31
ALGAL BIOMASS AND RENEWABLE ENERGY: CO 2 EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE 27 maggio 2014 Federica Cerino gruppo MaB – Biologia Marina Caffè Scientifico Sezione di Oceanografia

ALGAL BIOMASS AND RENEWABLE ENERGY: CO 2 EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

  • Upload
    nailah

  • View
    42

  • Download
    4

Embed Size (px)

DESCRIPTION

Caffè Scientifico Sezione di Oceanografia. ALGAL BIOMASS AND RENEWABLE ENERGY: CO 2 EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE. Federica Cerino gruppo MaB – Biologia Marina. 27 maggio 2014. Energy-Environment. Horizon 2020: -20% CO 2 +20% energy efficiency - PowerPoint PPT Presentation

Citation preview

Page 1: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

ALGAL BIOMASS AND RENEWABLE ENERGY CO2 EFFECTS ON GROWTH AND LIPID

COMPOSITION OF MICROALGAE

27 maggio 2014

Federica Cerinogruppo MaB ndash Biologia Marina

Caffegrave ScientificoSezione di Oceanografia

80 OF GLOBAL ENERGY DEMAND IS PRODUCED FROM FOSSIL FUEL[CO2] = from 326 ppm (1970) to 395 ppm (2013)

Kyoto Protocol (1997)

Doha Conference

Horizon 2020 -20 CO2+20 energy efficiency+20 renewable energy

Energy-Environment

bull Heatbull Electricity

bull Biogasbull Bioethanolbull Biohydrogenbull Pure vegetal oilbull Biodiesel

Biomass

Organic material animal or vegetal

Mixture of fatty acyd alkyl esters obtained from vegetable oils and animal fats

ADVANTAGES- closed carbon cycle - highly biodegradable- renewable- minimal toxicity- it can be used in existing diesel engines with little or no modification

TRANSESTERIFICATION

Biodiesel

triglycerides alcohol glycerol fatty acid alkyl esters

2nd generation (non-edible)

bull jatrophabull mahuabull jojoba oilbull tobacco seedbull salmon oilbull sea mangobull waste cooking oilbull restaurant greasebull animal fats

3th generation

bull microalgae

1st generation (edible)

bull cornbull sugar canebull sunflowerbull rapeseedbull soybeansbull palm oil

Biodiesel

They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions

Microalgae are prokaryotic and eukaryotic photosynthetic organisms

They reproduce themselves using photosynthesis to convert sun energy into chemical energy

They are responsible for about half of the global net primary production

They have a high efficiency in the CO2 fixationIt is estimated that more than 50000 species exist but only around 30000 have been studied and analysed (Richmond 2004)

Microalgae

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 2: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

80 OF GLOBAL ENERGY DEMAND IS PRODUCED FROM FOSSIL FUEL[CO2] = from 326 ppm (1970) to 395 ppm (2013)

Kyoto Protocol (1997)

Doha Conference

Horizon 2020 -20 CO2+20 energy efficiency+20 renewable energy

Energy-Environment

bull Heatbull Electricity

bull Biogasbull Bioethanolbull Biohydrogenbull Pure vegetal oilbull Biodiesel

Biomass

Organic material animal or vegetal

Mixture of fatty acyd alkyl esters obtained from vegetable oils and animal fats

ADVANTAGES- closed carbon cycle - highly biodegradable- renewable- minimal toxicity- it can be used in existing diesel engines with little or no modification

TRANSESTERIFICATION

Biodiesel

triglycerides alcohol glycerol fatty acid alkyl esters

2nd generation (non-edible)

bull jatrophabull mahuabull jojoba oilbull tobacco seedbull salmon oilbull sea mangobull waste cooking oilbull restaurant greasebull animal fats

3th generation

bull microalgae

1st generation (edible)

bull cornbull sugar canebull sunflowerbull rapeseedbull soybeansbull palm oil

Biodiesel

They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions

Microalgae are prokaryotic and eukaryotic photosynthetic organisms

They reproduce themselves using photosynthesis to convert sun energy into chemical energy

They are responsible for about half of the global net primary production

They have a high efficiency in the CO2 fixationIt is estimated that more than 50000 species exist but only around 30000 have been studied and analysed (Richmond 2004)

Microalgae

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 3: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

bull Heatbull Electricity

bull Biogasbull Bioethanolbull Biohydrogenbull Pure vegetal oilbull Biodiesel

Biomass

Organic material animal or vegetal

Mixture of fatty acyd alkyl esters obtained from vegetable oils and animal fats

ADVANTAGES- closed carbon cycle - highly biodegradable- renewable- minimal toxicity- it can be used in existing diesel engines with little or no modification

TRANSESTERIFICATION

Biodiesel

triglycerides alcohol glycerol fatty acid alkyl esters

2nd generation (non-edible)

bull jatrophabull mahuabull jojoba oilbull tobacco seedbull salmon oilbull sea mangobull waste cooking oilbull restaurant greasebull animal fats

3th generation

bull microalgae

1st generation (edible)

bull cornbull sugar canebull sunflowerbull rapeseedbull soybeansbull palm oil

Biodiesel

They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions

Microalgae are prokaryotic and eukaryotic photosynthetic organisms

They reproduce themselves using photosynthesis to convert sun energy into chemical energy

They are responsible for about half of the global net primary production

They have a high efficiency in the CO2 fixationIt is estimated that more than 50000 species exist but only around 30000 have been studied and analysed (Richmond 2004)

Microalgae

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 4: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

Mixture of fatty acyd alkyl esters obtained from vegetable oils and animal fats

ADVANTAGES- closed carbon cycle - highly biodegradable- renewable- minimal toxicity- it can be used in existing diesel engines with little or no modification

TRANSESTERIFICATION

Biodiesel

triglycerides alcohol glycerol fatty acid alkyl esters

2nd generation (non-edible)

bull jatrophabull mahuabull jojoba oilbull tobacco seedbull salmon oilbull sea mangobull waste cooking oilbull restaurant greasebull animal fats

3th generation

bull microalgae

1st generation (edible)

bull cornbull sugar canebull sunflowerbull rapeseedbull soybeansbull palm oil

Biodiesel

They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions

Microalgae are prokaryotic and eukaryotic photosynthetic organisms

They reproduce themselves using photosynthesis to convert sun energy into chemical energy

They are responsible for about half of the global net primary production

They have a high efficiency in the CO2 fixationIt is estimated that more than 50000 species exist but only around 30000 have been studied and analysed (Richmond 2004)

Microalgae

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 5: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

2nd generation (non-edible)

bull jatrophabull mahuabull jojoba oilbull tobacco seedbull salmon oilbull sea mangobull waste cooking oilbull restaurant greasebull animal fats

3th generation

bull microalgae

1st generation (edible)

bull cornbull sugar canebull sunflowerbull rapeseedbull soybeansbull palm oil

Biodiesel

They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions

Microalgae are prokaryotic and eukaryotic photosynthetic organisms

They reproduce themselves using photosynthesis to convert sun energy into chemical energy

They are responsible for about half of the global net primary production

They have a high efficiency in the CO2 fixationIt is estimated that more than 50000 species exist but only around 30000 have been studied and analysed (Richmond 2004)

Microalgae

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 6: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

They are present in all earth ecosystem (aquatic and terrestrial) and live in a wide range of environmental conditions

Microalgae are prokaryotic and eukaryotic photosynthetic organisms

They reproduce themselves using photosynthesis to convert sun energy into chemical energy

They are responsible for about half of the global net primary production

They have a high efficiency in the CO2 fixationIt is estimated that more than 50000 species exist but only around 30000 have been studied and analysed (Richmond 2004)

Microalgae

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 7: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

High growth rates and productivity

Require much less land area

High oil yield

Easy to cultivate

High oil content

Tolerate sub-optimal conditions

Microalgae

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 8: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

1526617244CornMaize (Zea mays L)3213136333Hemp (Cannabis sativa L)5621863618Soybean (Glycine max L)6561574128Jatropha (Jatropha curcas L)8091291542Camelina (Camelina sativa L)8621297441CanolaRapeseed (Brassica napus L)94611107040Sunflower (Helianthus annuus L)11569130748Castor (Ricinus communis)47472536636Palm oil (Elaeis guineensis)

51927025870030Microalgae (low oil content)

1211040113690070Microalgae (high oil content)86515019780050Microalgae (medium oil content)

Biodiesel productivity(kg biodieselha year)

Land use(m2 yearkg biodiesel)

Oil yield(L oilha year)

Seed oil content( oil by WT in biomass)

Plant source

Mata et al 2010

Microalgae

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 9: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

Mata et al 2010

growth mediumnutrient concentrationlight

temperaturepH

airCO2

Microalgae - Biodiesel

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 10: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

Microalgae - Biodiesel

BIOMASS

LIPID CONTENT0

10

20

30

40

control medium 2 medium 4 N 4 mineral

fatt

y ac

ids

()

0

20

40

60

80

100

control medium 2 medium 4 N 4 mineral

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

CRESCITA

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 11: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

To analyze the answers of two microalgae to different CO2 concentrations

CELL GROWTHLIPID CONTENT

Chlorella vulgaris

Pleurochrysis cf pseudoroscoffensis

Aim

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 12: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

air CO2gas mixer

pH controller

illumination

Material amp Methods

bull 2 cylindrical photobioreactors in plexiglassbull 20 L max volumebull photoperiod controllerbull pH controllerbull gas-mixer

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 13: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

bull Generally unicellular and colonial but also pluricellular

bull Abundant in freshwater environments

Chlorella vulgarisbull Highly resistantbull Easily cultivable with a high growth rate

Used forbull CO2 sequestrationbull Wastewater depurationbull Nutritional supplementbull Applications in human health

Material amp MethodsChlorella (green algae)

Chlorophyceae

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 14: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

Material amp Methods

T=20 plusmn 1degCLD=1212light=250-300 microE m-2s-1

air CO2gas mixer

pH controller

illumination

Chlorella (green algae)

control CO2 1

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

lipid contentbull total lipid contentbull fatty acid composition

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 15: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

ResultsChlorella (green algae)

05

1015202530354045

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

day

106 c

ells

ml-1

C CO2

Max= 36 106 cell ml-1micro= 117 d-1

T2= 14

Max= 32 106 cell ml-1micro= 138 d-1

T2= 12

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 16: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

C16 C18 C20C161 cis9 C181 cis9 C181n7C182 cis912 C183 cis91215

C CO2

0

20

40

60

80

100

fatt

y ac

ids

()

C CO2

ResultsChlorella (green algae)

0

20

40

60

80

100

fatt

y ac

id c

ompo

siti

on

saturated monounsaturated polyunsaturatedC CO2

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 17: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

5 microm

Play key roles inbull marine ecosystem as primary producersbull marine biogeochemistry as producers of

organic carbon carbonate and dimethylsulphide

bull calcareous nanophytoplanktonbull with external calcite (CaCO3) plates

(coccoliths) covering their surface

10 microm

Coccolithophores (Prymnesiophyceae)

Material amp MethodsPleurochrysis (coccolithophore)

Pleurochrysis cf pseudoroscoffensis

bull marine species isolated in the Gulf of Trieste

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 18: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

air CO2gas mixer

pH controller

illumination

cellular growthbull cell abundancesbull growth rate bull duplication timebull maximum concentration

morphometric analysisbull cellular size

bull coccolith size

control CO2 1CO2 2

chemical parameters bull nutrientsbull POCPICPTNbull pH

Material amp Methods

lipid contentbull total lipid contentbull fatty acid composition

Pleurochrysis (coccolithophore)

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 19: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

0 1 2 3 4 5 6 7 8 90

100

200

300

400

500

103 c

ells

ml-1

day0

100

200

300

400

500

103 c

ells

ml-1

0 1 2 3 4 5 6 7 8 9day

Max= 286 105 cell ml-1micro= 086 d-1

T2= 19

Max= 432 105 cell ml-1micro= 101 d-1

T2= 16

pH= 84 plusmn 03 pH= 75 plusmn 02

C CO2

p lt005

pH= 81 plusmn 04 pH= 71 plusmn 01

Max= 271 105 cell ml-1micro= 082 d-1

T2= 20

Max= 385 105 cell ml-1micro= 106 d-1

T2= 16

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 20: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

C CO2

0 1 2 3 4 5 6 7 8 9day

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0 1 2 3 4 5 6 7 8 9day

02000400060008000

100001200014000

POC

(microm

ol l-1

)

0500

100015002000250030003500

PTN

(microm

ol l-1

)

0500

100015002000250030003500

PIC

(microm

ol l-1

)CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 21: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

00

05

10

15

20

25

30

3d 9d

cocc

olith

siz

e (microm

)

C L C W CO2 L CO2 W

day

00

05

10

15

20

25

30

2d 6d

cocc

olit

h si

ze (micro

m)

C L C W CO2 L CO2 W

day

02468

101214

0 5h 3d 8d 9d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

02468

101214

0 5h 3d 7d

cell

size

(microm

)

C A1 C A2 CO2 A1 CO2 A2

day

C CO2CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 22: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

C CO2

10 microm 10 microm 10 microm 10 microm

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 23: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

CO2 1 CO2 2

Pleurochrysis (coccolithophore)Results

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

saturated monounsaturated polyunsaturated

0

5

10

15

20

C CO2 1

tota

l lip

id c

onte

nt (

)

0

5

10

15

20

C CO2 2

tota

l lip

id c

onte

nt (

)

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

0102030405060708090

100

C CO2 1

fatt

y ac

id c

ompo

siti

on (

)

C16 C17 C18C20 C22 C24C161 cis9 C181 cis9 C201 w9C221 w9 C182 cis912 C183 cis 91215

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 24: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

bull higher growth ratebull higher number of divisions per daybull higher lipid content

Potential utilization in biodiesel production

ConclusionsChlorella (green algae)

bull biomass increasebull higher growth ratebull higher number of division per daybull slight effect on morphology

Potential utilization in CO2 removal

In both experiments (1 and 2 CO2)

In the experiment with CO2 2 the maximum of biomass was reached earlier

Pleurochrysis (coccolithophore)

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 25: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

bull To search for the best growth conditions to have higher lipid synthesis and higher cell growth

bull To test other species and strains

bull To test the effects of other culture conditions (light salinity nutrients temperature)

bull To test the combined effects of several different factors to analyze their eventual sinergy in the lipid production

Perspectives

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 26: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

PROCESSINGHARVESTING

lightCO2

nutrients

wastewater

Lipids

Biodiesel

Cosmetic

Proteins

Animal feed

Nutritional supplement

Carbohydrates

Ethanol

Perspectives

BIOREFINERY

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 27: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

Si ringraziano per la collaborazione- Cinzia Comici- Martina Kralj- Gianmarco Ingrosso- Ana Karuza- Cinzia Fabbro- Cinzia De Vittor - Michele Giani

- Prof Bogoni UNITS- Prof Procida UNITS- Dott Urbani UNITS

Parte di questo studio egrave inserito nel progetto CO2 Monitor

THANK YOU

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 28: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

C CO2

ResultsCO2 1 CO2 2

Pleurochrysis (coccolithophore)

0

10

20

30

40

50

P-PO

4 (microm

ol L-1

)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (microm

ol L

-1)

0 1 2 3 4 5 6 7 8 9day

0

10

20

30

40

50

P-PO

4 (micro

mol

L-1)

0 1 2 3 4 5 6 7 8 9day

0

200

400

600

800

1000

N-NO

3 (micro

mol

L-1

)

0 1 2 3 4 5 6 7 8 9day

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
Page 29: ALGAL BIOMASS AND RENEWABLE ENERGY:  CO 2  EFFECTS ON GROWTH AND LIPID COMPOSITION OF MICROALGAE

Perspectivesla produzione di biodiesel da microalghe

non egrave ancora una realtagrave commercialmente significativa

abbattimento dei costi relativi alla somministrazione di nutrienti tramite il trattamento delle acque reflue e lrsquoutilizzo dei nutrienti in esse presenti

abbattimento dei costi relativi alla somministrazione di CO2 tramite il recupero e utilizzo dei gas di scarico industriali come fonte della CO2 necessaria alla crescita

abbattimento del dispendio idrico necessario al mantenimento delle colture tramite riciclo dei mezzi

miglioramento delle tecniche per il processamento della biomassa soprattutto per quanto riguarda la fase di raccolta

applicazione di tecniche di ingegneria genetica per incrementare lrsquoefficienza fotosintetica e quindi il rendimento della biomassa il miglioramento del tasso di crescita del contenuto in olio e della tolleranza alla temperatura

risoluzione del problema dellrsquoapplicazione su larga scala dei risultati ottenuti in laboratorio (scaling-up) allestimento di impianti pilota su larga scala da cui ottenere dati che possano essere usati per valutazioni di fattibilitagrave economica

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31