36
M. Bräuer, 3.2.0 gnierung des HERA-B Vertexdetektors Alignment of the VDS M. Bräuer 20.06.2001 Outline: • The problem VDS Crucial: • Precise alignment • Alignment parameters • Least squares as a solution • Toy systems to align • The full system • System behaviour • Results Coarse alignmen t ( )

Alignment of the VDS

  • Upload
    gyala

  • View
    55

  • Download
    0

Embed Size (px)

DESCRIPTION

M. Bräuer 20.06.2001. ( ). Alignment of the VDS. Outline: The problem VDS Crucial :. Coarse alignment. Precise alignment Alignment parameters Least squares as a solution Toy systems to align The full system System behaviour Results. Teil I - PowerPoint PPT Presentation

Citation preview

Page 1: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Alignment of the VDSAlignment of the VDSM. Bräuer20.06.2001

Outline:• The problem VDS• Crucial:

• Precise alignment• Alignment parameters• Least squares as a solution• Toy systems to align• The full system • System behaviour

• Results

Coarse alignment

( )

Page 2: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Teil I

HERA-B Einführung

Page 3: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

HERA-B• Vorwärtsspektrometer mit festem Target• Hochraten – Experiment• Anspruchsvolles Triggersystem• ca. 650.000 Kanäle

Page 4: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

HERA-B: Ansicht

Page 5: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

HERA-B: Ansicht II

Page 6: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

HERA-B: Ansicht III

Page 7: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

The problem: VDS

2 m

Major Problems:

1. The bare size

2. No tracks into VDS existing

• Today: Matching without VDS track?

• Momentum?

• Magnet tracking?

3. Survey/setup: Needed: <200µm !

mm2..1r

Page 8: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Teil II

Pre-Tracking Alignment

Page 9: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Coarse alignment: Before tracking

• Position of pots wrt. to each other unknown

• Double modules within a pot not optimal adjusted

beam

1 SLu

s

=> Start without tracking !

Assume some module-positions to be known:

Page 10: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Coarse alignment: 1st step

=> 4 ds modules adjusted => 8 hits/track

Assume: 2ds module-positions in different SL to be known !

=> tracks defined .. but not only tracks..

=> Tracking needed

=> Use full combinatorics for other modules in the two pots (+mild target cut)

Page 11: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Alignment der Systems durch Überlapp

Povh (MPI-K): Like Lord Münchhausen got out of the swamp..

Never align a plane included in tracking !

Page 12: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Coarse alignment: The VDS II

=> 4 Quadrants aligned wrt. to each other

We have seen better target spots, but this is coarse alignment !

- Searching for signals is the remaining task.- For each plane: Coarse and fine binning

10 mm 250 µm- Semi automatic procedure (´asks´ for help)

Page 13: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Why coarse alignment ?How can this be?

=> robust tracking && no coarse Alignment !

reality

reco

Only tracks from the upper quadrant !

Page 14: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Teil III

Fein Alignment

Page 15: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Tracking: SpurmodellWesentlich:

Page 16: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Tracking and alignment• Master formula:

=> 7 undefined parameters. => cp. later !

relating hits, tracks and geometry

αsinαcosαsinαcos 000 ztztyxtpuu yxT

pitch

waferthickness

p/n strip angle planes perpendicular

wrt. z-axis

• Known parameters: (assumption!)

• Undefined parameters: (now: a guess !)

detecto

rx

z

y

move in x,y,zrotate around z

shear in x,y

scale in z

Page 17: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Alignment = MinimisationChange the geometry to minimise the residuals between hits and tracks.

Coarse alignment: move along the axis in parameter space:

Linear least squares: Parameters needed

Measurements measured

Design Matrix your problem (linear)

Covariance matrix of measurements

Weight Matrix

Residuals

tuur

-1 0 1 2 3 4 5 6

0

1

2

3

4

5

-1 -0.5 0 0.5 1

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x X

y

A y

V

aAyr

a

1 y

VW

always a good idea?

Page 18: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Least Squares MinimisationThe principle: Minimise

AWA

AWAWA

WW

T

TT

TT

a

S

aya

S

aAyaAyrraS

2

2

2

2

Gives directly the parameterand their covariance matrix 1

1

)(

)(

AWAV

WAAWAT

T

a

ya

i

i

iiT

i

ii b

t

a

β

00

00

00

ΓG

GC

=> Solve only Ax=b to align the VDS ??

Yes, but track-parameter and alignment parameter correlate!

250 Alignment parameter, 20000 tracks (nice fit)

dim(A) = O(80000) !

..but quite sparse!

GByte Matrix..

A x = b

Page 19: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Least Squares Minimisation II

Make use of „inversion by partitioning“:

• For each track

• For the alignment parameter with

i

i

iiT

i

ii b

t

a

β

00

00

00

ΓG

GC

=> Thats it! (Numerical Inversion remains..)

iiiiii tt ββ 1

ΓΓ

'' ba

C

iiii

ii

i

Tiii

ii

bb β'

'

1

1

ΓG

GΓGCC

Ursprung: C. F. Gauß !Entdeckung in Literatur zur Landes und Erdvermessung, Grundstudium

Page 20: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Least Squares Minimisation II: Toy

Why so complex? explained using a simple toy-problem:

i=1

a.) b.)

t Spur

Treffer

1

i=1

uv i

i

i=2 i=2i=3k=3

D 3

i=3i=4 i=4

• Only parallel tracks• Quite simple to align but the real missalignment not found !

reality (unkonwn) Assumption

Page 21: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Less Complex Idea..Something you know (Mr. X: „First plane is okay“) :

Do not touch it:i=1

i=1 i=1

i=1

u

u u

u

i

i i

ii=2

i=2 i=2

i=2

i=3

i=3 i=3

i=3

i=4

i=4 i=4

i=4

i=1

ui

i=2 i=3 i=4

„Therefore you iterate“..

Math: .. till eternity!

What about reality ?What is the least influence wrt. to reality?

- Minimise with LLSQ - Correct treatment of global parameters: „If you can not determine, do not touch !“

Page 22: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Undefined parameters I

Replace Mr. X by some defined quantity. (I strongly prefere to work with mathematical / operational definitions!)

-2

0

2

a1

-2

0

2

a2

-2

0

2

a3

-2

0

2

a3

-2

0

2

a1

-2

0

2

a2

-2

0

2

a3

-2

0

2

a3

Degenerated ellipsoid described by covariance matrix

Degenerated ellipsoid described by covariance matrix

Common sense on toy problem: „You can cary your detector around.„- One global parameter- Moving chamber 1 by x => move chamber 1..n by x

Better: (math)The Correlation–matrix has not full rank.(..really numerics comes later ..)

Page 23: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Undefined parameters: RealitätThe undefined parameters need not to be guessed! => Singular Value Decomposition ..at least once

Page 24: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Undefined parameters IIBlobel: Special, fast system (pivoting) Constraints are applied=> Matrices might look nice:

Linear: Log.

Praxis:Matrizen zeigen Überlapp des Detektors in DEN Daten, ohne Diskussion

Page 25: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Towards the full systemGoing to reality: Face the non-linear problem

Using:

tpwdldzdutpu

ttwdldzpttppduuTT

TT

α

α

sin

cos

0

0

,

cos

sin

cos

sin

l

z

zw

track residuals

Non-gaussian residuals !

Gives to first order:

Page 26: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Towards the full system

unbiased residuals (explicit exclusion!)

Achtung Falle:‚Tracking-Codes‘ können Einfluß eines Treffers ‚herausrechnen‘

Nur wenn alle Verteilungen der Annahme entsprechen! Im Alignment hochgradig falsch / gefährlich !

Nein!

Page 27: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Non Gaussian residualsRobust statistics was not at hand !The way out : (Later found to be robust)

• Extend Iterations• Determine the individual resolution from

unbiased residuals• Cut on unbiased residuals

Paw fit and robust technique (MAD)

Policy:

No Minuit calls to non-lin fits in

system !

No Minuit calls to non-lin fits in

system !

Page 28: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

The systemMoreover:Hit/track associationis alignment dependent!

Typicals:• Needs 20000 (good) tracks in VDS

(1/MB event)• 3 outer iterations: 1.5 h (full reco !)• 2..3 innermost iterations• 4 Quality iterations

Linear Alignment as one block of a complex system!

Page 29: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Teil IV

Tests Ergebnisse

Page 30: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Results of the system IWorst parameter: z of SL 8=> 100 µm with 70000 tracks!

text files..(precision)

Residuals:

Reproduce: (simulated tracks)

Page 31: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Results of the system IIAre the errors from C-

Matrix OK?Bootstrap: • Have a set of data• Produce a set of fit-parameters• Draw tracks from input

sample in a random manner• Produce new fit parameters• Repeat O(500 times)• Look for RMS of fit

parameters of all sets

Page 32: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Results of the system IIIDoes it find artificialshifts?• Align• Move two opposite

pots to keep cog. (global) fix!

• Align• Plot differences:

Tracker cut: 200 µm !

Page 33: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Results of the system IVArtificial shifts: z,α, Wert bzgl. Original nach 1,2,3 Iterationen

Page 34: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Physics ISome nice pictures ..obtained by using an

aligned VDS

Page 35: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Physics ISome nice pictures ..obtained by using an

aligned VDS

~30 Alignments inbut only one globaldata set

Page 36: Alignment of the VDS

M. Bräuer, 3.2.06Alignierung des HERA-B Vertexdetektors

Until now: align u, α, z of each (double-) sideHowever:

Alignment

z

u‘

u

track, slope: tu

β≠0

sincos ut

uu

0 utresidual u

=> Non-linear-tracking !

First glance:

Still : ToDo !