54
Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information Continuous variables for discrete photons The photon and the vacuum cleaner

Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Embed Size (px)

Citation preview

Page 1: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Alfred U’RenDaryl AchillesPeter MosleyLijian Zhang

Christine SilberhornKonrad Banaszek

Michael G. RaymerIan A. Walmsley

The Center for Quantum

Information

Continuous variables for discrete photons The photon and the vacuum cleaner

Page 2: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

• Continuous variables for single photons

• Reduced noise: Fock states

• Increased correlations: Engineered space-time entanglement

• Application: single-photon CV QKD

Outline

• Peak intensity vs average power: brighter nonclassical light

• Precise timing: concatenating nonclassical sources

• Broad bandwidth: engineering space-time correlations

Ultrafast ?

Page 3: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Continuous variables for single photons

• Localized modes

• Role in QIP

• Reduced noise: Fock states

• Increased correlations: Engineered space-time entanglement

• Application: single-photon CV QKD

Page 4: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

x

p

Optical field:

• Phase space of mode functions:

x p 2

E r, t f x,z, t * f * x,z, t

p k

Page 5: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

t

x

Photon is in a pure state, occupying a single mode

Mode: restricted to a small region of space-time

One-photon interference: Modes must have good classical overlap

Two-photon interference: Photons must be in pure states

1 d dx x, ˆ a ,x† vac

Femtosecond photons: space-time “localized” modes

11 d1d2 f 1,2 ˆ a 1

† ˆ a 2

† vacBiphoton may be space-time entangled:

Page 6: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Two-photon interference: The Hong-Ou-Mandel effect

a

b

d

c a

a

A pair of photons incident on a 50:50 beamsplitter both go one way or the other with 50% probability:

Bosonic behavior: bunching

Interference depends on:

Symmetry of biphoton state

Purity of biphoton state

…. and mode matching

Page 7: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Coincidence Counts

D1

D2

signal

idler

Coincidence Counts

D1

D2

signal

idler

+

2 2

Red at D2 Blue at D2

> 0

If the photons are labelled, say by having a definite frequency, then the pathways leading to a coincidence are distinguishable in principle, and no interference can take place

Probability of photon detection simultaneously at D1 and D2

•Broadband photon interference

1k111k22

Page 8: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

2

If the photons are entangled, having no definite frequency, then the pathways leading to a coincidence are indistinguishable in principle, and interference occurs

Probability of photon detection simultaneously at D1 and D2

Coincidence Counts

D1

D2

signal

idler

Coincidence Counts

D1

D2

signal

idler

-

2

Red at D2

Blue at D2

= 0

Coincidence Counts

D1

D2

signal

idler

+

Coincidence Counts

D1

D2

signal

idler

-

1k111k22

1k121k21

• Broadband photon interference

Page 9: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

0

0

Reflection from top of beamsplitter (BS) gives 0 phase shift

ˆ d 0 T ˆ b v R ˆ b 0

Ralph, White, Milburn, PRA 65 012314 (2001)

Linear optical quantum computing: operation depends on what is not seen….

Conditional sign-shift gate

1

1

ˆ c 1 T ˆ b 1 Rˆ a 1

ˆ d 1 T ˆ a 1 R ˆ b 1BS

Control

Target

10

1101

00

10

- 1101

- 00

CT in CT out

?

ˆ c 0 T ˆ a v Rˆ a 0

Reflection from bottom of beamsplitter gives phase shift

Page 10: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

11 ˆ a 1† ˆ b 1

† vac T 2 R2 c 1† ˆ d 1

† RT ˆ c 1†2

ˆ d 1†2 vac

Hong-Ou-Mandel effect: some details

Different sign shift when two photons are incident on the BS

1

1

ˆ c 1 T ˆ b 1 Rˆ a 1

ˆ d 1 T ˆ a 1 R ˆ b 1

Interference of two pathways

Sign shift depends on R and T

Provided photons are in single modes, in pure states…….

T 2 R2 11 RT 02 20

Page 11: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Reduced noise

• Efficient generation of Fock states

• Testing sub-Poissonian photon number fluctuations

• Continuous variables for single photons

• Increased correlations: Engineered space-time entanglement

• Application: single-photon CV QKD

Page 12: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

-40 -20 0 20 40

0

0

2-photon probability(i) single photon LED

(ii) conventional LED

Cor

rela

tion

Delay (ns)

single photon detector, A

single photon detector, B

time interval analyser

device emission

50/50 beam-splitter

StartStop

mesaaperture

n-contact

p-contact

n-contact

p-contact

electron injector

quantum dot layer

substrate/buffer

hole injector

insulator

single photon emission

Spontaneous emission from single “atoms” generates single photons

A. Shields et al., Science 295, 102 (2002)

Page 13: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Spontaneous generation via downconversion generates photon pairs

p

i

s

Pumpphoton(e-ray)

Signalphoton(e-ray)

Idlerphoton(o-ray)

• Parametric downconversion process in a (2) nonlinear crystal:

• Phasematching conditions:

Ultrafast pulsed pump

beam centered at 400 nm

Photon pair created at

around 800 nm

Energy conservation:

Momentum conservation:p

i

s

ks

kpki

Correlation

S I P

k S

k I

k P / L

Dispersion couples energy and momentum conservation

Page 14: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Quasi-phase matching

k = 0

Inte

nsi

ty

L

k

Quasi-phase matching enables PDC in a waveguide

well-defined spatial mode: high correlation

large nonlinear interaction: high brightness

Nonlinear susceptibility is structured (e.g. periodic poling) decoupling conservation conditions

Roelofs, Suna, et al J. Appl. Phys. 76 4999 (1994)

KTP type-II PDC

Page 15: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Experimental apparatus: fs PDC in KTP T-II waveguide

KTP waveguide

Blue pump

Power: 2W

PDC

30kHz coinc. rate

Page 16: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Conditioned coincidence circuit

Experimental apparatus

Low-loss spectral filter

Pump laser

Timing det.

KTP waveguide

Page 17: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Experimental results

coincidence

&

Page 18: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Test of nonclassicality: “click-counting” inequality for POVMs

Multi-fold coincidence counts for classical light are bounded:

B Rabc

Ra

Rab

Ra

.Rac

Ra

0

Classical bound for monotonic „click-counting“ detectors:

Rabc

Rac

Rab

Ra

Counting rates

For a photon pair, with perfect detection, B=-0.25

BWG 0.03

I2 0 I 0 2

RaRabc

RabRac

0.003 1

Page 19: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

1

1

trigger if n

filter

Pulsed blue light

Generate photons in correlated beams, and use the detection of n in one beam to herald the presence of n in the other.

N-photon generation

Concatentation of sources requires pulsed pump

C.K. Hong and L. Mandel, Phys. Rev. Lett. 56, 58 (1986)

More recently, twin beams developed by Kumar, Raymer..

Page 20: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Principle: photons separated into distributed modes

ˆ U •••

inputpulse

APDs

linear network

APD

50/50

(2m)LL

2m+1 Light pulses

D. Achilles, Ch. S., C. Sliwa, K. Banaszek, and I. A. Walmsley, Opt. Lett. 28, 2387 (2003).

Fiber based experimental implementation

•••

realization of time-multiplexing with passive linear elements & two APDs

inputpulse

Fiber-based, photon-number resolving detector

Page 21: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

High-efficiency number resolving detection

• Detection

• FPD - clock• APD - trigger• APD - TMD

• Timing diagram

• FPD - clock• APD - trigger• TMD output

Page 22: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

k

&

TMD

losses in signal arm

Estimation of losses from count statistics

coherent state

Conditional state preparation with two-photon trigger

count probability conditioned on coincidence trigger

33,8 %

29,6 %

32,4 %

s

p k | tc

p k 0 | tc 1 s 2

p k 1 | tc 2s 1 s

p k 2 | tc s2

Page 23: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

State Reconstruction with two-fold trigger condition

The photon statistics are related to the count statistics by thebinomial distribution

losses in signal arm

count statistics

photon number statistics

suppression due to two-fold trigger

suppression due to PDC statistics

The count statistics can be invertedto retrieve the photon statistics

raw detection efficiency

State reconstruction:

L kn

n

k

s

k 1 s n k

s

s 33.8%

min

L p

2 ( 0)

p

n

k

Page 24: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Increased correlations: Engineering space-time

entanglement

• Entanglement and pure state generation

• Engineering entanglement in PDC

• Continuous variables for single photons

• Reduced noise: Fock states

• Application: single-photon CV QKD

Page 25: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Filtering trades visibility and count rate

Interference from independent sources

Page 26: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

“click”

IDLER ?

signal

idler

filter

Conditionally prepared single photons are not usually in pure states

The purity of the prepared state depends not only on the number correlation between the beams, but also on the space-time

correlations between the photonic wavepackets

Page 27: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

The two-photon state:

x =

dsdi

One-Photon Product of

Fock States

s

i

si

i

s

s i

Pump Envelope

2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.52.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

arctan(oe

)

Phase-Matching Function

s ,i

s

i

Spectrally entangled!

Page 28: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Spectral filtering

p

i

s

Interference filter 1

Interference filter 2

IF1

IF2

• Spectral filtering can remove correlations…

• But at the expense of the count ratesde Riedmatten et al,PRA 67, 022301 (2003)

Page 29: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Decomposition of field into Discrete Wave-Packet Modes.

vac d ' d C (, ' ) 1 S 1 I '

vac jj 1

S j 1

I j

1S j

d j () 1 S

1I j

d j () 1 I

Single-photon Wave-Packet States:

(Schmidt Decomposition)

Characterization of spectral entanglement

Page 30: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Type II collinear BBO

C. K. Law, I. A. W., and J. H. EberlyPhys. Rev. Lett. 84, 5304-5307 (2000)

Schmidt mode amplitudes

Spectral Schmidt modes:

Spectral Schmidt decompositionK

1

n2

nCooperativity:

No. modes

Page 31: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Signal and idler are temporally factorable, so carry no distinguishing information about the conjugate arrival time.

For bulk crystals,using a Gaussian pump mode, require:

• (Phase matching)

• , where

• (Group velocity matching)

Factorable spatio-temporal states: space-time group matching

Spatio-temporal two-photon joint amplitude:

Page 32: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Controlling the number of Schmidt modes.

By:•Suppressing the degenerate mode and•Balancing the crystal length andthe beam waist diameter

….can isolate onenon-degenerate pair.

0w

L

Transversemomentum contribution

Longitudinalmomentum contribution

s s s

i i i

=

Example: Binary entanglement

Page 33: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

• KD*P @ 405 nm

v p vs

Asymmetric (Grice,U’Ren & IAW,PRA (2001))

Pure state generation using heralding: source engineering required

The pump wavelength, bandwidth and spectra phase, the parameters of the crystal material, and in the case of quasi-phasematching the poling period can be chosen, such that the joint spectral amplitude factors.

ss

ii

Signal in a pure state if

s1, i1 s1 i1

Symmetric (Keller & Rubin, PRA,1997)

This can be achieved by group delay matching.

v p vs v i

2

• BBO @ 800 nm

Ultrafast pump pulse:

o-photon matched to pumpVery broad band (20 fs)Very precise timing

e - photonNarrow band (10 ps)Very precise timing

K=1.001, pure photons, no timing jitter

Page 34: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Filtering trades visibility and count rate

Engineering sources to have K=1 leads to unit visibility without compromising count rate

12 1 2( , )f

34 3 4( , )f

Interference from independent engineered sources

Page 35: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

10x BBO + 10x calcite 48m 58 m

Engineered structures for pure state generation

Linear sections (over)compensate group velocity mismatch of nonlinear sections

Mean group-delay matching using distributed nonlinearity

Phasematching function modified by macroscopic structure (viz. 1-D PBG)

Isolated factorable component

s i l s i nl

si p l si p nl

GDM between pump and DC

GDM difference between DC

Erdmann, et al. CLEO (2004)

U’Ren, et al. Laser Physics (2005)

Page 36: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Two-segment composite: Principle

Each possible location of pair generation in the first crystal has a corresponding location leading to opposite group delay in the second

Page 37: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Engineered GVM structures

Two-segment composite: Experimental demonstration of group velocity matching

Apparatus:Single 250m BBO Two 250m BBO

Two 250m BBO w/comp Two 250m BBO w/anti-comp

Page 38: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Positively frequency entangled states Generalized group velocity matching by means of pump pulse shaping

Dispersion cancellation to all orders at optical fiber wavelengths

qj () k ' j () k 'p (2) j s,i

KTP phase matchingfunction at 1.58m:

KTP spectral Intensity at 1.58m:

Erdmann et al, Phys. Rev. A 62 53810 (2000)

S(s ,i ) (s i )

Source engineering for other applications

Kuzucu et al, Phys. Rev. Lett. 94, 083601 (2005)

Z.D. Walton, et al., Phys. Rev. A 70, 052317 (2004)J.P. Torres, et al., Opt. Lett. 30, 314 (2005)

Page 39: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

0 =800 nm KG = 25206/mmn/n ~ 6x10-4 ( = 2/mm)

DBR 99% mirror

Distributed-cavity PDC for pure states

M. G. Raymer, et al., submitted (2005)

Distributed feedback cavity

Page 40: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Application: QKD using single photon continuous variables

• Spatial entanglement and CV QKD

• Mutual information and eavesdropping

• Continuous variables for single photons

• Reduced noise: Fock states

• Increased correlations: Engineered space-time entanglement

Page 41: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Photons generated by PDC are correlated in lateral position and transverse wavevector

kp

If

The security is guaranteed by uncertainty principle

QKD using spatial entanglement

Continuous quantum correlations in photon pairs can be used for key distribution

Then these EPR correlations can be used to transmit information secretly

Page 42: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Photon transmission

(Raw keys) Key sifting

Estimate the error rate and quantum correlations

Interactive error correction

Privacy amplification Authentication

For realistic applications, the continuous variables must be discretized.

CV QKD protocol

Page 43: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

•Lenses are used to select either measurement of position or momentum.

•Detection in coincidence between Alice and Bob.

Experimental Set-up

QKD using spatial entanglement

Page 44: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

• Since the Hilbert space of the photonic degree of freedom is large, we can expect to transmit more than one bit per photon

• For actual PDC sources, the mutual information per photon pair is determined by the length of the crystal and the spot size of the pumpzL 0w

QKD using spatial entanglement

Mutual information analysis

Page 45: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Eve intercepts the photon sent to Bob, measures the position or the momentum, prepares another photon and resends it to Bob. The state of the photons Eve resends (eigenstate, squeezing state, etc) will affect the security of the system.

Fraction of photons sent by Alice to Bob that are intercepted by Eve

(a) Mutual information between Alice and Bob when Eve resends position eigenstate

(b) when Eve resends the ‘optimal’ state

(c) Mutual information between Alice and Eve

ABIABI

AEI

AEAB II

To extract a secure key, it is sufficient that

QKD using spatial entanglement

Eavesdropping: Intercept and resend strategy

Page 46: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

The VP indicates the strength of correlations between Alice and Bob. For large entanglement the VP is very small.

Eavesdropping will decrease the entanglement, and increase the VP.

By measuringthe VP on a subset of data, Alice and Bob can detect the presence Eve

222 /)()( BABA rrppVariance Product

The VP strongly depends on the state that Eve resends to Bob.

There exists a state that can minimize the VP. This state is defined as the optimal state.

QKD using spatial entanglement

All about Eve

Page 47: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

What about other continuous degrees of freedom?

Entropy of entanglement, as a function of length (for fixed pump bandwidth and fixed central wavelength) for some common crystals.

S kk 1

log2 k

QKD using spectral entanglement

Spectral mutual information:

Entropy of entanglement

Page 48: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

• Continuous variables are useful things even at the level of individual photons

Pulsed sources - can be concatenated- allow flexible space-time engineering- enable new kinds of detectors

• Reduced noise:Efficient conditional nonclassical state preparation

• Engineered correlations:Conditional pure-state preparation

• Application:CV QKD using entangled photon pairs

Summary

Page 49: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information
Page 50: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Spontaneous Parametric Down Conversion in a second-order nonlinear, birefringent crystal (Type-II)

Momentum conservation:

(Phase matching)

k S

k I

k P / L

k S

k I

k P

pumpSignal V-Pol

Idler H-Pol

Energy conservation:

S I P

red red blue

L

kz

frequency

P

VH

H-Pol

Dispersion couples energy and momentum conservation

Page 51: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Detection of quadrature amplitude fluctuations

Homodyne detection

localoscillator

+/-

signal

50/50

photo-diode

photo-diode

i+ / i-

The difference photoelectron number measures the quadrature amplitudes of the input mode a

x

p

x

x

p(x)

x

p(x)

Measurement of the marginal

distributions for different

phases enables reconstruction

of the complete phase space

distribution

Homodyne tomography

Smithey et al, Phys. Rev. Lett, 70, 1244 (1993)

• Space-time mode matched local oscillator is needed

• Mode mismatch and losses cannot be distinguished from input state

Page 52: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

F. T. Arecchi, Phys. Rev. Lett. 15, 912 (1965)

G – Bose-Einstein statistics (thermal light)

L – Poissonian statistics (coherent light)

n

I 2

• Intensity fluctuations

• Photon number fluctuations

• Prob. Of generating n photoelectrons in detector of efficiency from a pulse of fixed energy

Detection of intensity fluctuations

(Poissonian)

Page 53: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

Intensity correlations

Measurement of the two-time intensity correlation function:

Schwarz inequality:

For a stationary source and

&

delay

Coincidence circuit

Light beam

Photomultiplier

Photo-multiplier

Ratio is a measure of nonclassicality

Page 54: Alfred U’Ren Daryl Achilles Peter Mosley Lijian Zhang Christine Silberhorn Konrad Banaszek Michael G. Raymer Ian A. Walmsley The Center for Quantum Information

trigger

Zero-Bandwidth Filter, 0

Pure-state creation at cost of vanishing data rate.

P

'

Filter

1 '

1

Pure state generation by filtering:

Goal: pure single-photon wave-packet states

d 1