20
Alexey Petrov (WSU) CHARM-2007, Ithaca, NY Alexey A. Petrov Wayne State University Table of Contents: • Introduction • CP-violation in charmed mesons • Observables Expectations in the Standard and New Physics Models • CP-violation in charmed baryons • Conclusions and outlook CP violation in charm

Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Alexey A. PetrovWayne State University

Table of Contents:

• Introduction• CP-violation in charmed mesons

• Observables• Expectations in the Standard and New Physics Models

• CP-violation in charmed baryons• Conclusions and outlook

CP violation in charm

Page 2: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Murphy’s law:

Modern charm physics experiments acquire ample statistics; many decay rates are quite large.

THUS:

It is very difficult to provide model-independent theoretical description of charmed quark

systems.

Introduction

17

Now, this does not apply to CP-violation in charm: both measurements and predictions are hard…

Page 3: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

CP-violation preliminary

16

In any quantum field theory CP-symmetry can be broken

1. Explicitly through dimension-4 operators (“hard”)

Example: Standard Model (CKM):

2. Explicitly through dimension <4 operators (“soft”)

Example: SUSY

3. Spontaneously (CP is a symmetry of the Lagrangian, but not of the ground state)

Example: multi-Higgs models, left-right models

These mechanisms can be probed in charm transitions

Page 4: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

CP-violation in charmed mesons

Possible sources of CP violation in charm transitions:

CPV in Δc = 1 decay amplitudes (“direct” CPV)

CPV in mixing matrix (Δc = 2)

CPV in the interference of decays with and without mixing

( )

f

fim

f

ff A

AeR

AA

pq δφλ +==

( ) 1 1 2 21 2 , 0, 0i i i i

fA D f A A e e A e eδ φ δ φ δ φ→ ≡ = + Δ ≠ Δ ≠

00 DD −

122

1212

1212

22 ≠

Γ−Γ−

== ∗∗ iMiM

qpRm

15

One can separate various sources of CPV by customizing observables

Page 5: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Comment

14

With b-quark contribution neglected: only 2 generations contribute

real 2x2 Cabibbo matrix⇒

Any CP-violating signal in the SM will be small, at most O(VubVcb*/VusVcs

*) ~ 10-3

Thus, O(1%) CP-violating signal can provide a “smoking gun” signature of New Physics

Generic expectation is that CP-violating observables in the SM are small

Δc = 1 amplitudes Δc = 2 amplitudes

0ud cd us cs ub cbV V V V V V∗ ∗ ∗+ + =

The Unitarity Triangle for charm:

λ∼ λ∼ 5λ∼

Penguin amplitude

Page 6: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

How to observe CP-violation?

13

There exists a variety of CP-violating observables

1. “Static” observables, such as electric dipole moment

2. “Dynamical” observables:

a. Transitions that are forbidden in the absence of CP-violation

b. Mismatch of transition probabilities of CP-conjugated processes

c. Various asymmetries in decay distributions, etc.

Depending on the initial and final states, these observables can be affected by all three sources of CP-violation

( ) ( )D f D fΓ → ≠ Γ →

[ ] [ ]initial state final stateCP CP≠

Page 7: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

a. Transitions forbidden w/out CP-violation

Recall that CP of the states in are anti-correlated at ψ(3770):

a simple signal of CP violation:

( ) ( ) ⎥⎦⎤

⎢⎣⎡ −++−++

ΓΓ=Γ

2222222 2121

21

2112

2 FFFFm

FFFF yxyx

Rλλλλ

( ) ))((3770 00 ±±→→ CPCPDDψ

))(( 2100 FFDD →

CP-violation in the rate → of the second order in CP-violating parameters.

Cleanest measurement of CP-violation!f

ff A

Apq

CP eigenstate f1 ⎥⎦⎤

⎢⎣⎡ −+= )()()1()()(

21

1

0

20

2

0

1000 kDkDkDkDDD L

L1

CP eigenstate f2

f

1f 2f

2f[ ] [ ]1 2CP f CP f=

τ-charm factory (BES/CLEO-c)

12

Page 8: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

If CP violation is neglected: mass eigenstates = CP eigenstatesCP eigenstates do NOT evolve with time, so can be used for “tagging”

KS

π0

CP Eigenstate (-)

f1

f2

21)( ffD CP →+

⎥⎦⎤

⎢⎣⎡ −+= )()()1()()(

21

1

0

20

2

0

1000 kDkDkDkDDD L

L

t-charm factories have good CP-tagging capabilities CP anti-correlated ψ(3770): CP(tag) (-1)L = [CP(KS) CP(π0)] (-1) = +1CP correlated ψ(4140)

(-)

τ-charm factory (BES/CLEO-c)

Can measure (y cos φ): ( )tot

CPl XlDBΓ→Γ

= ±±

ν⎟⎟⎠

⎞⎜⎜⎝

⎛−=

+

+l

l

l

l

BB

BBy

41cosφ

D. Atwood, A.A.P., hep-ph/0207165D. Asner, W. Sun, hep-ph/0507238

11

What if f1 or f2 is not a CP-eigenstate

Page 9: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

b. Mismatch of transition probabilities

Look at charged D’s:

10

( ) ( )( ) ( )

( )( )

*1 2 1 2

2 2 *1 2 1 2 1 2

2 Im sin

2 Re cosf

D f D f A Aa

D f D f A A A A

δ δ

δ δ

+ −

+ −

Γ → −Γ → −= =Γ → +Γ → + + −

At least two components of the transition amplitude are required

( ) 1 1 2 21 2

i i i ifA D f A A e e A e eδ φ δ φ+ → ≡ = +

Then, a charge asymmetry will provide a CP-violating observable

…or, introducing rf=|A2/A1|: 2 sin sinf fa r φ δ=Prediction sensitive to details of hadronic model

Same formalism applies if one of the amplitudes is generated by New Physics

need rf ~ 1 % for O(1%) charge asymmetry

Page 10: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

b. Mismatch of transition probabilities - II

( ) ( )( ) ( )f

D f D fa

D f D f

Γ → −Γ →=Γ → +Γ →

Those observables are of the first order in CPV parameters, but require tagging

9

This can be generalized for neutral D-mesons too:

and( ) ( )( ) ( )f

D f D fa

D f D f

Γ → −Γ →=Γ → +Γ →

Each of those asymmetries can be expanded as

d m if f f fa a a a= + +

direct mixing interference

2 sin sindf f f fa r φ δ=

( )1 cos2

fmf f m m

ya R R R φ−

′= − −

( )1 sin2

fif f m m

xa R R R φ−

′= +

1. similar formulas available for f2. for CP-eigenstates: f=f and yf’ → y

Page 11: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

What to expect?

Standard Model asymmetries (in 10-3):

New Physics (in new tree-level interaction and new loop effects):

Final state π+η π+η’ K+K0 π+ρ0 π0ρ+ K*+K0 K+K*0

af, cos δ > 0 -1.5±0.4 0.04±0.01 1.0±0.3 -2.3±0.6 2.9±0.8 -0.9±0.3 2.8±0.8

af, cos δ < 0 -0.7±0.4 0.02±0.01 0.5±0.3 -1.2±0.6 1.5±0.8 -0.5±0.3 1.4±0.7

F. Buccella et al, Phys. Lett. B302, 319, 1993

Model rf

Extra quarks in vector-like rep < 10-3

RPV SUSY < 1.5×10-4

Two-Higgs doublet < 4×10-4

Y. Grossman, A. Kagan, Y. Nir, Phys Rev D 75, 036008, 2007

8

Page 12: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Experimental constraints

7

HFAG provides the following averages from BaBar, Belle, CDF, E687, E791, FOCUS, CLEO collaborations

Most measurements are at the percent sensitivity

Page 13: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Time-dependent observables

Time dependent (lifetime difference analysis):separate datasets for D0 and D0

This analysis requires 1. time-dependent studies2. initial flavor tagging (“the D* trick”)

( ) ( )( ) ( )

0 0

0 0cos sin

2m

KK

D K K D K K AY y xD K K D K K

φ φ+ − + −

+ − + −

′ ′Γ → −Γ →Δ = = −

′ ′Γ → +Γ →

−+→ KKtD )(0

6

m iKK KK KKY a aΔ = + universal for all final states

Y. Grossman, A. Kagan, Y. Nir, Phys Rev D 75, 036008, 2007

S. Bergmann,Y. Grossman, Z. Ligeti, Y. Nir, A.A. Petrov, Phys. Lett. B486, 418 (2000)

BaBar [2003]: ΔY=(-0.8±0.6±0.2)×10-2

Belle [2003]: ΔY=(+0.20±0.63±0.30)×10-2

World average: ΔY=(-0.35±0.47)×10-2

Page 14: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Untagged observables

Look for CPV signals that are 1. first order in CPV2. do not require flavor tagging

Consider the final states that can be reached by both D0 and D0, but are not CP eigenstates (πρ, KK*, Kπ, Kρ, …)

where

( ), f fUCP

f f

A f tΣ −Σ

=Σ +Σ

( )[ ] ( )[ ]0 0f D f t D f tΣ = Γ → +Γ →

A.A.P., PRD69, 111901(R), 2004hep-ph/0403030

5

Page 15: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

CP violation: untagged asymmetries

Expect time-dependent asymmetry…

( )( )

0

0

iA D f

ReA D f

δ→

=→

2 22 22 sin sin cos cos ,f ff fB y R A A A Aφ δ φ δ⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

( ) ( ) ( ) ( )21,U tCPA f t e A B t C t

D t−Γ ⎡ ⎤= + Γ + Γ⎣ ⎦

… whose coefficients are computed to be

( ) 22 22 21 1 ,f ff f fA A A A R A A⎡ ⎤⎛ ⎞= − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

This is true for any final state f2

.2xC A=

… and time-integrated asymmetry

( ) [ ]1, 2UCPA f t A B C

D= + +

4

Page 16: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

CP violation: untagged asymmetries (K+π−)

For a particular final state Kπ, the time-integrated asymmetry is simple

This asymmetry is1. non-zero due to large SU(3) breaking2. contains no model-dependent hadronic

parameters (R and δ are experimental observables)3. could be as large as 0.04% for NP

( ) sin sinUCPA K y Rπ δ φ+ − = −

Note: larger by O(100) for SCS decays (πρ, …) where R ~ 1

A.A.P., PRD69, 111901(R), 2004hep-ph/0403030

3

Page 17: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

CP-violation in charmed baryons

Other observables can be constructed for baryons, e.g.

( ) ( )[ ] ( )5, ,c

Nc S PA N u p s A A u p sπ γ Λ Λ ΛΛ → = +

2

FOCUS[2006]: AΛπ=-0.07±0.19±0.24

( )1 1 coscos 2 c

dW Pd

α ϑϑ Λ= +

These amplitudes can be related to “asymmetry parameter”( )

2 2

2 Rec

S P

S P

A A

A Aα

Λ =+

If CP is conserved , thus CP-violating observable is cc

CPα αΛΛ ⇒ −

cc

cc

fAα αα α

ΛΛ

ΛΛ

+=

Same is true for Λc-decay… which can be extracted from

Page 18: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Conclusions

Charm provides great opportunities for New Physics studies– large available statistics – small Standard Model background

Different observables should be used to disentangle CP-violating contributions to Δc=1 and Δc=2 amplitudes– time-dependent and time-independent charge asymmetries– CP-tagged measurements

Observation of CP-violation in the current round of experiments provide “smoking gun” signals for New Physics

- new observables should be considered - untagged CP-asymmetries- triple-product correlators in D -> VV decays- CP-asymmetries in baryon decays

1

Page 19: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

Additional slides

Page 20: Alexey A. Petrov Wayne State University · 2007. 8. 7. · Alexey Petrov (WSU) CHARM-2007, Ithaca, NY CP-violation preliminary 16 ¾In any quantum field theory CP-symmetry can be

Alexey Petrov (WSU) CHARM-2007, Ithaca, NY

“Static” observables for CP-violation

I. Intrinsic particle propertieselectric dipole moments:

Low energy strong interaction effectsmight complicate predictions!

-1