35
Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United Kingdom Collaborators : Karol A. Penson, LPTMC, Université de Paris VI, France Pawel Blasiak, Instit. of Nucl. Phys., Krakow, Pologne Andrzej Horzela, Instit. of Nucl. Phys., Krakow, Pologne

Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Embed Size (px)

Citation preview

Page 1: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Algebras of Feynman-like diagrams : LDIAG & DIAG

Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France

Allan I. Solomon, The Open University, United Kingdom

Collaborators : Karol A. Penson, LPTMC, Université de Paris VI, France

Pawel Blasiak, Instit. of Nucl. Phys., Krakow, Pologne

Andrzej Horzela, Instit. of Nucl. Phys., Krakow, Pologne

Page 2: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 3: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

About the LDIAG Hopf algebra

In a relatively recent paper Bender, Brody and Meister (*) introduce a special Field Theory described by a product formula (a kind of Hadamard product for two exponential generating functions - EGF) in the purpose of proving that any sequence of numbers could be described by a suitable set of rules applied to some type of Feynman graphs (see last Part of this talk). These graphs label monomials and are obtained in the case of special interest when the two EGF have a constant term equal to unity.

Bender, C.M, Brody, D.C. and Meister, Quantum field theory of partitions, J. Math. Phys. Vol 40 (1999)

Page 4: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

If we write these functions as exponentials, we are led to witness a surprising interplay between the following aspects: algebra (of normal forms or of the exponential formula), geometry (of one-parameter groups of transformations and their conjugates) and analysis (parametric Stieltjes moment problem and convolution of kernels). Today's talk will be devoted to the algebraic and combinatorial facet of this theory.

Some 5-line diagrams

Page 5: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 6: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Classical normal ordering problem for bosons

The normal ordering problem goes as follows.

• Weyl (two-dimensional) algebra defined as

< a+, a ; [a , a+ ]=1 > | aa+ ---> a+a +1

• Known to have no (faithful) representation by bounded operators in a Banach space.

There are many « combinatorial » (faithful) representations by operators. The most famous one is the Bargmann-Fock representation

a ---> d/dx ; a+ ---> xwhere a has degree -1 and a+ has degree 1.

Page 7: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

, 0

( , )( )k l

k lk l e

c k l a a

A word (boson string) and more generally an homogeneous operator (for the grading where a has degree -1 and a+ has degree 1) of degree e reads

Due to the symmetry of the Weyl algebra, we can suppose, with no loss of generality that e0. For homogeneous operators one can define generalized Stirling numbers (GSN) by

0

( ) ( , )( ) (Eq1)n ne k k

k

a S n k a a

Page 8: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

In particular, the boson string w=[(a+)ras ] was considered by Penson, Solomon, Blasiak and al. In this case the GSN will be denoted by Sr,s(n,k) and, due to the

particular form of W, one has

( ),( ) ( ) ( , )( )

nsnr s n r s k kr s

k s

a a a S n k a a

n=0,1,2 ...number the lines

k=0,1,2 ...number the

columns

Page 9: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 10: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United
Page 11: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 12: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

A great, powerful and celebrated result:(For certain classes of graphs)If C(x) is the EGF of CONNECTED graphs, thenexp(C(x)) is the EGF of ALL graphs. (Touchard, Uhlenbeck, Mayer,…)

The matrix attached to such a class of graphs is

M(n,k)=number of graphs with n vertices and having k connected components

Page 13: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Hadamard product of two sequences

can at once be transferred to EGFs by

which can be written

and, in case F(0)=G(0)=1 can be expressed in terms of (set) partitions.

Construction of LDIAG

Page 14: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 15: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

We will adopt the notation

for the type of a (set) partition which means that there are a1 singletons a2 pairs a3 3-blocks a4 4-blocks and so on.

The number of set partitions of type as above iswell known (see Comtet for example)

Then, with

Page 16: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Now, one can count in another way the termnumpart()numpart(). Remarking that this is the number of pairs of set partitions (P1,P2) with type(P1)=, type(P2)=. But every pair of partitions (P1,P2) has an intersection matrix ...

one has

Page 17: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 18: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

{1,5} {2} {3,4,6}

{1,2} 1 1 0

{3,4} 0 0 2

{5,6} 1 0 1

{1,5} {1,2}

{2} {3,4}

{3,4,6} {5,6}

Feynman-type diagram (Bender & al.)

Classes ofpacked matricessee NCSF VI(GD, Hivert, and Thibon)

Page 19: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Now the product formula for EGFs reads

The main interest of this new form is that we can impose rules on the counted graphs: on the ingoing (respect. outgoing) degrees (see Allan Solomon's talk where all the ingoing degrees where bound to be 1).

Page 20: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Weight 4

Page 21: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Diagrams of (total) weight 5Weight=number of lines

Page 22: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 23: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Hopf algebra structure

(H,,,1H,,)Satisfying the following axioms (H,,1H) is an associative k-algebra with unit (here k will be a – commutative - field) (H,,) is a coassociative k-coalgebra with counit : H -> HH is a morphism of algebras : H -> H is an anti-automorphism (the antipode) which is the inverse of Id for convolution.

Convolution is defined on End(H) by

= ( )

with this law End(H) is endowed with a structure of associative algebra with unit 1H.

Page 24: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

First step: Defining the spaces Diag=d diagrams C d LDiag=d labelled diagrams C d

(functions with finite supports on the set of diagrams). At this stage, we have a natural arrow LDiag Diag.

Second step: The product on Ldiag is just the superposing of diagrams

d1 d2 =

Different, in general, from d2 d1 =

And, setting m(d,L,V,z)=L(d)V(d) z|d|

one gets m(d1*d2,L,V,z)= m(d1,L,V,z)m(d2,L,V,z)

d1

d2 d2

d1

Page 25: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

This product is associative with unit (the empty diagram). It is compatible with the arrow LDiag Diag and so defines the product on Diag which, in turn, is compatible with the product of monomials.

LDiag x LDiag Mon x Mon

LDiag Diag

Diag x Diag

Monm(d,?,?,?)

Page 26: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

The coproduct needs to be compatible with m(d,?,?,?). One has two symmetric possibilities. The « white spots coproduct » reads

BS(d)= dI dJ

the sum being taken over all the decompositions, (I,J) of the White Spots of d into two subsets.For example, with the following diagrams d, d1, d2,

one has BS(d)=d + d + d1d2 + d2d1

Page 27: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams

Page 28: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

We focus on the multiplicative structure of Ldiag remarking that the objects are in one-to-one correspondence with the so-called packed matrices of NCSFVI (Hopf algebra MQSym), but the product of MQSym is given (on a certain basis MS) according to the following example

Page 29: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

In order to make a correspondence between our Hopf Algebra and those associated with Feynman Diagrams (Connes-Kreimer), we must deform the structure.

The double deformation (with two parameters q, t) provides an identity in the algebra of multiwords. It goes as follows

Stack the diagrams

Develop according to the rules : Every crossing “costs” a q Every node-stacking “costs” a t

One has to show associativity (the remaining properties are straightforward)

Page 30: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

123 Щ 456 = 1(23 Щ 456) + q4 4(123 Щ 56) + q3 t2 (14)( 23 Щ 56)

Page 31: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Associativity is shown by direct computation

Page 32: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United
Page 33: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Concluding remarksi) We have much information on the structures of Ldiag and Diag (multiplicative and Hopf structures).(by Cartier-Quillen-Milnor-Moore theorem).

ii) One can change the constants Lk=1 to acondition with level (i.e. Lk=1 for kN and Lk= 0for k>N). We obtain then sub-Hopf algebras of theone constructed above. These can apply to themanipulation of partition functions of physical models including Free Boson Gas, Kerr model and Superfluidity.

Page 34: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

iii) By deforming these algebras, we arrive at structures sufficiently general to give the

Connes-Kreimer Hopf Algebra (rooted trees) associated with “real” Feynman diagrams.

MQSym

FQSym

DIAG

Planar decorated Trees (Foissy)

Connes-Kreimer LDIAG

Brouder-FrabettiConnes-MoscoviciGrossman-LarsonLoday-Ronco, ... (to be done)

LDIAG (q,t)

Sym

SymQSym

Page 35: Algebras of Feynman-like diagrams : LDIAG & DIAG Gérard H. E. Duchamp, LIPN, Université de Paris XIII, France Allan I. Solomon, The Open University, United

Exponential formula

Two exponentials

Bell polynomials + Bitypes

LDIAG Hopf Algebra

LDIAG(q,t) MQSym

q=t=0

q=t=1

Matrix coefficients

Boson normal ordering

Product formula

Foissy,Connes-Kreimer

Diagrams and labelled diagrams