83
Electron Correlation Accuracy in Electronic Structure Methods Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, M¨ ulheim 2.9.2015

Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Embed Size (px)

Citation preview

Page 1: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Electron CorrelationAccuracy in Electronic Structure Methods

Alexander A. Auer

Max-Planck-Institute for Chemical Energy Conversion, Mulheim

2.9.2015

Page 2: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hartree-Fock theory and accuracy

Hartree-Fock bond lengths [a.u.]

sto-3g 4-31G 6-31G* 6-31G** exp.CH4 2.047 2.043 2.048 2.048 2.050NH3 1.952 1.873 1.897 1.897 1.913H2O 1.871 1.797 1.791 1.782 1.809HF 1.812 1.742 1.722 1.703 1.733

minimum structure of C20 - ring (R), bowl (B) or cage (C) ?(energy difference in kcal/mol)

HF R 20 B 78 C“correct” B 3 C 44 R

1/55

Page 3: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hartree-Fock theory: a recommendation

• qualitative investigations of electronic structure

• interpretation of electron density at one electron level

• ”good guess” for molecular properties

• relatively fast basis set convergence

• standard : HF-SCF/SV(P)

• note: DFT usually provides better results at comparable cost !!

Textbook recommendation :“A Chemist’s guide to DFT” Holthausen, Koch, Wiley VCH

2/55

Page 4: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hartree-Fock theory: interaction of electrons

Interaction of two electrons in HF theory :coulomb and exchange∫

φ∗p(1)φ∗q(2)1

r12φp(1)φq(2)dτ1 dτ2

=

∫ρp(1)

1

r12ρq(2)dτ1 dτ2

BUT : particles only interact through their charge distribution mean fieldapproximation - no explicit correlation of electron movement !

in the HF Wavefunction two electrons will never ”see” each other, onlytheir charge clouds !→ follows from one electron orbital approximation in HF

3/55

Page 5: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hartree-Fock theory: interaction of electrons

Interaction of two electrons in HF theory :coulomb and exchange∫

φ∗p(1)φ∗q(2)1

r12φp(1)φq(2)dτ1 dτ2

=

∫ρp(1)

1

r12ρq(2)dτ1 dτ2

BUT : particles only interact through their charge distribution mean fieldapproximation - no explicit correlation of electron movement !

in the HF Wavefunction two electrons will never ”see” each other, onlytheir charge clouds !→ follows from one electron orbital approximation in HF

3/55

Page 6: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Electron correlation

Hartree Fock : Mean field approximation

no explicit correlation of electrons

definition (!) of correlation energy :

Ecorr = Eexact − EHF

general Ansatz : improve HF method

→ post Hartree-Fock methods

often needed even for qualitative agreement with experiment !

4/55

Page 7: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hierarchy of quantum chemical methods

“Pople Diagram”

5/55

Page 8: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

A completely different approach

basic idea proven by Hohenberg and Kohn :

All molecular properties can be expressed as a functional E [ρ]of the electron density ρ alone

based on the energy functional, a variational method can be devised toconstruct the exact electron density(Kohn-Sham equations - SCF procedure)

→ Density Functional Theory (DFT)no wavefunction, just electron density is sufficient for exact solution !

6/55

Page 9: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Density Functional Theory - DFT

So what is the form of this functional ?

E [ρ] has to contain functional forms for :

• one electron contributions (T , V )

• exchange contribution

• coulomb and correlation contribution

These expressions can be constructed easily ...(... actually not so easy) for the uniform electron gas !

→ Local Density Approximation (LDA)

7/55

Page 10: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Density Functional Theory - DFT

So what is the form of this functional ?E [ρ] has to contain functional forms for :

• one electron contributions (T , V )

• exchange contribution

• coulomb and correlation contribution

These expressions can be constructed easily ...

(... actually not so easy) for the uniform electron gas !

→ Local Density Approximation (LDA)

7/55

Page 11: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Density Functional Theory - DFT

So what is the form of this functional ?E [ρ] has to contain functional forms for :

• one electron contributions (T , V )

• exchange contribution

• coulomb and correlation contribution

These expressions can be constructed easily ...(... actually not so easy) for the uniform electron gas !

→ Local Density Approximation (LDA)

7/55

Page 12: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

LDA good for molecules ?

wrong asymptotic behavior for electron density !

The general, exact functional cannot be derived !

construct functionals based on physical intuition

promising approach :

• give up first principles approach

• include (molecule independent) parameters and fit them according to

• accurate experimental or theoretical values (energies, geometries ...)

8/55

Page 13: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

better functionals

Becke : include gradient of density in Ex [ρ]

ε[ρ] = −βρ1/3 x2

[1 + 6βxsinh−1(x)]x =|∆ρ|ρ4/3

β = 0.0042

Lee, Yang and Parr :include gradient and Laplacian of density in Ec [ρ]

→ B-LYP functional :Dirac exchange + Becke correction + LYP correlation(Generalized Gradient Approximation : GGA functionals)

9/55

Page 14: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

better functionals ?

why use approximate functionals when exact exchange is known fromHartree-Fock ?

distinction of exchange and correlation in DFT artificial

solution : mix DFT and HF exchange → Hybrid functional

example : famous B3LYP functional

AEDirac + (1− A)EHFx + B∆EBecke88

x + (1− C )EVWNv + CELYP

c

A=0.80, B=0.72, C=0.81

10/55

Page 15: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

DFT - functional zoo

• basic functionals (LDA) - plain E [ρ]

• Generalized Gradient Approximation GGA (PBE) - include gradient

• Hybrid Functionals (B3-LYP) - include HF exchange

• Double Hybrids (B2PLYP) - combine DFT and MP2-like correlation

• Exact Exchange Functionals and Random Phase Approximationhierarchy of methods beyond one-particle approach

11/55

Page 16: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

DFT - pitfalls

• dispersion interaction

• charge-Transfer excitations

• self interaction error

• single determinant approximation

12/55

Page 17: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

DFT - pitfalls, self-interaction error

electron-electron interaction in HF and other methods :

coulomb and exchange∫φ∗i (1)φ∗j (2)

1

r12φi (1)φj(2)dτ −

∫φ∗i (1)φ∗j (2)

1

r12φi (2)φj(1)dτ

for a one electron systems these exactly cancel !

13/55

Page 18: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

DFT - pitfalls, self-interaction error

electron-electron interaction in DFT :

coulomb and exchange-correlation functional∫ρ(1)

1

r12ρ(2)dr1dr2 −

∫ρ(1)hxc(r1, r2)

1

r12dr1dr2

→ coulomb and exchange-correlation will not cancel !consequence:very poor results for ionization energies, properties and various bondingsituations, in particular open shell systems !(especially LDA and GGAs)

14/55

Page 19: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

DFT - pitfalls, charge-transfer excitationscalculation of excitation spectra using TD-DFT :

A. Dreuw, M. Head-Gordon, JACS, 126 (12), 4007, 2004

15/55

Page 20: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

DFT - a recommendation

• this really is (currently) the workhorse for quantum chemistry

• use standard functionals (like B3-LYP) with moderate basis sets

• apply dispersion correction

• compare results from different functionals

• be critical about the results, be aware of pitfalls !

16/55

Page 21: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hierarchy of quantum chemical methods

“Pople Diagram”

17/55

Page 22: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

divide System into unperturbed part H0 and small perturbation H ′

H = H0 + λ H ′

expand energy and wavefunction in series

E = E (0) + λE (1) + λ2E (2) + ... Ψ = Ψ(0) + λΨ(1) + λ2Ψ(2) + ...

sort in powers of λ to obtain energy corrections :

E [0] = < Ψ(0)|H0|Ψ(0) >

E [1] = < Ψ(0)|H ′|Ψ(0) >

E [2] = < Ψ(0)|H ′|Ψ(1) >

18/55

Page 23: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

define unperturbed and perturbed Hamiltonian for our problem :

H = H0 + H ′ H0 =∑i

F (i)

H ′ as difference between exact electron electroninteraction and mean field interaction :

H ′ =∑i<j

1

rij−∑i

(Ji − Ki )

19/55

Page 24: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

Rayleigh-Schrodinger perturbation theory leads to :

E [0] =∑i

εi

E [1] = −1

2

∑ij

〈ij | |ij〉

zeroth and first order give HF solution

first correction at 2nd order : Møller-Plesset PT - MP2

E [2] =1

4

∑ij

∑ab

|〈ij ||ab〉|2

εi + εj − εa − εb

20/55

Page 25: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

Rayleigh-Schrodinger perturbation theory leads to :

E [0] =∑i

εi

E [1] = −1

2

∑ij

〈ij | |ij〉

zeroth and first order give HF solutionfirst correction at 2nd order : Møller-Plesset PT - MP2

E [2] =1

4

∑ij

∑ab

|〈ij ||ab〉|2

εi + εj − εa − εb

20/55

Page 26: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

bond lengths [a.u.]: HF and MP2

sto-3g 4-31G 6-31G* 6-31G** exp.CH4 2.047 2.043 2.048 2.048 2.050

2.077 2.065 2.060 2.048NH3 1.952 1.873 1.897 1.897 1.913

1.997 1.907 1.922 1.912H2O 1.871 1.797 1.791 1.782 1.809

1.916 1.842 1.831 1.816HF 1.812 1.742 1.722 1.703 1.733

1.842 1.790 1.765 1.740

21/55

Page 27: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

Problem : convergence of perturbation series

22/55

Page 28: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 29: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 30: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 31: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 32: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 33: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 34: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : perturbation theory

EMP2 =1

4

∑ijab

|〈ij ||ab〉|2

εi + εj − εa − εb

• MP2 often improves HF results significantly

• note: integrals also over virtual orbitals

• higher order expressions lead to better correction

• BUT : investigation shows that MP series usually does not converge !

• computational effort: HF/DFT N2/3/4, MP2 N5 )

• recommendation : use other methods beyond MP2

• standard : RI-MP2 / TZ (note: RI approximation !)

23/55

Page 35: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

exact wavefunction is a many electron function !

idea :expand exact wavefunction in complete basisof many electron functions

24/55

Page 36: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

exact wavefunction is a many electron function !

idea :expand exact wavefunction in complete basisof many electron functions

24/55

Page 37: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

25/55

Page 38: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

exact wavefunction is a many electron function !

idea :expand exact wavefunction in complete basisof many electron functions

many electron function : HF-SCF slater determinant

complete basis of many electron functions :

all possible determinants from occupied and virtuals

→ Configuration Interaction (CI) :

linear expansion, one parameter per determinant,optimized variationally

26/55

Page 39: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

wavefunction expression as linear CI expansion :

|ΨCI 〉 = |Ψ0〉+∑ia

cai |Ψai 〉+

1

4

∑ijab

cabij

∣∣∣Ψabij

⟩+ ...

|ΨCI 〉 = |Ψ0〉+ C1 |Ψ0〉+ C2 |Ψ0〉+ ...

diagonalization of Hamiltonian matrix yields energies for ground andexcited states

〈ΨCI | H |ΨCI 〉

27/55

Page 40: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

wavefunction expression as linear CI expansion :

|ΨCI 〉 = |Ψ0〉+∑ia

cai |Ψai 〉+

1

4

∑ijab

cabij

∣∣∣Ψabij

⟩+ ...

|ΨCI 〉 = |Ψ0〉+ C1 |Ψ0〉+ C2 |Ψ0〉+ ...

diagonalization of Hamiltonian matrix yields energies for ground andexcited states

〈ΨCI | H |ΨCI 〉

27/55

Page 41: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

use all determinants that can be constructed→ expansion in complete basis(number of determinants grows exponentially !!)

→ exact solution of electronic problem in given AO basis(Full Configuration Interaction FCI)

in practice only truncated expansion feasible :CIS : only singly substituted determinantsCISD : singly and double substituted determinantsCISDT : single, double and triple substitutions...

28/55

Page 42: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

use all determinants that can be constructed→ expansion in complete basis(number of determinants grows exponentially !!)

→ exact solution of electronic problem in given AO basis(Full Configuration Interaction FCI)

in practice only truncated expansion feasible :CIS : only singly substituted determinantsCISD : singly and double substituted determinantsCISDT : single, double and triple substitutions...

28/55

Page 43: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

use all determinants that can be constructed→ expansion in complete basis(number of determinants grows exponentially !!)

→ exact solution of electronic problem in given AO basis(Full Configuration Interaction FCI)

in practice only truncated expansion feasible :CIS : only singly substituted determinantsCISD : singly and double substituted determinantsCISDT : single, double and triple substitutions...

28/55

Page 44: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

correlation energy contributions from different levels of excitations in BeH2

excitation level ECI (DZ basis) [a.u.]1+2 -0.074033

3 -0.0004284 -0.0014395 -0.0000116 -0.000006

total -0.075917exact -0.14

0.1 a.u.= 262.6 kJ/mol = 2.7 eV = 21947 cm−1

29/55

Page 45: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

ab-initio methods : configuration interaction

correlation energy contributions from different levels of excitations in BeH2

excitation level ECI (DZ basis) [a.u.]1+2 -0.074033

3 -0.0004284 -0.0014395 -0.0000116 -0.000006

total -0.075917exact -0.14

0.1 a.u.= 262.6 kJ/mol = 2.7 eV = 21947 cm−1

29/55

Page 46: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hierarchy of quantum chemical methods

“Pople Diagram”

30/55

Page 47: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size consistency

example : H2 molecule in minimal basis - 2 electrons, 2 orbitals :

CISD = FCI !

31/55

Page 48: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size consistency

example : two noninteracting hydrogen molecules (H2)2

CISDTQ = FCI !

CISD does not allow for simultaneous double excitations

at the CISD level of theory a single hydrogen molecule is treated moreaccurately than an isolated hydrogen molecule in a system of noninteracting molecules !

32/55

Page 49: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size consistency

example : two noninteracting hydrogen molecules (H2)2

CISDTQ = FCI !

CISD does not allow for simultaneous double excitations

at the CISD level of theory a single hydrogen molecule is treated moreaccurately than an isolated hydrogen molecule in a system of noninteracting molecules !

32/55

Page 50: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size consistency

example : two noninteracting hydrogen molecules (H2)2

CISDTQ = FCI !

CISD does not allow for simultaneous double excitations

at the CISD level of theory a single hydrogen molecule is treated moreaccurately than an isolated hydrogen molecule in a system of noninteracting molecules !

32/55

Page 51: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size consistency

example : two noninteracting hydrogen molecules (H2)2

CISDTQ = FCI !

CISD does not allow for simultaneous double excitations

at the CISD level of theory a single hydrogen molecule is treated moreaccurately than an isolated hydrogen molecule in a system of noninteracting molecules !

32/55

Page 52: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size constancy

unphysical description leads to wrong asymptoticof energy for extended systems

extensivity of energy not given !!(CI is not size-extensive)

the larger the system, the smaller the fraction of correlation energy from atruncated CI

recommendation : use CI with caution !

33/55

Page 53: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size constancy

unphysical description leads to wrong asymptoticof energy for extended systems

extensivity of energy not given !!(CI is not size-extensive)

the larger the system, the smaller the fraction of correlation energy from atruncated CI

recommendation : use CI with caution !

33/55

Page 54: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

configuration interaction and size constancy

unphysical description leads to wrong asymptoticof energy for extended systems

extensivity of energy not given !!(CI is not size-extensive)

the larger the system, the smaller the fraction of correlation energy from atruncated CI

recommendation : use CI with caution !

33/55

Page 55: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

improving configuration interaction

not only include C1, C2 but also products of excitationsC2

1, C22 for FCI result !

instead of a linear Ansatz, a product separable Ansatzis required for size extensivity

34/55

Page 56: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

improving configuration interaction

not only include C1, C2 but also products of excitationsC2

1, C22 for FCI result !

instead of a linear Ansatz, a product separable Ansatzis required for size extensivity

34/55

Page 57: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

improving configuration interaction

not only include C1, C2 but also products of excitationsC2

1, C22 for FCI result !

instead of a linear Ansatz, a product separable Ansatzis required for size extensivity

34/55

Page 58: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

coupled cluster theory

Ansatz :instead of linear expansion, use exponential expansion !

|ΨCC 〉 = eT |Ψ0〉

cluster operator T analogous to CI-Operator

T = T1 + T2 + T3 + ...

coefficients are called amplitudes:

eT = 1 + T +1

2!T 2 +

1

3!T 3 + ...

35/55

Page 59: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

coupled cluster theory

product terms resulting from exponential expansion

|ΨCC 〉 = (1 + T1 +1

2!T 2

1 +1

3!T 3

1 + ...

+T2 +1

2!T 2

2 +1

3!T 3

2 + ...

+T1T2 +1

2!T 2

1 T2 +1

2!T1T

22 + ...

+ ...) |Ψ0〉

36/55

Page 60: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

coupled cluster theory

Energy equations :

〈Ψ0| e−T HeT |Ψ0〉 = E

Amplitude equations :

〈 Ψab..ij .. |e−T HeT |Ψ0〉 = 0

energy as expectation value of similarity transformed Hamiltonian

“projection trick” to derive amplitude equations

iterative solution of nonlinear set of equations !

state selective (ground state)

quite expensive !

37/55

Page 61: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

coupled cluster theory

• CI based method with inclusion of higher excitations

• strictly size consistent

• faster convergence towards FCI

• highly accurate !

approximate methods :CCSD : Coupled Cluster Singles and DoublesCCSD(T):Singles, Doubles + perturbative approximation to TriplesCCSDT : Singles, Doubles and Triples...

38/55

Page 62: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

methods and basis sets

“Pople Diagram”

39/55

Page 63: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

benchmark studies

40/55

Page 64: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

benchmark studies

K. Bak, et. al J. Chem. Phys. 114, 6548 (2001).

41/55

Page 65: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

pitfalls in electronic structure methods

up to now all methods based on orbital expansions(ground state wavefunction or density represented by a single slaterdeterminant)

consider Ozone :· O - O - O · O = O+ - O− O− - O+ = O

more than one determinant needed to describe electronic structure evenqualitatively !

42/55

Page 66: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

pitfalls in electronic structure methods

up to now all methods based on orbital expansions(ground state wavefunction or density represented by a single slaterdeterminant)

consider Ozone :· O - O - O · O = O+ - O− O− - O+ = O

more than one determinant needed to describe electronic structure evenqualitatively !

42/55

Page 67: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

pitfalls in electronic structure methods

up to now all methods based on orbital expansions(ground state wavefunction or density represented by a single slaterdeterminant)

consider Ozone :· O - O - O · O = O+ - O− O− - O+ = O

more than one determinant needed to describe electronic structure evenqualitatively !

42/55

Page 68: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

pitfalls in electronic structure methods

HF is not a good basis to start from

→ breakdown of PT, CI, CC etc. !!

DFT no good due to one determinant representation in Kohn-Shamequations

→ multireference problem !

often observed :

excited states, radicals, multiply charged ions, non-minimum structures,bond formation and breaking of chemical bonds ...

43/55

Page 69: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

pitfalls in electronic structure methods

HF is not a good basis to start from

→ breakdown of PT, CI, CC etc. !!

DFT no good due to one determinant representation in Kohn-Shamequations

→ multireference problem !

often observed :

excited states, radicals, multiply charged ions, non-minimum structures,bond formation and breaking of chemical bonds ...

43/55

Page 70: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

pitfalls in electronic structure methods

HF is not a good basis to start from

→ breakdown of PT, CI, CC etc. !!

DFT no good due to one determinant representation in Kohn-Shamequations

→ multireference problem !

often observed :

excited states, radicals, multiply charged ions, non-minimum structures,bond formation and breaking of chemical bonds ...

43/55

Page 71: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

typical multireference case

H2O molecule - at minimum geometry and at stretched geometry

r=Re r=2Re

E-EFCI W E-EFCI WRHF 0.2178 0.9410 0.3639 0.5897CISD 0.0120 0.9980 0.0720 0.9487CISDT 0.0090 0.9985 0.0561 0.9591CISDTQ 0.0003 0.9999 0.0058 0.9987CISDTQ5 0.0001 0.9999 0.0022 0.9999

44/55

Page 72: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

multireference problems

multireference treatment : optimize determinant coefficients and orbitalsparameters at the same time !

artificial distinction :CI - dynamic correlation MR - static correlation

Methods :MCSCF multi configuration SCFCASSCF complete active space SCFCASPT2 CASSCF + 2nd order PTNEV-PT or NEV-CIMRCI multi reference CI

45/55

Page 73: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

multireference problems

multireference treatment : optimize determinant coefficients and orbitalsparameters at the same time !

artificial distinction :CI - dynamic correlation MR - static correlation

Methods :MCSCF multi configuration SCFCASSCF complete active space SCFCASPT2 CASSCF + 2nd order PTNEV-PT or NEV-CIMRCI multi reference CI

45/55

Page 74: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

using basis sets in practice

• H-Atom: slater orbitals

• but: basis sets constructed from Gaussian orbitals

• contracted function: linear combination with fixed exponents

• two parameters: exponents and contraction coefficients

• optimize parameters variationally for atoms

• construction and choice : alchemy ....

46/55

Page 75: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

slater vs. contracted gaussians

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4

x

Slater functionGaussian function

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

x

Slater functionGaussian function

resulting sum

47/55

Page 76: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

using basis sets in practice

• different basis set families

• Pople basis sets : 3-21G, 6-31G, 6-31G* ...

• Ahlrichs basis sets : SV(P), DZP, TZP, TZPP ...

• Dunning basis sets : cc-pVDZ, cc-pVTZ ....

• Pople and Ahlrichs basis sets : optimized for HF

• Dunning : optimized for CI

48/55

Page 77: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

cc-pVXZ basis sets

-1 0 1 2 3 4 5 6 7

log (exp)

cc-pVDZ-J

cc-pVTZ-J

cc-pVQZ-J

cc-pVDZ

s-functionsadditional s-functions

p-functionsadditional p-function

d-functionsadditional d-function

49/55

Page 78: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

minimal vs. optimal - electron density of CO

CO− STO-3G aug-cc-pVTZ

2s1p 5s4p3d2f

50/55

Page 79: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

basis sets completeness

Note that∑

i |φi >< φi | = 1this can be inserted into an overlap integral for functions of varyingexponents, yielding a “completeness profile”:

solid and dashed lines for s-, p-, and d-spaces for carbon, D.P.Chong, Canadian J. Chem., 73 (1), 79, (1995)

51/55

Page 80: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

using basis sets in practice

• use smallest sets with caution : STO-3G , 3-21G

• use Pople and Ahlrichs sets for HF and DFT

• use cc-pVXZ for ab-initio methods

• never just use one basis set :two calculations for estimating basis set convergence

• pitfall : BSSE

52/55

Page 81: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

Hierarchy of quantum chemical methods

“Pople Diagram”

53/55

Page 82: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

the end ...

Thank you for your attention !

54/55

Page 83: Alexander A. Auer - MPI CEC · Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mulheim 2.9.2015. ... distinction of exchange and correlation in DFT arti cial

literature

List of Books :

A. Szabo, S. Ostlund, Modern Quantum Chemistry, Dover Publications (1996)

T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory, Wiley, Chichester (2000)

B. Roos, Lecture Notes in Quantum Chemistry I + II, Springer Verlag (1994)

W. Koch,M. Holthausen, A Chemists Guide to DFT, Wiley (2001)

D. Young, Computational Chemistry, Wiley (2001)

List of Papers :

W. Klopper, K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, J. Phys. B, 32, R103 (1999)

K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, J. Gauss, Chem. Phys. Lett., 317, 116 (2000)

K. L. Bak, J. Gauss, P. Jørgensen, J. Olsen, T. Helgaker, J.F. Stanton, J. Chem. Phys., 114, 6548 (2001)

K. Ruud, T. Helgaker, K. L. Bak, P. Jørgensen, J. Olsen, Chem. Phys., 195, 157 (1995)

A. A. Auer, J. Gauss, J. F. Stanton, J. Chem. Phys., 118, 10407 (2003)

J. Gauss, Encyclopedia of Computational Chemistry, Wiley, New York (1998)

J. Gauss, Modern Methods and Algorithms of Quantum Chemistry, NIC Proceedings, NIC-Directors (2000)

55/55