaporcontentisreported.

    Table19:WaterVapourConfigurationCriteria

    WATERVAPORSENSOR CONFIGURATIONPARAMETER DOWNLINKFORMAT(NNNNN) QCFORMAT(Q)

    NONE 0 ///// 9

    WVSSII 1 MIXINGRATIO SEETABLE20

    ? 2 HUMIDITY U

    ? 3 DEWPOINTTEMPERATURE D

    Inordertoobtainthehighestqualitywatervaporcontentdataontheground,itisalwayspreferableto

    downlinkthewatervaporsensoroutputvariableasprovidedratherthanconvertingtooneofthetwo

    alternativederivedvariables,e.g.ifthesensorprovidesmixingratio,thenthatiswhatshouldbe

    reportedratherthanconvertingtorelativehumidityordewpointtemperatureforreporting.

    AtthetimethisspecificationwaspreparedonlydetailsontheWVSSIIsensorwereknown.

  • 8/10/2019 AMDAR WVSSII

    42/49

    AOSFRSversion04 Page42of49

    C.2.1 TheWVSSIISensor

    C.2.1.1 Introduction

    ThesecondgenerationWaterVaporSensingSystem(WVSSII)forcommercialaircraftusesadiodelaser

    fortheaccuratemeasurementofwatervaporinformation.Thewatervaporinformationavailableisthe

    massatmosphericwatervapormixingratioinkilogramsperkilogram(kg/kg).

    TheWVSSIIhasaSystemsElectronicsBox(SEB)thatsendsthemixingratioinARINC429message(Octal

    Label303)andbitsinOctalLabel270(relatedtoQvalues)totheavionicsbox(DFDAUorequivalent).

    FirststepistocheckthestatusbitsinARINC429messageLabel270(seeSectionC.2.1.4below).If,asa

    resultofthestatusbitchecks,theQvaluehasbeensetto2,3,4,or5,thennocalculationismadeand

    thedatavaluesformixingratioaresetto(/////)asinSectionsC.2.1.3andC.2.1.4 below.

    Ontheotherhand,iftheQvaluehasnotbeensetbytheabovebitchecking,thentheQvalueissetto0

    andcalculationsproceedasinSectionC.2.1.2below.Theencodingofthemixingratiovaluethen

    proceedsasinSectionC.2.1.3below.

    C.2.1.2 CurrentInputVariablesandCalculation

    ThevariablesthatareinputtotheprocessingintheDFDAUareasfollows:

    Ts: statictemperatureexpressedindegreesKelvin;i.e.,add273.15todegreescentigrade

    Ps: staticpressureexpressedinPascals;i.e.,ifpressureinmillibarsorhPa,thenmultiplyby100

    NotethatthismaybeobtainedasSTATICPRESSUREorcalculatedfromPRESSUREALTITUDE.

    r: (mixingratioinkg/kg). ObtainedfromdiodelaseroftheWVSSIIissuppliedindigitalformtothe

    DFDAUatarateofonceeverytwoseconds.

    Themixingratioisusedintheobservationbuttherelativehumidity(RH)isusedasacontrolvariable.

    Withtheaboveinputvariables,thecalculationofRHisperformedonceeverytwoseconds(usingthe

    latestpressureandtemperature)asfollows:

    Step1: Calculatewatervaporpressure(e)fromequation(1)

    e = (Ps) ( r )/ (r + 0.62197) (1)

    Step2: Calculatesaturationvaporpressure(es)fromequation(2)

    es= 10 ** [(10.286 Ts 2148.909) / (Ts 35.85)] (2)

    Step3: CalculateRHfromequation(3)

  • 8/10/2019 AMDAR WVSSII

    43/49

    AOSFRSversion04 Page43of49

    RH = (e/es)(100) (3)

    Step4:RoundtheRHvaluetothenearestinteger

    Add0.5tothefloatingpointRHvalue,andthentruncatethevaluetoaninteger.

    Step5: IFRHlessthan101%,THEN

    (i) Presentthemixingratiointhe5charactercode(NNNNN)accordingtoSectionC.2.1.3below.

    (ii) Set the control character (Q) in the water vapor information field (NNNNNQ) to Q = 0 (see

    SectionC.2.1.4below).

    IFRHequaltoorgreaterthan101%,THEN

    (i) Presentthemixingratiointhe5charactercode(SectionC.2.1.3below)

    (ii) SetQ=1(SectionC.2.1.4below)

    C.2.1.3 Presentingthe5-characterMixingRatioField

    ThemassmixingratioisbroadcastfromthespectraSensorsWVSSIIsensoronARINC429label303.For

    detailedinformationseeSpectraSensorsDWGNo.0102100027,REV.C

    ThemassmixingratioiscomputedwithintheWVSSIIsoftwareasafloatingpointnumberinkg/kg.In

    ordertorepresentthisnumberasanintegervariableinthe32bitARINCword,thisnumberismultiplied

    by220andsendtotheavionicsbox.Soinordertousethevalueneedstobedividedby2

    20beforethe

    datacanbeencoded.

    Thewatervaporinformationispresentedasasixcharacterfield(NNNNNQ)wherethefirstfive

    charactersareintegers(NNNNN)withthefollowingmeaning:

    NNNNN = N1N2N3N4N5= N1 N2 N3 N4x 10(-3 N5)

    Example:12345=1234x1035 =1234x108kg/kg

  • 8/10/2019 AMDAR WVSSII

    44/49

    AOSFRSversion04 Page44of49

    C.2.1.4 TheQualityControlCharacter(Q)

    ThevalueQisaqualitycontrolcharacteranditsultimatenaturehasthemeaningdefinedintheTable

    below.

    Table20

    :WVSII

    Quality

    Control

    Parameter

    Q SystemState SoftwareLogic DataOutput

    0 Normaloperation Air/Ground=Air NNNNN0

    1 RHgreaterthanorequalto101% RH>thanor=to101% NNNNN1

    2 Inputlaserpowerlow Laser

  • 8/10/2019 AMDAR WVSSII

    45/49

    AOSFRSversion04 Page45of49

    (/////)andtheQissetto8sothe6charactercodeis/////8.

  • 8/10/2019 AMDAR WVSSII

    46/49

    AOSFRSversion04 Page46of49

    AppendixD DataCompression

    Inordertominimizethenumberofcharacterinamessageandtherebytransmissioncost,twocodingtechniquesareappliedtothemessagecontents.Thefirsttechniquecodescodessomenumericvalues

    intheremainingobservationsasdeltachangesfromtheirpreviousvaluesthisisasavingbecausemost

    ofthequantitiesarephysicalvaluesthatvaryslowlywithtime. Thesecondtechniquecodesallinteger

    numericvaluesinthemessageintothefullsetofavailableprintablecharacterse.g.arangeof19to

    +20canbemappedonto40printablecharacters,thesocalledbase40compression.

    D.1 Base-40Compression

    Abase40datacompressionschemecanbeappliedtotheintegervaluesinthemessage.Theinteger

    valuesaremappedto40printablecharactersaccordingtoTable21

    Table21:Base40ConversionChart

    .

    0 1 2 3 4 5 6 7 8 9

    0X 0 1 2 3 4 5 6 7 8 9

    1X A B C D E F G H I J

    2X K L M N O P Q R S T

    3X U V W X Y Z : , .

    Findtherangethatthevaluetocompresswillfallinto. [0(40^y)/2,(40^y)/21]willbetheformoftherange,whereyisthesmallestinteger=>1tomakethevaluetocompressfallintotherange

    (seeTable22).Addthebase40offsetprovidedinNotes:

    1. TheAMDARidentifierisassignedbytherequestingmetoffice.

    2. Normal means the data is not compressed. Compressed means the data is encoded using the

    compressionschemedescribedinAppendixD.

    3. PressureAltitudeinICAOStandardAtmosphere=PALT;

    BarometricAltitudeinQNHadjustedatmosphere=BALT;

    IfBALTisreported,conversiontothePressureAltitude(PALT)scalewillbenecessaryingroundprocessing

    usingrunwayorareaQNHatthetimeoftheobservation.Thisisessentialbeforedatacanbeusedor

    exchanged.IfbothPALTandBALTareavailable,PALTispreferred.

    4. DepartureandArrivalairportarerepresentedbytheirICAOcode.Reportingofthesefieldsisoptionalbut

    ifavailable,stronglyrecommended.

    Table24and

    .Thebase40offsetisaddedtotheintegervaluetoensureonlypositiveintegers.Table25

    Takethenewvalueandconverttoabase40characterstring.

  • 8/10/2019 AMDAR WVSSII

    47/49

    AOSFRSversion04 Page47of49

    Table22:DynamicRanges

    CHARACTERSREQUIRED(YVALUE) MINIMUMVALUE MAXIMUMVALUE

    1 20 19

    2 800 799

    3 32,000 31,999

    4 1,280,000 1,279,9995 51,200,000 51,199,999

    6 2,048,000,000 2,047,999,999

    Importantitemstonote

    Valuesoutsideoftherange[2,048,000,000..2,047,999,999]cannotbeconvertedandshallreturn/;

    Decompressingastringcontainingnonvalidcharacterswillreturn2147483647;

  • 8/10/2019 AMDAR WVSSII

    48/49

    AOSFRSversion04 Page48of49

    D.2 Messageformat,Compressed

    WhenapplyingdeltaBase40theformatforthemessageformatchangesasfollows:

    Table23:Header,compressed

    LINE

    NUMBER

    CHARACTER

    NUMBER

    #OFCHAR CONTENT FORMAT NOTES

    1 13 3 AMDARMESSAGEVERSION A04

    2 126 1TO26 OPTIONALPARAMETERINDICATION #ORATHRUZ SEEOPTIONAL

    PARAMETERS

    3 17 8 AMDARAIRCRAFTIDENTIFIER AAAAAAAA 1

    3 8 1 NORMAL(N)ORCOMPRESSED(C) NORC 2

    3 9 1 TIMEBASED(0)ORPRESSUREBASEDSCHEME

    (1)

    0OR1

    3 10 1 ALTITUDEREFERENCE:PRESSUREALTITUDE

    (P)ORBAROMETRICALTITUDE(B)

    PORB 3

    3

    1114

    4

    DEPARTUREAIRPORT

    AAAA

    4

    3 1518 4 ARRIVALAIRPORT AAAA 4

    Notes:

    5. TheAMDARidentifierisassignedbytherequestingmetoffice.

    6. Normal means the data is not compressed. Compressed means the data is encoded using the

    compressionschemedescribedinAppendixD.

    7. PressureAltitudeinICAOStandardAtmosphere=PALT;

    BarometricAltitudeinQNHadjustedatmosphere=BALT;

    IfBALTisreported,conversiontothePressureAltitude(PALT)scalewillbenecessaryingroundprocessing

    usingrunwayorareaQNHatthetimeoftheobservation.Thisisessentialbeforedatacanbeusedor

    exchanged.IfbothPALTandBALTareavailable,PALTispreferred.

    8. DepartureandArrivalairportarerepresentedbytheirICAOcode.Reportingofthesefieldsisoptionalbut

    ifavailable,stronglyrecommended.

    Table24:BasicObservationFormat,compressed

    CHARACTERSDESCRIPTION TYPE BASE40

    OFFSET

    ABSOLUTE

    RANGE

    DELTA

    ALLOWED

    RANGE FIRST

    OBS

    SUBSEQOB

    S

    PHASEOFFLIGHTINDICATOR 10XABSOLUTE N/A N/A N/A 1 1

    LATITUDE(INSECONDS) 1XABSOLUTE

    9XDELTA

    1,280,000

    32,000

    324000TO

    +324000

    SECONDS

    32000

    TO

    +31999

    SECONDS

    4 3

    LONGITUDE(INSECONDS) 1XABSOLUTE

    9XDELTA

    1,280,000

    32,000

    648000TO

    +648000

    SECONDS

    32000

    TO

    +31999

    SECONDS

    4 3

    DAY/TIME(UTC) 1XABSOLUTE 0 0TO 0TO 5 3

  • 8/10/2019 AMDAR WVSSII

    49/49

    9XDELTA 0 2678399

    SECONDSINTO

    THEMONTH

    32000

    SECONDS

    PRESSUREALTITUDEINTENSOFFEET

    (REFERENCESAGAINSTSTANDARD

    ICAOATMOSPHERE)

    10XABSOLUTE 32,000 100TO

    +5,000TENS

    OFFEET

    N/A 3 3

    TEMPERATURE 10XABSOLUTE 800 800TO+799TENTHSOFC

    N/A 2 2

    WINDDIRECTION 10XABSOLUTE 0 0TO360

    DEGREES

    N/A 2 2

    WINDSPEED 10XABSOLUTE 0 0TO+800

    KNOTS

    N/A 2 2

    TOTALS 23 19

    Table25:Optionalparameters,compressed

    CHARACTERSDESCRIPTION TYPE BASE40

    OFFSET

    ABSOLUTE

    RANGE

    DELTA

    ALLOWED

    RANGE FIRST

    OBS

    SUBSEQOB

    S

    ROLLANGLEFLAG 10XCHARACTER 0 N/A N/A 1 1

    EDR 10XCHARACTER N/A N/A N/A 1+8*

    1+8*

    DEVG 10XABSOLUTE 0 0TO800

    TENTHSM/SEC

    N/A 2*

    2*

    TRUEAIRSPEED 10XABSOLUTE 0 0TO999 N/A 3 3

    TRUEHEADING(TENTHOFDEGREES) 10XABSOLUTE 0 0TO3590 N/A 3 3

    GNSSALTITUDE 10XABSOLUTE 0 100TO

    +5,000TENS

    OFFEET

    N/A 3 3

    ANTIICE 10XABSOLUTE 0 0TO2 N/A 1 1

    A/CCONFIGURATIONINDICATOR 10XABSOLUTE 0 OTO15 N/A 1 1

    WATERVAPOR 10XABSOLUTE 0 0TO99999 N/A 4 4

    WATERVAPORQUALITY 10XCHARACTER N/A N/A N/A 1 1

    ICING 10XABSOLUTE 0 0TO2 N/A 1 1

    TOTALS 21+7*

    21+7*

    *ThenumberofcharactersdependsonwhetherEDRorDEVGischosenastheturbulenceindicator.IfEDRis

    chosen,italsodependsthevalueforEDR.Inthesetotals,DEVGisassumed(2characters),ifEDRischosen,the

    totalnumberwouldbe21+7=28