147
QUETTA TELECOM COLLEGE QUETTA ALCATEL EXCHANGE BOOK – 1 (THEORY)

Alcatel Adv e10

Embed Size (px)

DESCRIPTION

Document about E10 Exchange

Citation preview

Page 1: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

ALCATEL EXCHANGE

BOOK – 1 (THEORY)

Page 2: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

2

Page 3: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

3

LOCATION Alcatel 1000 El0 is the digital switching system developed by Alcatel CIT. Multi-application, Alcatel 1000 El0 could be used for the entire range of switch, from the smallest local exchanges to the largest transit gateway switches. It adapts to every type of habitat, from dense urban environment, to sparsely populated areas, and to every type of climate, from polar regions to the hot and humid climates of Equatorial Africa and the tropics. System operation and maintenance can be local or common to several switches, or both at the same time. Alcatel 1000 El0 provides all modern communication services: Basic Telephony, ISDN (Integrated Services Digital Network), Centrex, digital cellular radiotelephony and all the Intelligent Network applications. It handles all accepted signalling systems in a current total of over 80 countries and is built in accordance with recognized international standards. Alcatel CIT actively contributes to definition of those standards.

Page 4: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

4

SYSTEM APPLICATIONS (NON-EXHAUSTIVE LIST)

� Remote subscribers unit.

� Local subscribers exchange

� Transit exchange (local, trunk or international gateway).

� Hybrid local/transit exchange.

� Tandem exchange.

� Centrex (private or public).

Fig: 1 Alcatel 1000 E10 location in the telephone network S: Remote line unit L: Local subscriber exchange TR: Transit exchange CID: Outgoing international exchange CIA: Incoming international exchange CTI: International transit exchange

Page 5: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

5

EXTERNAL INTERFACES 1 Subscriber line with 2, 3 or 4 wires 2 ISDN basic access at 144 kbit/s (2B + D) 3 ISDN primary access at 2 Mbit/s (30B + D) 4 and 5 Standard PCM (2 Mbit/s, 32 channels, CCITT G732) 6 and 7 Analogue or digital data link with 64 kbit/s or standard PCM 8 Digital link with 64 Kbit/s (X25 protocol, Q3 interface) or analogue link with rate of

< 19.200 bauds (V24 protocol) SERVICES PROVIDED Calls Handled The Alcatel 1000 El0 handles telephone calls from or to the national and international public switched telephone network. It also transfers data between its ISDN subscribers as well as to and from the packet switched network. These calls include:

- local calls (private, public),

- regional calls: outgoing, incoming, transit,

- national calls: outgoing, incoming, transit,

- international calls: automatic or semi-automatic, outgoing or incoming,

- manual calls (operator assisted) : outgoing, incoming,

- server calls (intelligent network concept),

- outgoing calls to special services,

- test calls.

Page 6: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

6

Subscribers Facilities

S.No DESIGNED FACILITY USE DESCRIPTION 01 Abbreviated Dialing x Possibilities for a subscriber to make a call by

dialing a short code (1 to 3 digits) instead of the full telephone numbers.

02 Immediate Fixed Destination Call x A call can be setup to a registered number by lifting the hand set only.

03 Fixed Destination Call With Time-Out

x A call can be setup to a registered number by lifting the handset within a period of 5 sec. During the 5 sec period the subs can make normal call.

04 Automatic Alarm Call x Possibilities for a subscriber to re-route a incoming call to his number to another number.

05 Forwarded Call x Possibilities for a subscriber to be called by the exchange on a specified time (hours minutes) within the next 24 hours.

06 Out-Going Call Restriction x Possibilities for barring certain o/g direction from a subscriber the barred directions are prescribed by the administration.

07 Absent Subscriber - Possibilities for a subs to have i/c call automatically diverted.

(A) Redirection to announcing machine or special tone.

(B) Redirection an operator. 08 Full Diversion To Fixed

Announcement - Possibilities to subscriber to divert incoming calls

to an operator.

09 Registered Call x Possibilities for a subscriber to repeat the last call, on busy call or no answer, by dialing a short code.

10 Call Waiting x Possibilities for an engaged subscriber to receive an indication that a caller is attempting to obtain connection to his number.

11 Subscriber Call Charge Meter x Possibilities for activating a subscriber’s call charge meter by 12 kHz or 16 kHz signal.

12 Printed Records On Duration And Charge Call

x Possibility of controlling of charging incrementation.

13 Detailed billing * overseas calls

• National calls • local calls

x Detail billing is provided for all type of overseas and national calls as per request of the subscriber/settlement of excessive billing cases.

14 Conference Calls (three party service)

- Possibility for an engaged subs to hold existing calls and make a call to a third party. The subscriber can then switch between the two calls. (call alternation), release either or set a conference between all 03 parties.

Page 7: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

7

15 Malicious Calls x Malicious calls identification • The feature enables the identity of the

calling party to be established when requested by the called party.

• the service can be initiated by 2 procedures automatically by each call.

• At the request of the subscriber receiving a malicious call.

16 Outgoing Only Line x Possibility for a administration to prevent all incoming calls form a telephone line.

17 Incoming Only Line x Possibility for the administration to prevent all outgoing calls from a telephone line.

18 Subscriber Group Line x Possibility for a grouping together several subscribers lines into lists (or line group). These are assign to a designation no called “group desig no”.

19 Priority Line x Possibility to allocate a priority to a sub so that in case of congestion, call originated by him is processed earlier than the lower priority calls. Four levels of priority are available.

• class 0 (subscriber without priority). • class 1 subscriber with priority). • class 2 (V.I.P. Subscriber). • class 3 (national operators).

20 Do Not Disturb x Possibilities for a subs to have i/c call automatically diverted to a special tone or an announcement.

OPERATION/MAINTENANCE FUNCTIONS

� Management/supervision of incidents: monitoring following complaint, automatic

testing of lines and of circuits, display of alarms, precise location of faults, calls

statistics, intelligent terminal operation.

� Supervision of operation: single subscribers, subscribers groups, additional services,

subscriber’s equipment, exchange command, translation, routing, charging, Number 7

signalling.

� Management of charges and of deductions: LAMA/CAMA, domestic meters, detailed

billing, centralisation of accounts, coins box, time zones, etc.

� Monitoring of exchange performance: result of metering (traffic, subscriber lines,

metering pulse, translation, call timers and event meters.), consistency of charging data.

� Security mechanism: passwords for workstations and for the operator, non-authorized

entry detection.

- LAMA: Local Automatic Message Accounting - CAMA: Centralized Automatic Message Accounting

Page 8: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

8

GENERAL PERFORMANCE DATA Performance of any switching system is highly dependent on it’s environment (call mix, conditions of operation). The capacities given below are given for information purposes, based on an average reference environment. Maximum processing capacity of the system is 280 CA/s, under CCITT B load system (Q 543) i.e. 1,000,000 BHCA. The connection capacity of the host switching matrix ranges up to 2048 PCM, which permits:

- up to 25,000 Erlang to be handled (on CCITT B load (Q 543)),

- up to 200,000 subscribers to be connected,

- up to 60,000 circuits to be connected.

In addition, the system possesses sophisticated regulation mechanisms which make it possible to avoid saturation in the event of an exceptional overload. These mechanisms, which are distributed at the level of each system resource, are based on metering of the number of calls presented and accepted, and also on observations of processors load (occupancy rate, number of items in queue).

Page 9: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

9

Page 10: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

10

FUNCTIONAL ARCHITECTURE GENERAL FUNCTIONAL ARCHITECTURE The Alcatel 1000 El0 system is located at the heart of the telecommunication networks concerned. It is made up of three independent functional units:

� The ‘Subscriber Access Subsystem” which carries out connection of analogue and digital

subscriber lines,

� “Connection and Control” which carri9s out connections and processing of calls,

� “Operation and Maintenance” which is responsible for all functions needed by the

network operating authority.

Each functional unit is equipped with softwares which are appropriate for handling the functions for which it is responsible. Figure 1: General Functional Breakdown of Alcatel 1000 El0 OCB 283 FUNCTIONAL ARCHITECTURE Time Base (BT) The BT ensures times distribution for LR and PCM synchronization and working out the

exchange clock.

Time distribution is tripled.

Time generation can be either autonomous or slaved to an external rhythm view to synchronize

the system with the network

Page 11: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

11

Host Switching Matrix (SMX)

The SMX is a square connection matrix with a single time stage, T, duplicated in full, which enables up to 2048 matrix links (LR) to be connected. A matrix link LR is an internal PCM, with 16 bits per channel (32 channels). The MCX can execute the following: 1) an unidirectional connection between any incoming channel outgoing channel. There can be as many simultaneous connections there are outgoing channels. It should be remembered that a connection consists of allocating the information contained within an incoming to an outgoing channel, 2) connection between any incoming channel and any M outgoing channels 3) connection of N incoming channels belonging to one frame structure of any multiplex to N outgoing channels which belong to the same frame abiding to the integrity and sequencing of the frame received. This is referred to as “connection with N x 64 kbit/s” The MCX is controlled by the COM function (matrix switch controller) to ensure the:

� set up and breakdown of the connections by access to the matrix command memory. This access is used to write at the output T.S. address the incoming T.S. address

� defence of the connections. Security of the connections in order to ensure a good data switching.

Page 12: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

12

PCM Controller (URM)

The URM provides the interface between external PCMs and the OCB283

These PCM come from either: � a remote subscriber digital access unit (CSND) or from a remote electronic satellite

concentrator (CSED),

� another switching centre, on channel-associated signalling or CCITT No. 7

� the digital recorded announcement equipment.

In particular, the URM carries out the following functions.

� HDB3 conversion to binary (PCM matrix link).

� binary conversion to HDB3 (matrix link PCM),

� extraction and pre-processing of the channel-associated signalling of T.S 16 (PCM

command),

� transmission of channel-associated signalling in T.S 16 (command PCM)

Auxiliary Equipment Manager (ETA) The ETA supports:

� the tone generators (GT)

� the frequency receiving and generation (RGF) devices

� conference circuits (CCF)

� the exchange clock.

Page 13: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

13

CCS7 protocol handler (PUPE) and CCS7 controller (PC): CCITT No. 7 protocol

processing

For connection of 64 kbit/s No. 7 signalling channels, semi permanent connections are established via the connection matrix, to the PUPE which processes the CCITT No. 7 protocol. More precisely, the PUPE function carries out the following

� “signalling channel” Level 2 processing,

� the “message routing” function (part of Level 3) The PC carries out:

� the “network management” function (part of Level 3),

� PUPE defence,

� various observation tasks which are not directly linked to CCITT No 7

Call Handler (MR)

The MR is responsible for establishment and breaking off of communications.

The call handler takes the decisions necessary for processing of communications in terms of the signalling received, after consultation of the subscriber and analysis database manager (TR). The call handler processes new calls and hanging-up operations, releases equipment, commands switching on and switching off etc. In addition, the call handler is responsible for different management tasks (control of tests of circuits, sundry observations). Subscriber and analysis database manager (TR) (TRANSLATOR) The TR function carries out management of the ana1yses, subscribers and circuit groups database. The TR supplies the call handler, on request from it, with subscribers and circuits characteristics necessary for establishing and breaking off communications. The TR also ensures match between the dialing received and the addresses of circuit groups or subscribers (pre-analysis, analysis, translation functions) Call charging and traffic Measurement (TX) The TX function carries out charging for communications. TX is responsible for:

� calculating the amount to be for each communication.

� keeping the charge account of each subscriber served by the switching centre,

� supplying the necessary information for drawing up detailed billing to the OM.

In addition, TX carries out tasks of observation of (circuits and subscribers observation). Matrix System Handler (GX)

Page 14: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

14

The GX function is responsible for processing and for defence of connections on receipt of:

� requests for connection or disconnection coming from ca handler (MR) or message

distributor functions (MQ),

� connection faults signalled by the matrix switch controller function (COM). In addition, the GX carries out monitoring of certain links of the exchange connection subsystem (access links LA and links internal to the host switching matrix LCXE), periodically or on request from certain links. Message Distributor (MQ) The MQ function is responsible for distribution and formatting of certain internal messages but, above all, it carries out.

� supervision of semi-permanent connections (“data links’),

� processing and transmission to and from the ETA and GX of certain MR messages.

In addition the stations supporting the MQ function act as a gateway for messages between the communication multiplexes. Communication Multiplex On to five communication multiplexes are used to transmit messages from one station to another. This transfer of messages is carried out by only one type of medium, the TOKEN RiNG, with a unique protocol which is processed in accordance with IEEE 802.5 Standard. Single Multiplex (COMPACT configuration):

� it is then referred to as the Interstation Multiplex (MIS). More than one dedicated Multiplex:

� 1 Interstation Multiplex (MIS) for interchanges between the command functions, or

between the command functions and operation and maintenance software (OM),

� from 1 to 4 Station Access Multiplex (MASs) for interchanges between the connection

functions (URM, COM, ETA, PUPE) and the command functions.

OPERATION AND MAINTENANCE FUNCTION (OM)

The functions of the operation and maintenance subsystem are carried out by the operation and maintenance software (OM). The operating authority accesses all hardware and software equipment of the Alcatel 1000 El0 system via computer terminals belonging to the operation and maintenance subsystem: consoles, magnetic media, intelligent terminal. These functions can be grouped into 2 categories:

� operation of the telephone application,

� operation and maintenance of the system. In addition, the operation and maintenance subsystem carries out:

Page 15: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

15

� loading of softwares and data for connection and command units and for the subscriber

digital access units,

� temporary backup of detailed billing information,

� centralization of alarm data coming from connection and control stations, via alarm

rings,

� central defence of the system.

Finally, the operation and maintenance subsystem permits two way communication with operation and maintenance networks, at regional or national level (TMN).

Page 16: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

16

HARDWARE ARCHITECTURE

SMC: Main Control Station

SMA: Auxiliary Equipment Control Station

SMT: Trunk Control Station

SMX: Matrix Control Station

SMM: Maintenance Station

STS: Synchronization and Time Base Station

SOFTWARE MACHINE (ML) This is a software set (programs + data) which can be fitted on a SM and which carries out a specific function. One ML = a hypervisor-controlled execution unit. One ML = a loadable unit. A ML has an internal organization (system + application) which is unknown by the hypervisor and the other ML.

Page 17: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

17

The ML is characterized by: a type:

� Which identifies the ML function. (e.g: TR is the ML which ensures the translator function). In function of the exchange load and also for defence purposes, one type of ML can have more than one example (e.g: 2 MLTR).

a system address:

� For each ML there is one system address (AS). This address is used to identify the ML in the system.

one or two archives:

� system archive � site archive

one SM support:

� In each station, an assignment file gives the addresses of the physical stations which support each ML.

a status. LIST OF SOFTWARE MACHINES MR: Call Handler - Establishment and breaking off of communications

TR: Subscriber and Analysis Database Manager - Analysis, routings, circuit groups, circuits

and subscriber database

TX: Call Charging and Traffic Measurement - charging for communications, observation of

circuits and subscribers, charging timetable and charge accounts

MQ: Message Distributor - Distribution of messages to the PCM Controller and Auxiliary

Equipment Manager, configuration of connection subsystem

GX: Matrix System Handler - Management of the central connection subsystem

PUPE: CCS7 Protocol Handler - Processing of No. 7 protocol, management of statuses of No. 7

circuits, switching of subscriber digital access unit messages

PC: CCS7 Controller - Management of No. 7 network, defence of CCS7 protocol handler

software machines, traffic observations (meters)

OC: OM Message Router - Switching of messages relating to the operation and maintenance

software, access to operation and maintenance software

URM: PCM Controller - management of channel-associated signaling and of PCM of

distant CSN and CSE

ETA: Auxiliary Equipment Manager - Management of statuses of auxiliaries

COM: Matrix Switch Controller - Establishing, supervising and breaking off connections

Page 18: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

18

SM: Control of Station - System functions. Configuration of processor stations

CSN: Subscriber Digital Access Unit - Management, of statuses of subscribers, management of

the subscriber digital access unit machine

CSE: Electronic Satellite Concentrator - Management of statuses of subscribers, management

of the electronic satellite concentrator machine

OM: Operation and Maintenance Software - Operation and maintenance functions. Archival storage

Page 19: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

19

REDUNDANCY Redundancy at the SM and ML level OCB 283 redundancy depends on the type of SM station and the ML supported by that station: SMC - ML TX, TR and MQ

2 ML, supported by different SMCs and work in load sharing mode. - MLMR

n ML, supported by different SMCs and working in load sharing mode. - MLGX

2 MLs are provided. Each ML can provide the connection management function and the connection defence function. Redundancy is: connection management: 2 ML GX working in load sharing mode, defence of connections: one ML GX active on one SMC and one ML GX standby on the other SMC.

- MLPC One SMC supports the active ML PC and an another SMC supports the standby ML PC. The standby ML PC is updated permanently.

- Standby SMC

One SMC could be used as a backup station. This station is equipped to be capable of replacing any SMC.

The activation of the standby SMC corresponds to a station initialization. During the backup station initialization, the traffic is processed by the other SMC. At the end of the initialization, the full capacity of processing is restored on the exchange.

SMA - MLPUPE:

Redundancy (n+1) that means n SMA with the active ML PUPE and one SMA which supports the standby ML PUPE. Software and semi-permanent data are already loaded on the standby ML PUPE. The ML PUPE switchover is done in real time (circuit statuses). When the faulty SMA is repaired and put in service, the PUPE supported by this station is now the standby PUPE.

- MLETA

� RGF (Frequencies sender/receiver) and CCF (conference circuit): Redundancy (n + 1) that means than (n + 1) ML supported by SMA are working in load sharing mode. The over dimensioning of the ETA prevents a degraded working of the exchange when one is out of service.

� GT (Tone generator): Fully duplicated. The two first SMA contain the tone generators. One GT in service is enough for the exchange.

SMT

Page 20: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

20

- SMTIG:

The SMT1 G is fully duplicated and work in active/reserve mode. In case of serious fault, the SMTI G can request itself for a switchover.

- SMT2G (Fully duplicated logics)

The SMT is working in load sharing mode with 0% of load on one sub-system and 100 % on the other subsystem. During a soft switchover, the traffic will pass progressively from one subsystem to the other.

The ICTRQ card processes 4 PCMs. Each PCM is processed by physically independent material. A fault on one PCM module causes the unavailability of this PCM during the intervention and repair time and the unavailability of the other 3 PCMs during the card repair time.

SMX

The SMX is fully duplicated. The connection defence is done by association of specific mechanisms (connection defence and SM defence).

SMM

The SMM (with the OM function) is duplicated and works in active/reserve mode. The SMM is independent for it’s defence function (faults processing restarting). It’s duplicated structure is unknown by the other stations. The total inaccessibility of the OM has no effect on the call processing. The SMM has 2 hard disk working in mirror mode (writing on both disk and reading on one).

Multiplex Redundancy One multiplex is done by 2 rings working in load sharing mode. The access to the 2 physical rings is managed by a protocol which allows, in case of a problem on one ring, to handle all the traffic. Power Supply Redundancy The power supply distribution in each SM station is done by 2 converters. The non duplicated boards (SMM coupler boards, PCM interface in the SMT) are supplied by converters equipped in (n+ 1). Time Base Distribution Redundancy The STS (Time base station and synchronization) is done by 3 oscillator boards. Each oscillator board sends the time base signals to the SMX. In the SMX a <<Majority Logic>> selection is done on the 3 time base signals.

Page 21: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

21

DEFENCE ARCHITECTURE Principle The elements to be protected in the system are the SM stations and the communication multiplexes. The main defence principles are: 1) At the SM level:

� Self detection of faults,

� Hierarchical organization of the detection responsibility in the SM,

� Supervision of the SM by it’s environment (the other SMs) and centralization of the

accusation for correlation,

� If a break down appears in one station, the fault will stay in this station without

disturbing the other stations,

� In case of a serious fault, one SM can set itself to the block status,

� An SM station has a status, characterizing its fitness to handle traffic. This status is

known by the other stations,

� An SM is reconfigurable unit: in case of breakdown, its functions will be reallocated to

another SM.

2) At the communication level:

� A multiplex (MIS or MAS) is constituted of 2 rings (A and B) and self-protected,

� 3 levels of protection:

a) SM level: by the access protocol,

b) Ring level: by equipment located in the adaptators,

c) System level: by the ring manager.

� The result of those protections should disconnect the faulty adaptator in case of fault.

Defence function allocation

The allocation of the defence responsibility in the system:

- Decentralization of the fault detection in the station,

- Centralization of the function which needs a global view of the system (management).

The 0GB 283 defence functions can be divided in:

1) a common core of mechanism identical for all the SMs (independently of the SM type)

included:

Page 22: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

22

- local defence on each SM:

� fault detection

� minor or serious fault warning and self-positioning if serious fault.

- central defence in the OM:

* stations management:

� SM working supervision

� a positioning (broadcasting of the new status of the SM)

� maintenance (initialisation, hardware test, alarm),

� system general re-initialisation.

* ring management:

� working supervision

� positioning

� maintenance.

* management of the PCM terminations (ending) SMT2G

� working security observation,

� termination alarms.

� termination fault processing.

2) Specific mechanism in function of the type of redundancy used and the function processed:

� defence of the connections (MLGX),

� CCITT N°7 network management (MLPC).

Page 23: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

23

STANDARD CONFIGURATIONS Small (P) configuration

Performance Data 36 CA/S = 130,000 BHCA

Page 24: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

24

Medium configuration

Configuration Ml

Performance data: 72 TA/S = 260.000 BHCA

Configuration M3

Page 25: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

25

Performance data 108 TA/S = 385.000 BHCA

Large (G) configuration

Performance Data: 280 CNS = 1,000,000 BHCA

Page 26: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

26

Compact (C) configuration

NOTE: limited extendibility

Performance Data: 18 CA/S = 65,000 BHCA

Page 27: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

27

Example of implementation of software machines on stations

Page 28: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

28

NAMING RULES

General Principle

Standardized acronym: maximum of 5 characters, 6th reserved for variants

The first two letters are laid down, as described below. The other three letters are used for the card function mnemonic. Allocation of first letters

1st letter:

Subassemblies family

A = SMC, SMM

I = SMT, SMA

R = SMX,STS

T = CSN

Note: items used in different families keep the acronym of their original family

2nd letter:

Type of physical entity

A = backplane adaptation device

B = subrack (mechanical assembly, backplane, board guide, etc..)

C = electronic card

E = power supply

F = backplane

G = gate array

L = leads (links)

P = extender

R = rack

S = plug

Page 29: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

29

Page 30: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

30

SUBSCRIBER DIGITAL ACCESS UNIT LOCATION OF SUBSCRIBER DIGITAL ACCESS UNIT (CSN) The digital satellite exchange (CSN) is an entity for connection of subscribers which is capable of serving analogue subscribers and digital subscribers simultaneously. Its design and make-up allow the CSN to be fitted into the existing network and it can be connected up to all time-domain type systems using CCITT No. 7 semaphore signalling. The CSN is a connection unit designed to adapt to a wide variety of geographical situations. It can either be local (CSNL) or remote (CSND) in relation to the connecting exchange. The CSN is broken down into two parts: the digital control unit (UCN) and the Digital Concentrator Modules (CN). It is the digital control unit which can be local or remote in relation to the connecting exchange. Concentrators on which subscribers are connected can be local (CNL) or remote (CNE) in relation o that control unit. Two distribution levels exist, therefore, which gives very great flexibility with regard to geographical location.

Figure 1: CSN connections to the network

Page 31: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

31

CONNECTION OF SUBSCRIBER DIGITAL ACCESS UNIT (CSN)

The CSN was designed for Integrated Services Digital Network (ISDN). This means that the

following can be connected on a CSN:

� 2- or 4-wire analog subscriber lines,

� digital subscriber lines with basic rate of 144 kbit/s : 2 B channels + 1 0 channel at 16

kbit/s,

� PCM links for connecting extended-access PABX switchboards to 30 B channels + 1 D

channel at 64 kbit/s, at primary rate.

Figure 2: Connecting subscribers to the CSN FUNCTIONAL BREAKDOWN OF DIGITAL CONTROL UNIT (UCN)

The Digital Control Unit (UCN) is the interface between the Digital Concentrator Modules (CN)

and the connecting exchange. It is made up of:

� two Control and Connection Units (UCX) operating in Master/Standby mode. The

Master UCX controls all the traffic and updates the Standby UCX, on line. In this way, if

there is a failure of the Master UCX there is immediate Master/Standby switchover and

the Standby UCX which has become Master controls all the traffic, in its turn,

� an Auxiliary Equipment Processing Group (GTA) which pools certain functions

associated with the UCX - viz:

Page 32: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

32

o generation of tones and of recorded announcements for local communications on

the occasion of autonomous operation of the Remote Subscriber Digital Access

Unit,

o recognition of dual frequency signals from keyboard stations on the occasion of

autonomous operation of the Remote Subscriber Digital Access Unit,

o tests of subscriber lines connected up to the Local Digital Concentrator Modules.

As the Remote Digital Concentrator Modules are connected up to the Digital Control Unit by PCM links, the role of the Remote Digital Concentrator Modules Interface (ICNE) is to synchronize and to convert the PCM links into network links which are internal to the Digital Control Unit. A Connection and Control Unit (UCX) is broken down into two parts:

� the connection network (RCX),

� the control unit (UC).

The Subscriber Digital Access Unit has two levels of concentration. The first is located within the concentrators, and the second is the Connection Network (RCX).

Figure 3: Functional breakdown of the UCN

Page 33: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

33

DIFFERENT TYPES OF CONCENTRATOR

The different types of concentrator which can be connected up to the Digital Control Unit are as

follows:

� CNLM: local digital concentrator for digital and analog subscribers,

� CNEM: remote digital concentrator for analog subscribers and digital subscribers.

Connection of Subscriber Digital Access Units to an OCB283 (Exchange Office)

Connection of Local Subscriber Digital Access Units

Local Subscriber Digital Access Units (CSNL) are connected direct onto the ElO connection network with the aid of from 2 to 16 matrix links. The first two links carry CCITT No. 7 semaphore signalling, in TS16. The TSO cannot be used to carry speech channels whereas TS16 are used for this when they do not carry any CCITT No. 7 semaphore signalling. Connection of Remote Subscriber Digital Access Units

Remote Subscriber Digital Access Units (CSND) are connected up to the connection network (CX) via a multiplex connection unit (SMT). Two to 16 PCM connections are used for connecting up the Remote Subscriber Digital Access Unit. TSO cannot be used for carrying speech channels whereas the TS16 can, when they do not carry any CCITT No. 7 semaphore signalling. Signalling: PCM 0 AND 1 TS 16

Speech PCM 0 and 1 TS 1 to 15 +17 to 31

PCM2 < 15 TS 1 to 31

Connection of Digital Concentrator Modules to Connection Network

The Local Digital Concentrators (CNL) are connected up to the Connection Network with the aid of 2 to 4 Internal Network Lines (LRI). All the TS16 of these LRI are used for carrying High Level Data Link Control (HDLC) signalling. This signalling permits 2-way communication between the concentrators and the Digital Control Unit. The TSO cannot be used for carrying speech channels. The Distant Digital Concentrators (CNE) are connected up to the Connection Network via the Distant Digital Concentrator Modules Interface (ICNE), with the aid of from 1 to 4 PCM connections. The TS16 carry the HDLC signalling and the TSO cannot be used for carrying speech channels. A maximum of 42 LRI can be used for connecting subscriber’s concentrators to the connection network. The maximum number of Local Digital Concentrator (CNL) which can be connected to the Connection Network is 19. This is because of the maximum number of racks, which is 4. In this case the 42 LRI are divided up on the 19 CNL in terms of the traffic. The maximum number of Remote Digital Concentrator which can be connected up to the Connection Network is 20.

Page 34: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

34

With CNE and CNL equipped the maximum number of CN is 20. CNE can be equipped with from, one to four PCM connections, The ICNE allows a maximum of 42 PCM to LRI connections, to be made.

Figure 4: Connection of Digital Concentrators to Connection Network

Figure 5: CSNL connection to 0CB283

Page 35: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

35

Figure 6: CSND connection to an 0CB283 CSN RACK ASSEMBLY CSN: 19 CNL configuration

CSN: CNE configuration

CSN: Configuration CNL ET CNE

Page 36: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

36

Page 37: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

37

MAIN CONTROL STATION

ROLE OF MAIN CONTROL STATION The Main Control Station (SMC) supports the following functions

� MR (Call handler): call processing,

� CC (Communication Control): processing of the SSP application,

� TR (Translator): database,

� TX (Charging): charging for communications,

� MO (Message Distributor): message distribution,

� GX (Matrix System Handler): management of connections,

� GS (Services management): SSP application,

� PC (SS7 Controller): signalling network management.

According to the configuration and the traffic to be handled, one or more of these functions may be supported by the same Main Control Station LOCATION OF MAIN CONTROL STATION

The Main Control Station is linked to the following communication media

� The Inter station Multiplex (MIS): it carries out interchanges of information with the

other Main Control Stations (SMC) and with the SMM station,

� The Main Control Station Access Multiplexes (MAS): 1 to 4 they carry out interchanges

of information with the Auxiliary Equipment Control (SMA), Trunk Control Station

(SMT) and Matrix Control Station (SMX) connected on those multiplexes,

� The Alarm Multiplex (MAL): this transmits power alarms from the station to the SMM

station

Page 38: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

38

.

FUNCTIONAL ARCHITECTURE

General architecture of a multiprocessor station

� Philosophy of ‘multiprocessor derived from Alcatel 8300 system concepts

one or more than one processor, one or more than one intelligent coupler,

interconnected by a bus and interchanging data through a common memory.

� Two-way communication between subassemblies coordinated by the basic system.

Page 39: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

39

BSM = Multiprocessor Station Bus A multiprocessor station can include:

� one or more than one multiplex coupler,

� one or more than one processor unit,

� a common memory,

� Specific couplers for switching functions or data processing inputs/outputs.

Page 40: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

40

MAIN CONTROL STATION ARCHITECTURE

The Main Control Station includes:

� a main multiplex coupler (CMP),

� a main processor unit (PUP),

� a common memory (MC),

� 1 to 4 secondary processor units (PUS),

� 1 to 4 secondary multiplex couplers (CMS).

PHYSICAL FORM OF MAIN CONTROL STATIONS The Main Control Station (SMC) is organized around a standardized Multiprocessor Station Bus (BSM). The size of this bus is 16 bits. The different boards are connected to this bus and it is used by them as a means of communication. Thirteen boards can be connected onto the Multiprocessor Station Bus within a Main Control Station:

� an ACAJA board is responsible with it’s associated ACAJB to manage interchanges

between the Interstation Multiplex (MIS), and the BSM,

� four ACAJA are responsible with their associated ACAJB boards to manage

interchanges between the MAS and the BSM,

� three ACMCQ boards which carry out the Common Memory function, or only one

ACMCS (1),

Page 41: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

41

� an ACUTR board which carries out the Main Processor function (PUP),

� four ACUTR boards which carry out the Secondary Processor functions

� (PUS),

The ACALA board, which is not connected on Multiprocessor Station Bus, is responsible for collecting and transmitting power alarms of the Main Control Station. It is connected to the Alarm Multiplex (MAL).

Figure 1

� 5 types of cards: UC 68020 or 68030 ACUTR 16 Mb memory ACMCQ MIS/MAS coupling module ACAJA ACAJB Alarms coupling module ACALA

� SMC station (max. 17 cards + 2 converters). � Estimated maximum consummation at 5V < 160W

ACUTR Board: Processor Role Within the 0CB283 system, the ACUTR board, which is organized around a 68020 microprocessor (ACUTR3) or 68030 (ACUTR4), constitutes a processing unit for multiprocessor stations which is also called a Main Processor Unit (PUP) or a Secondary Processor Unit (PUS). Location The ACUTR board is attached to

Page 42: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

42

� the Multiprocessor Station Bus, compulsorily, � a local bus in the case of the PUP.

A Control Station can include one or more than one ACUTR board connected to the Multiprocessor Station Bus. Connection of an ACUTR allows transfers of data with slave boards 32 bits (ACMCQ, ACMCS) or 16 bits. Connection to the Multiprocessor Station Bus takes place in 16-bit mode (address of less than 16 Megabytes) or in 32-bit mode (address of more than 16 Megabytes). The 32 bit mode enables the

68020 to be operated at full capability (32 address bits and 32 data bits). This mode is used automatically when the address sent by the microprocessor exceeds 16 Megabytes. General organization of board a 32-bit processor:

� 68020 Motorola operating at 15,6 MHz (ACUTR3),

� 68030 Motorola operating at 40 MHz (ACUTR4).

The 68020 can access the following:

� one EPROM (128 Kbytes),

� one DRAM (4 Mbytes for ACUTR3 or 16 Mbytes for ACUTR4),

� registers (ICMAT, ICLOG...),

� a local bus interface,

� a multiprocessor station bus interface provided by the BSM gate array,

� a coupling area arranged within the BSM gate array.

Page 43: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

43

ACMCS Board: 16 Megabyte Common Memory Role The ACMCS board is the common memory of the 16 Megabyte 0CB283 control stations; it is protected by a self-correcting code and can be accessed via the BSM multiprocessor station bus and the local bus, (BL). Location It interfaces with:

� The multiprocessor station bus, a multi-master bus with access priority. The data bus is a

16-bit one for addresses of less than 16 Mbytes and a 32 bit one for addresses lying

between 16 Mbytes and 4 GBytes. To operate, the board must be linked to a master

board via the multiprocessor station bus,

� The local bus, which is a quick-access mono-master bus. The data bus is a 32-bit one and

it is accessible only to addresses of < 16 Mbytes. A link with a master board via the local

bus is not essential for the board to operate.

Organization The ACMCS board essentially includes:

� The multiprocessor station bus and local bus interfaces,

A special addressing area which is accessible via the multiprocessor station bus only

and is called a “link-pack area”. It is made up of:

Page 44: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

44

o commands-and status registers,

o address translation filters,

� 128 memory blocks of 128 Kbytes (i.e. 16 Mbytes), accessible via the multiprocessor

station bus and the local bus,

� The arbitration access control and refreshing logic.

ACAJA/ACAJB Boards Role of Coupler The coupler is organized around a 68020 and makes it possible to connect a station which includes a multiprocessor station bus to a communication multiplex of token ring type. The coupler is associated with the relevant softwares and fulfils MIS coupler (CMIS) or MAS coupler (CMAS) functions according to whether it is connected to an Interstation Multiplex (MIS) or a Main Control Station Access Multiplex (MAS). The coupler can serve as a station handler for initialisation and loading operations. If it does so it is referred to as a “Main Multiplex Coupler” (CMP). If not, it is referred to as a “Secondary Multiplex Coupler” (CMS).

Page 45: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

45

Location of Coupler The token ring coupler is attached to:

� The multiprocessor station bus,

� Two token ring links.

General Organization of Coupler The coupler is made up of two boards, ACAJA and ACAJB. ACAJA is organized around the Motorola 68020 32-bit processor which operates at 15.6 MHz. The 68020 can access the following:

� 128 Kbyte EPROM,

� 4 Mbyte DRAM,

� registers (ICMAT, ICLOG, ...),

� A Multiprocessor station bus interface provided by the multiprocessor station bus gate

array.

� A coupling area arranged within the multiprocessor station bus gate array.

� Two token ring adaptors: one located on ACAJA, and the other on ACAJB.

These two boards are interconnected via a backplane private bus. The power Supplies of the two boards are different, in order to guarantee absence of simultaneous disturbance of the two rings in the event of a power fault.

Page 46: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

46

The ACAJB board also makes it possible for the station number, (“APSM = physical address”) programmed on backplane, to be read. LOCATION AND RACK ASSEMBLY Location

Rack Assembly

SOFTWARE ARCHITECTURE Principle Each station has the following software:

� an operation system, called HYPERVISOR (HYP), which functions as a hardware

interface, software resources allocation and the communication with the other stations,

Page 47: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

47

� a software in charge of the progression of the elementary task for an software machine

(ML), it called SUPERVISOR (SUP),

� some software called SOFTWARE MACHINE (ML),

2 types of ML:

o One or more functional ML. Each one has a specific telephonic function (E.G.

charging, call processing),

o One ML (called station ML-MLSM). This ML is used for station defence,

initialisation, down loading and communication.

HYPERVISOR, SUPERVISOR and MLSM, are loaded on all the stations (SM). They are called the << basic software >> of the station. This software is distributed on the different active agents of the station. One given functional ML (E.G. MLMR) is loaded according to the configuration needed. Hypervisor The HYPERVISOR is the operating system of the station. It gives the possibility to each ML to be independent of it’s physical location and allows the loading, on the same processor, of MLs with different functions (E.G: MLMQ, MLGX). It also carries out:

� Time-delays management:

o It assumes the time sharing between the different ML installed on one agent

using parameters given by the configuration file of the SM.

� The communication:

o Communication between the MLs is done by the hypervisor without

modification.

� Time delay:

o On request from one ML: start, re-start or end of time delay.

o Signalling of over flow time delay.

Supervisor A functional ML component executes one set of elementary tasks. Each task corresponds to service activation. Scheduling of those services is done by the SUPERVISOR. The SUPERVISOR in the Macro component is called a <<SEQUENCER>>. System Functions: MLSM The MLSM is divided and loaded on all the active agents of the station.

Page 48: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

48

The MLSM software machine includes:

� The main MLSM component, which carries out:

o loading of the station,

o initialization of the station,

o positioning of the station,

o defence of the station,

o observation of the station,

� the secondary MLSM component, which carries out:

o loading and initialization of the agent,

o defence of the agent,

o observation of the agent.

In addition, MLSM components transmit messages to and from the token rings when they are loaded on CMP or CMS couplers. Functional Software Machine A functional software machine is an application software. It is loaded on one SM. In the SM it is loaded on one or more than one agent. E.G: MLTX and MLMR include:

� one main component (exchanger),

� 1 to 4 secondary components (Macro).

SOFTWARE ARCHITECTURE OF A STATION

SEQ : sequencer (MR or TX) ML SM/P : main component of MLSM ML SM/S : secondary component of MLSM

Page 49: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

49

MLi : MLi (Single component) MLj/E : interchange unit software module of Mlj (multi-component) MLj/M : macro component of MU (multi-component) MLk/P : main component (new structure multi-component) MLk/S : main component (new structure multi-component) Examples of Location of Software Machines Small Configuration P (Subscribers Applications) NOTE: ML_ _ /M are managed by a Sequencer (SEQ) Medium Configuration (Subscribers Application) a) SMC = TR +TX + MQ + GX + PC

NOTE: ML JM are managed by a sequencer (SEQ) b) SMC=MR

Page 50: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

50

NOTE: ML JM are managed by a sequencer (SEQ) c) SMC=TX+MQ+PC

NOTE: ML JM are managed by a sequencer (SEQ)

Page 51: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

51

OPERATOR INTERFACE

Station status

� Each station possesses a material address (AM),

� Each station possesses a status:

o ES: in Service, o INDL: unavailable idle, o INDO: unavailable busy, o BLOM: blocked by operator, o BLOS: blocked by system, o INIT: in course of initialization, o TEST: under test.

Statuses of Software Machines

� Each software machine possesses a functional address (AF),

� Each software-machine possesses its own status:

o ES: in service (or ESRE’- in service reserve) (Hot standby) o INDL: unavailable idle o INDO: unavailable busy o INIT: in course of initialization o NES: Not in Service

Examples Station in service (normal status) AM = SMC1 STATUS = ES

AF = TR1 STATUS = ES AF = TX1 STATUS = ES AF = MR1 STATUS = ES AF = PCA STATUS = ES AF = MO1 STATUS = ES AF = GX1 STATUS = ES

Station blocked by operator AM = SMC1 STATUS = BLOM

AF = TR1 STATUS = NES AF = TX1 STATUS = NES AF = MR1 STATUS = NES AF = PCA STATUS = NES AF = MQ1 STATUS = NES AF = GX1 STATUS = NES

Station for which going over to INDL has been requested by operator

Page 52: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

52

AM = SMC3 STATUS = INDO AF = TR1 STATUS = INDL AF = TX1 STATUS = INDO AF = MR1 STATUS = INDO AF = PCA STATUS = INDL AF = MQ1 STATUS = INDL AF = GX1 STATUS = INDL

Station in course of initialization AM = SMC3 STATUS = INIT

AF = TR1 STATUS = INIT AF = TX STATUS = ES AF = MR1 STATUS = ES AF = PCA STATUS = ESRE AF = MQ1 STATUS = ES AF = GX1 STATUS = ES

DEFENCE A station detects its own faults and signals its serious faults to its environment. It is made up of a set of processors which are of multi-level structure and co-operate for detection of faults. A station is monitored from the outside by its environment, thanks to the other stations. This monitoring is instituted in order to offset inefficiencies, if any, in detection mechanisms which are internal to the station. It requires centralization of potential malfunctions in order to carry out correlation. Each malfunction is assigned a level of seriousness (weighting). A OCB 283 station is a confinement unit: confinement of any confirmed fault is carried out within the station and consists of stoppage of the station. Traffic in progress within the station may be lost in this case. It will not have any degraded operation effect except for the time it takes fault tolerance mechanisms to react. . A station possesses a status, characterizing its fitness to handle traffic, vis-a-vis the outside. It also knows the status of all the other stations at any moment, which allows it to re-switch its traffic if a change in configuration of the station network takes place. A station is a reconfigurable unit - i.e. any station positioning because of a fault will lead to re-allocation of all its tasks (ML) to a backup station, if there is one.

Page 53: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

53

Page 54: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

54

AUXILIARY EQUIPMENT CONTROL STATION ROLE OF AUXILIARY EQUIPMENT CONTROL STATION (SMA) The Auxiliary Equipment Control Station (auxiliaries’ multiprocessor station) supports the following functions:

� ETA: Auxiliary Equipment Manager: Management of tone and of auxiliary

equipments,

� PUPE: SS7 Protocol Handler: Processing of CCITT No. 7 Protocol. According to the configuration and the traffic to be handled, one SMA can support an auxiliary equipment manager software machine (ETA), a SS7 Protocol Handler Software Machine (PUPE), or both. The auxiliary equipment control station contains auxiliaries of the OCB 283 exchange. These are:

� Frequency receivers/generators,

� Conference circuits,

� Tone generators,

� Clock management,

� CCITT No. 7 signalling receivers/transmitters.

LOCATION OF AUXILIARY EQUIPMENT CONTROL STATION The Auxiliary Equipment Control Station is linked to:

� The connection network by a set of 8 matrix links. It is via the connection system that

the auxiliary equipment control station receives basic time distributions from the STS,

� The Main Control Station Access Multiplex (MAS). It carries out interchanges of

information between the auxiliary equipment control station and the command

components of the OCB 283,

� Alarms Multiplex (MAL).

Page 55: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

55

FUNCTIONAL ARCHITECTURE The Auxiliary Equipment Control Station is connected to the Host Switching Matrix by 8 matrix links equipment: The SMA may have the following boards:

� A main multiplex coupler (CMP),

� According to call-handling capacity power necessary:

A main processor unit (PUP),

A secondary processor unit (PUS),

A common memory (MC),

� 1 to 12 couplers:

Processing of speech signals (CTSV),

Multiprotocol signalling (CSMP),

Clock management (CLOCK).

The CTSV can process functions of the following types:

� Frequency receiving generation,

� Conference,

� Tone generation,

� Testing of sundry modulations, psophometer.

Page 56: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

56

The CSMP can process protocols such as No. 7 signalling or other HDLC protocols. Figure 1

To connection chain PHYSICAL FORM OF AUXILIARY EQUIPMENT CONTROL STATIONS The Auxiliary Equipment Control Station is organized around a standardized Multiprocessor Station Bus (BSM). This is a 16-bit bus. The different boards are connected to this bus, which is used by them as a means of communication. Sixteen boards can be connected to the multiprocessor station bus:

� an ACAJA board is responsible with to associated ACAJB board to manage interchanges

via the Main Control Station Access Multiplex (MAS),

� an ACMCQ or ACMCS board which supports the bulk memory of the station,

� an ACUTR board: main processor function (PUP),

� an ACUTR board which carries out the secondary processor functions (PUS),

� at most 12 boards which carry out the specific operations for which the. Auxiliary

Equipment Control Station is responsible:

o one or more ICTSH board,

o one or more ACHIL board,

o an ICHOR board..

The following are inserted within the station but not connected to the multiprocessor station bus:

Page 57: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

57

� a pair of ICID boards. These are the SAB interface between the branches of the

connection matrix and the auxiliary equipment control station,

� an ACALA board which is responsible for collecting and transmitting alarms appearing

on auxiliary equipment control station.

The structure chosen has the advantage of permitting a wide variety of configurations or, at the same time, call-handling cap cities (put into physical form by the number of ACUTR). The operational capacity (according to the number and the type of application boards) can be adjusted to a wide variety of needs. Figure 2

9 types of boards

Auxiliary Equipment Control Station: (maximum of 20 boards + 2 CV)

Maximum consumption on 5V < 120 W

Page 58: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

58

FUNCTIONS PERFORMED Functions performed by the MLETA

� Call processing

o Reception and processing of the frequencies (inter-switch signalling)

o Management of the RGF resources

o Transmission of the RGF statuses

o Management of the ICTSH card

o Processing of the orders to send frequencies (inter-switch signalling)

o Subscriber set to conference

� Clock management

� Observations (load of the ICTSH resources)

� Maintenance

o LA continuity check

o Check modulation of the announcements

o On-line test of ICTSH and ICHOR board

Functions performed by ICTSH board “Simultaneous communication between subscribers” function Putting a maximum of four subscribers into simultaneous communication is possible. This function allows:

� additive conference with discrete listening facility,

� indication of calls waiting,

� establishing of calls by operators.

This function implies addition of speech samples. Smoothing of level of speech of different speakers is not provided. Eight conferences with four subscribers are implemented on an ICTSH board. “Tone generator” function This enables voice frequency signals to be generated. These signals are sequences of mono, bi, tri or quadri frequencies. A sequence consists of a maximum of eight “transmission/silence” sequences (RING TONE, BUSY TONE, etc...). Units used are:

� hertz for frequencies,

Page 59: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

59

� decibel for sound levels,

� ms for timing.

An ICTSH board generates 32 voice frequency signals. Frequencies and timings are transmitted at initialization of the Auxiliary Equipment Control Station and remain fixed during phases of operation. Frequencies receiving and generation (RGF) function The RGF terminals analyse and transmit signals within the voice frequency band. In general these signals are single or dual frequency signals pertaining to a signalling code. In OCB 283, one RGF terminal is dynamically sited by the command components within a signalling code. It detects the presence of signals received and transmits to the command stations the composition of this signal (Frequencies). On command instruction, it always transmits single or dual frequency pulses. Eight RGF terminals can be implemented on ICTSH. Hypsometer codes are processed as particular RGF codes. Modulation detection function This function allows operation of recorded announcements to be supervised Processing is like speech detector. The modulation monitoring function is processed as a particular RGF code. It is a software transmitted at the initialization of the station and it determines the type of function implemented by the board. Function performed by the ML PUPE

� CCITT N°7 network interface

o CCITT N°7 network messages send and receive (MTP)

o Routing of the CCITT N°7 messages (MTP)

o Partial management of the signalling channels (MTP)

o Partial management of the signalling traffic (MTP)

� Call processing

o Treatment of the circuit telephonic calls (by UTC)

Processing of the analogue calls (TUP) and ISDN

The different signalling are loading in the UTC. The selection is done by

a grid accessed by a given signalling code for each circuits group.

o Management of the CCITT N°7 channels

o Subscribers call processing CSN (UTC part)

� Operation and maintenance

Page 60: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

60

o Management of the UTC files

o CCITT N°7 circuits observations

o Fault, alarms and test of the entity processed by the station.

Function performed by the ACHIL board This board carries out Level 2 processing for 16 HDLC type signalling channels and has servers with the following role at check frame level

� on transmission:

o sending of flag,

o computation of CRC,

o insertion of zero,

o automatic sending of filling frames,

o repetition of status frames, on command.

� on receiving:

o elimination of inserted zeros,

o centering on flag,

o checking of CRC,

o automatic elimination of filling frames which carry no useful information.

Function performed by ICHOR board The function of the ICHOR board is to keep the time of the OCB 283 exchange accurate. Time information performs a double function on switching. It enables messages to be determined and labeled. It must be protected against slow drifts which involve repeated resetting of time, and against sudden loss of time due to hardware anomaly. Function performed by ACAJA I ACAJB coupling This coupler makes it possible to connect the Auxiliary Equipment Control Station to the Main Control Station Access Multiplex and carries out two-way communication with the command units. The following informations are interchanged:

� channel-associated signalling coming from the ICTSH boards, which are signals transmitted by the RF of the RGF specifying the voice frequency signals detected,

� messages to and from applications implemented by the processors present in Auxiliary Equipment Control Station (positioning messages, semaphore messages ....).

Page 61: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

61

Function performed by the ACALA board This carries out collection of alarms. This board is self-powered. In Auxiliary Equipment Control Station the alarms transmitting entities are converters. Functions performed by ICID board The defence of the GLR is done by the ICID boards. It supports the following functions:

� receiving of the 8 matrix links and of an associated time base, coming, via a RCID

board, from a branch of the Host Switching Matrix,

� transmission of 8access links and 8 associated time bases to the UR (SMA-SMT)

� inter-aids by receiving 8 matrix links coming from the other branch of the SMX with the

associated D

� synchronization of the matrix links coming from the Host Switching Matrix and the

inter-aid matrix links,

� supplementary bits travelling on the matrix links,

� generation of the availability signal which accompanies the access links,

� Generation of the inter-IC ID inter-aid availability signal,

� Processing of LAE links transmitted by the UR and generation of LRE.

LOCATION AND RACK ASSEMBLY Location of SMA1-SMA2 with tone generator and clock

Page 62: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

62

Location of SMA without tone generator or clock

Page 63: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

63

Location of SMA with 96 RGF

Figure 3 RACK ASSEMBLY

Page 64: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

64

SOFTWARE ARCHITECTURE SMA with MLETA and MLPUPE Subscriber Application

Page 65: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

65

SSP Application

ML PUPE/N: MTP and TUP signalling, ISDN telephone user part, integrated services

digital network user part. MLPUPE/I: Transaction capabilities application part (TCAP)

Page 66: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

66

SMA with MLPUPE only Subscribers Application

SMA with MLETA only

Page 67: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

67

Page 68: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

68

SYNCHRONISATION AND TIME BASE STATION TIME DISTRIBUTION

� 2 x tripled distribution from Synchronization and Time Base Station (STS) to Host

Switching Matrix (MCX).

� Logic majority achieved in each Host Switching Matrix branch.

� Duplicated distribution by Host Switching Matrix to stations (SMX).

ROLE OF SYNCHRONISATION AND TIME BASE STATION The Synchronization and Time Base Station incorporates 3 functions:

� External Synchronization Interface (HIS) clocks,

� Tripled Time Base (BTT),

� Alarms.

Role of External Synchronization Interfaces (HIS)

� The External Synchronization Interfaces are synchronization units designed for

synchronization networks of master-slave type with more than one input and with

management of priorities. Putting one or more than one input out of service and re-

establishing them takes place automatically, in terms of defined criteria.

� They use clocks retrieved from digital circuits coming from PCM Terminal Stations

(Trunk Control Station (SMT).

� They carry out management of synchronization links by monitoring alarm signals of the

relevant PCM.

� They guarantee maximum quality of frequency precision, no matter what the quality of

synchronization links might be.

� They offset losses from all synchronization links, via a very high stability oscillator.

Page 69: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

69

Role of Tripled Time Base (BTT)

� This distributes the time signals necessary to the Connection Network Stations of the

ALCATEL E1OB 0CB283 system.

� It uses the logic majority principle for time distribution and fault detection in order to

guarantee high reliability (tripled boards).

Defence

� This function makes it possible to transmit alarms generated by the External

Synchronization Interfaces and the Tripled Time Base, onto an alarm ring.

SYNCHRONISATION AND TIME BASE STATION ARCHITECTURE The Synchronization and Time Base Station includes:

� a Tripled Synchronous Time Base (BIT),

� an External Synchronization Interface (HIS) which can be duplicated.

The synchronization unit can receive 4 PCM clock.

The BIT is made up of 3 RCHOR boards.

The HIS is made up of from 0 to 2 RCHIS boards.

OPERATING REGIMES

Page 70: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

70

The Synchronization and Time Base Station automatically generates 4 sets of operating conditions which guarantee:

� maximum autonomy,

� Protection against any action which is dangerous for the quality of frequencies

transmitted and for safety of operation.

Normal Synchronized Regime

� The Synchronization and Time Base Station is synchronized on one reference from several.

Normal Autonomous Regime � The Synchronization and Time Base Station is no longer synchronized (no longer any

external reference).

� The frequencies transmitted are defined by the External Synchronization Interface in

service (memorised value of HIS frequency = value before external loss of

synchronization).

� Frequency stability within the temperature range of the steady state operation regime, for

72 hours, is better than 4.10-10.

BTT on Free Oscillation Regime

� The 2 External Synchronization Interfaces are out of service.

� The Tripled Time Base is no longer synchronized.

� It delivers its own frequencies (memorised value of the frequency of each RCHOR =

value before loss of External Synchronization Interface synchronization).

� Frequency stability within the temperature range of the steady state operation regime, for

72 hours, is better than 1.10-6.

Free Oscillation Regime

� The station is used without synchronization link.

� Frequency precision is defined by factory calibration.

� It is in the order of 10-9 at commissioning (following a few months’ storage).

LOCATION AND RACK ASSEMBLY

Page 71: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

71

Location

Rack Assembly

Page 72: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

72

Page 73: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

73

TRUNK CONTROL STATION ROLE OF TRUNK CONTROL STATION (SMT) The Trunk Control Station ensures functional interface between the PCM and the switching centre. These PCM come from:

� another switching centre,

� a Remote Electronic Satellite Concentrator (CSED),

� a Remote Subscriber Digital Access Unit (CSND),

� the digital recorded announcement equipment.

The Trunk Control Station (SMT) permits implementation of the PCM Controller “URM” (multiplex connection unit) function which mainly consists of:

� in PCM to switching centre direction: o HDB3 conversion to binary,

o extraction of channel-associated signalling,

o management of semaphore channels carried by TS16,

o cross-connection of channels between PCM and Matrix Link (LR),

� in switching centre to PCM direction:

o binary to HDB3 conversion,

o transmission of channel associated signalling,

o management of semaphore channels carried by TS16,

o cross-connection of channels between Matrix Link and PCM.

LOCATION OF TRUNK CONTROL STATION The Trunk Control Station is connected to:

� external components (Remote Subscriber Digital Access Unit, Remote Electronic

Satellite Concentrator, circuits) by PCM (maximum of 32),

� the connection matrix by a set of 32 network lines (matrix links), or 4 groups of matrix

links, for carrying the content of CCITT No. 7 semaphore channels and speech channels,

Page 74: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

74

� Main Control Station Access Multiplex (MAS) serial communication medium which

carries out interchanges of information between the Trunk Control Station and the

Command Stations,

� the alarm Multiplex (MAL).

GENERAL ARCHITECTURE A Trunk Control Station handles 32 PCM links. These links are divided up into 8 groups of 4 (PCM which are each processed by a module which is a dedicated Multiplex Connection Module (MRM) or Satellite Connection Module (MRS). Specialisation is at software level only. All these eight modules are managed by a logic: LOGUR. To ensure correct availability of the unit, the LOGUR and also the acquisition logic of each module are duplicated. The PCM end logic (transcoder) and the active logic selection board are not duplicated. A Trunk Control Station is therefore made up of two logics (or 1/2 PCM Controller system)

� a pilot logic which handles switching and protection functions related to switching, � a standby logic which is kept up to date in relation to the master logic and which

performs LOCAVAR functions on request from the (SMM).

Page 75: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

75

The standby logic becomes the pilot logic on instruction from the SMM or on failure of the other logic. Figure 1:

Module Organisation A module manages 4 PCM of 32 channels. It is made up of 2 parts:

� a PCM end logic made up of 4 ICTR1 transcoders (1 per PCM), which carry out: o on receiving : HDB3-binary conversion on the link and retrieval of remote clock, o on transmission : binary HDB3 conversion from the transmission link and the

local clock,

� a duplicated acquisition logic (LACO and LAd), the main functions of which are:

o synchronisation of the receiving link on local clock,

o detection of alarms,

o processing of CRC4 on receiving,

o cross-connection of speech or data channels,

o extraction and processing of signalling,

o transmission of signalling,

o calculation and injection of CRC4.

Page 76: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

76

Each LACO module is managed by the LOGUR 0, with the LAC1 modules being managed by the LOGUR 1. Each LAC module is made up of an ICMOD board. Figure 2:

Page 77: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

77

Organization of LOGUR Position of LOGUR within trunk control station (SMT)

A half-system is capable of managing all the traffic of the 32 PCM links. Choice of the logic in service takes place by a non-duplicated module from

� periodic requests for switchovers,

� requests for switchovers on failure of the master logic,

� requests for manual switchovers,

� operator commands (MMC).

Make-up of LOGUR The LOGUR manages the eight acquisition logics which are associated with it. It manages two way communications with the other LOGUR and external components. These functions are divided up among three processors:

� 2 auxiliary processors, A and B, which carry out switching work and manage the alarms

of the logics which are associated with them (ICPRO-A and ICPRO-B boards),

� 1 main processor which manages interchanges, monitors and controls the tasks carried

out by the auxiliary processors and carries out maintenance of the unit which comes

under it (ICPRO-P board). An interchange memory exists to effect two-way

communication between the main processor and the auxiliary processors, and it also

carries out interchanges with the other logic (ICMEC board).

Memories which are common to the auxiliary processors contain conversion tables used in processing of channel-associated signalling (ICCTM board).

Page 78: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

78

Interchanges with control components take place through a coupler connected up to a communication multiplex, the Main Control Station Access Multiplex (MAS) (ACAJA and ACAJB board), via the ICDIM board which ensures interface between the Main Control Station Access Multiplex and the ICPRO and between the Main Control Station Access Multiplex coupler and the modules for transmission and receiving of channel-associated signalling. Modularity

� LOGUR The 2 LOGURs, 0 and 1, are systematically presented within the Trunk Control Station.

� MODULES

Modularity from 1 to 8 modules, with each module being equipped with 4 PCMs. Total outfitting of a module consists of:

o 4 ICTR1 boards supported by a ICTRM mother board,

o 2 ICMOD boards, one driven by the LOGUR 0, and the other by the

LOGUR1.

Figure 3: Logur Structure

Page 79: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

79

PHYSICAL FORM OF TRUNK CONTROL STATIONS

� 2 subracks are necessary for outfitting 1 complete Trunk Control Station,

� 12 types of board:

Main Multiplex Coupler (CMP) (ACAJA, ACAJB), 6 types of board adapted from the PCM controller: ICPRO, ICDIM,

ICSDT, ICMEC, ICCTM, ICCLA,

acquisition logic ICMOD, PCM termination ICTR alarms coupler ACALA, branch selection function (SAB) ICID,

� maximum outfitting: 49 boards + 4 convertors (CV). (Connection of 32 PCM),

� maximum consumption on 5 V,

� Complete Trunk Control Station (32 PCM) < 170W

LOCATION AND RACK ASSEMBLY

Page 80: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

80

Location

Page 81: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

81

Rack Assembly

Page 82: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

82

TRUNK CONTROL STATION (SMT2G) GENERAL DESCRIPTION The SMT 2G (PCM Trunk Control Station) carries out the following:

� connection and management of 128 x 2Mbit/s PCM links,

� management of user terminals,

� reception and transmission of signalling,

� pre-processing of channel-associated signalling,

� transmission of synchronising (LSR-LVR) signals to the Synchronising and Time Base

Station (STS).

PLACE WITHIN THE 0CB283 SYSTEM The SMT 2G ensures interface between the switching centre and the remote items:

� PCM trunks with other switching centres,

� PCM trunks with CSND or CSED,

� Announcement machine.

On the switching centre side, it is connected to:

� the control stations, via the main control station access multiplex,

� the connection monitoring system, via the group of matrix links,

� the alarm ring.

Page 83: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

83

Figure 1:

Page 84: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

84

INTERNAL ARCHITECTURE General Structure The SMT 2G is made up of 3 functional items:

� Duplicated control, consisting of 2 processing subsystems named SMTA and SMTB and

connected by LISM links.

� The non-duplicated part of the User Terminals (ETUs), which regroup the physical

interfaces of the trunks (2Mbits-PCM terminations, for example).

� The Branch Selection function SAB which is the interface with the Central Connection

Subsystem.

Figure 2: General organization of the SMT2G

Functional Architecture

Page 85: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

85

Figure 3: Functional Architecture of the SMT 2G

Each elemental control station (SMTA and SMTB) is made up of the following functions: CMP: Main Multiplex Coupler, executed by a pair of boards: ACAJA and ACAJB

PUP: Main Processor Unit, executed by a board: ACUTG

MC: Common Memo executed by a board: ACMGS

CLTH: HDLC Transmission Line Coupler executed by a board ICTSM

A CLTH coupler “sees” 1 or 2 assembly (assemblies) of 64 User Terminals

CSAL: Secondary Alarm Coupler, executed by a board: ACALA.

The Branch Selection and Amplification function (SAB) is executed by a boards assembly: ICIDS. The exchange termination (ETU) function is supported by L for the 2 Mbit/s PCM links. It is executed by a set of boards (ICTRQ or ICTQ7) which each support 4 User Terminals (ET), ET: Exchange Termination Termination Equipment for PCM

ETP: Exchange Termination processor: termination units management processor. An entity

made up of a processor and of User Terminals managed by that processor.

ETU: Exchange Termination Card board which supports terminations

LTH: HDLC transmission link: HDLC bus delivered by the CLTH coupler. This type of bus

includes 2 sub-types: BETP and LISM buses

Page 86: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

86

BETP: Bus which connects n ETP to an elemental Control Station. Each ETP is connected to the

elemental Control Station A by a BETPA bus, on one hand, and to the elemental Control

Station B by a BETPB bus, on the other. (The protocol used at Level 2 is the LAPD):

750 Kb/s

LISM: Inter-Control Station Link. Direct links between 2 elemental Control Stations which

share a common ETU assembly (protocol used at Level 2 is the LAPD): 250 Kb/s

HARDWARE ARCHITECTURE Characteristics of BETP links

� 64 ETP by BETP bus

� each ETP is served by 2 BETP (BETPA on SMTA side, BETPB on SMTB side)

� unitary blocking of ETP for each one of the BETP

� reset of the ETP via the BETP designated by the Pilote/Reserve wire

� FULL - DUPLEX,

� point to multipoint

� conflict resolving bus associated with each BETP

� plugging or unplugging a boards during operation, without disturbing neighboring

boards

Page 87: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

87

Boards Structure Diagram Figure 4:

The ICTSM board

� The ICTSM board is attached to:

o the Multiprocessor Station Bus (BSM), o the ICTSM board of the other SMT Station through a series link (LISM) and

switchover signals, o the ETP5 through 2 series buses (BETP).

Figure 5:

� Function managed by the ICTSM

Page 88: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

88

o management of the active/reserve switchover (first ICTSM),

o dialogue between SMTA and SMTB,

o interface with the ETP.

The ICTRQ board Within the SMT 2G this board supports 4 PCM termination functions. Each PCM termination is an ETP and the User Terminal (ET) of that ET is connected to an PCM link. Figure 6:

Each ETP carries out the following function for a PCM link:

� interface between PCM link and LA,

� HDB3 processing,

� synchronization of the PCM onto the local clock,

� management of the fault indicators,

� processing of the CRC4

� alarms and statuses (positioning) management,

� CAS signaling (TS16) send and receive,

� eventually emission of the PCM clock (synchronization) to the STS,

A loop-back program connector located on the front panel of the board allows doing 4 types of PCM loop.

Page 89: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

89

The ICIDS board The ICIDS (SIXTEEN LINKS differential interface board) board supports the Branch Selection (Selection of BRANCH Amplifier) function of the SMT 2G. Location of board Figure 7: Board Environment

LOCATION AND RACK ASSEMBLY Rack Organization

Physical Organization of a Station The SMT 2G station is divided up over 2 physical shelves, with each shelf containing a control subsystem and half the User Terminals with the associated Branch Selection function. Figure 9: Physical Organization of SMT 2G Station

Page 90: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

90

Figure 10: Physical Organization of SMT2G

SOFTWARE ARCHITECTURE Principle To operate within a Control Station environment the software machines (ML) are supported on basic software (Hypervisor) and on the system software’s. The Hyper visor allows cohabitation of ML on one processor. It carries out:

� Communication within the station, � Management of timings, � Time-sharing between ML or ML components being run on the processor

The Hypervisor and system software assembly is pooled within a virtual machine: Control Station Taking place of the elemental tasks which constitute an ML or ML component is carried out by the “Supervisor”. Figure 12: Functions of “Main MLURM” Components

Page 91: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

91

Page 92: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

92

Figure 13: Functions of “Secondary MLURM” Components

Page 93: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

93

Page 94: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

94

MATRIX CONTROL STATION SWITCHING MATRIX SYSTEM (CCX) Role of the CCX The Switching Matrix System establishes interconnections of time-domain channels for Local Subscriber Digital Access units (CSNLs) and the Trunk Control and Auxiliary Equipment Control stations. In general, the Switching Matrix System carries out:

� unidirectional connection between any incoming channel (VE) and any outgoing channel

(VS). There can be as many simultaneous connections as there are outgoing channels,

� connection between any incoming channel and any M outgoing channels,

� connection of N incoming channels belonging to the same frame structure of any

multiplex to N outgoing channels which belong to the same frame structure, abiding by

the integrity and the sequencing of the frame received. This function is referred to as “N

x 64 kbit/s connection”.

A bidirectional connection between an A end (calling party) and a B end (called party) takes place in the form of 2 unidirectional connections. The Switching Matrix System thus ensures:

� switching between auxiliary equipment and speech channels for voice frequency

signalling operations,

� simultaneous distribution of tones and recorded announcements to more than one

outgoing channel,

� permanent switching of channels which support data links or semaphore links between

circuit and circuit, or between circuit and Auxiliary Equipment Control Station.

Switching Matrix System Organization (CCX) The Switching Matrix System pools:

� the Host Switching Matrix:

o 16-bit switching, including 3 reserved,

o matrix of 2048 x 2048 matrix links with one time-domain stage,

o 64 matrix links equipment modularity,

� the Branch Selection function:

o selection,

Page 95: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

95

o amplification,

o interface of connection stations

(Local Subscriber Digital Access Unit, SMT,SMA ...),

o time distribution interface,

� matrix links:

o 4 Mbit/s rate,

o 8 matrix links connection modularity.

Fully duplicated branch concept. Figure 1:

Operation of Switching Matrix System

� Connections are established in both branches.

� Selection of the active branch for a Time Slot (TS) is carried out by comparing the

outgoing time slots of each branch.

� 3 control bits permit the following functions for each branch:

o carrying, by Time Slot parity, from the incoming Branch Selection to the

outgoing Branch Selection, setting, by matrix link, selection of the active branch,

o monitoring connection on request,

o metering of quality of transmission on request.

� Supervision of the unit is carried out by the connections management software machine

(Matrix System Handler GX),

Page 96: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

96

� The 5 additional bits are available for external utilization (signaling on leased lines....).

SELECTION AND AMPLIFICATION OF BRANCH SELECTION (SAB) Description This item is present in racks which have components connected to the Switching Matrix System. These components are the Local Subscriber Digital Access Units, Trunk Control Stations and Auxiliary Equipment Control Stations, referred to under the generic term of “Connection Units” or “URs”. The main function of this unit is to carry out interface between the URs and the two branches, Host Switching Matrix a and Host Switching Matrix b. It receives and transmits access links (LAs) coming from the URs and generates links (LRa for Host Switching Matrix a and LRb for Host Switching Matrix b). Processing operations carried out by this unit are:

1. amplification of matrix links on transmission and on receiving,

2. 8-bit/I 6-bit adaptation, preserving the 8-bit per channel,

3. processing of 3 control bits,

4. selection of branches,

5. time distribution interface between the URs and the Host Switching Matrix,

6. access link interface on transmission and receiving.

Page 97: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

97

The equipment modularity for this entity are:

� 16 LR for the SMT 2G and the CSN,

� 8 LR for the SMA, and the SMT1 G.

Figure 2:

Page 98: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

98

Connection Auxiliary Equipment Control Stations SMA → MCX

MCX → SMA

Each ICID board handles 8 matrix links (1 group of matrix links + I DT) coming from one and the same branch of the Host Switching Matrix. DT = Time base distribution (clock 4 MHz + 8 KHz synchronic) SDT = Synchro-time base (8 KHz) Trunk Control Stations

Page 99: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

99

a) SMTIG → MCX

MCX → SMTIG

b) SMT2G → MCX

Page 100: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

100

MCX → SMT2G

Local Subscriber Digital Access Units (CSNL)

Page 101: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

101

CSNL → MCX

MCX → CSNL

Each TCBTL board handles 16 matrix links coming from one branch of the Host Switching Matrix. HOST SWITCHING MATRIX (MCX) The Host Switching Matrix is made up of 2 branches, A and B, and, from the hardware point of view, is made up of Matrix Control Stations (SMX). A branch of the Host Switching Matrix contains from 1 to 8 Matrix Control Stations. Each Matrix Control Station receives a tripled time base signals (8 MHz and frame synchronisation) coming from the time base unit (STS) and, following majority choice, distributes information to the exchange and to the Matrix Link Interfaces (ILR). Each Matrix Control Station handles 256 incoming matrix links and 256 outgoing matrix links, within its network liaison interfaces (ILR). On output from the incoming side ILR, the LCXE links of homologous numbers are multiplied on the same positions of all the Matrix Control Stations. Each time-domain matrix is capable of handling the switching of any time slot of the 2048 incoming matrix links, to any time slot of its 256 outgoing matrix links.

Page 102: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

102

Equipment modularity increments are:

� 64 matrix links for the time-domain matrix (RCMT),

� 16 matrix links for the network liaison interfaces (RCID).

Figure 3: Architecture of a Branch of the Host Switching Matrix

MATRIX CONTROL STATION (SMX) Each SMX includes

� a Main Multiplex Coupler (CMP) which permits two-way communication on the Main

Control Station Access Multiplex (MAS) and performs the “processor” function for the

Matrix Switch Controller Software Machine (ML COM),

� a coupler to the time-domain matrix,

� Matrix Link Interfaces (ILRs) for a maximum of 256 incoming matrix links and 256

outgoing matrix links,

� a time-domain matrix of maximum capacity of 2048 incoming matrix links and 256

outgoing matrix links.

Page 103: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

103

:

Page 104: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

104

Command interface part The role of this is to:

� receive, via the Main Control Station Access Multiplex, instructions coming from command stations,

� write or read connection matrices command memories, � process monitoring functions, � transmit responses to command stations, � interface with the General Time Base. Following majority choice, the tripled clock

coming from the time base is distributed on the exchange; The processor and the function for coupling to the Main Control Station Access Multiplex are identical to those which exist in the command stations. There are 3 types of board:

� Main Multiplex Coupler (CMP → ACAJA, ACAJB

� Matrix Coupler → RCMP.

Matrix Link (LR) interface part (RCID) This carries out:

� interface of matrix links from and to the Branch Selections (SAB) - i.e.:

o distribution of these matrix links (LRE) in a format which is suitable for the

matrices, on the matrix entities of all the other switching stations of the branch,

o transmission of information received from the matrix of the switching station

concerned to the Branch Selections on the outgoing matrix links,

� processing of check result bits coming from the UR amplifiers,

� activation of tests on request for connection and transmission,

� distribution of time links to the UR,

� equipment modularity of this function is 16 matrix links:

o a RCID board carries out the matrix link interface function for 16 incoming

matrix links and 16 outgoing matrix links.

Page 105: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

105

Connection Matrix Part The function of the connection matrix is to switch any incoming channel onto any outgoing channel. Operation is based on use of two types of dual access memory:

� buffer type: this memory allows storage of samples relating to two frames, with storage taking place at the strobe of the time base and even frame alternating with odd frame in two buffers,

� readout is performed from the control memory. Read/write switchover takes place at each frame,

� control memory type: the VEj address relating to the VEj → VSi connection is stored at each address of this memory which corresponds to the VSi address.

This memory is written in upon instructions coming from the command units; it is read out at the strobe of the time base. The matrix has a maximum capacity of 2048 incoming matrix links on 256 outgoing matrix links, made up of two 1024 LRE x 256 LRS modules. Association of elemental matrices (64 x 64 matrix links) constitutes each module The arrangement of 32 “columns” of 4 basic blocks makes it possible to obtain the time-domain matrix of the Matrix Control Station, of maximum capacity of 2048 incoming matrix links and 256 outgoing matrix links. Any interconnection of time-domain channels goes through only one basic block. Average time taken to go through is one frame (125 microseconds).

Page 106: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

106

Figure 5: The 2048 LRE x 256 LRS Time-Domain Matrix

LRE: Incoming Matrix Link (from the point of view of the MCX)

LRS: Outgoing Matrix Link (from the point of view of the MCX)

RCMT matrix board This matrix board consists of four 64 x 64 matrices.

� it is on two boards, on inter-aid.

� Access to this board takes place at 4 Mbit/s.

� Internal operating rate is 16 MHz.

� Inter-aid takes place on the front of the boards.

Page 107: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

107

Page 108: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

108

Figure 6: Equivalent Square Matrix: 64 x 64

Page 109: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

109

Figure 7: Equivalent Square Matrix: 128 x 128

Page 110: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

110

Figure 8: Equivalent Square Matrix: 256 x 256

Figure 8: Standard Racks for MCX

Page 111: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

111

LOCATION AND RACK ASSEMBLY

1. Differential interface sub rack 2. Main sub rack (up to 1024 LR) 3. Extension sub rack (More than 1024 LR)

Page 112: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

112

Page 113: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

113

Page 114: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

114

MAINTENANCE MULTIPROCESSOR STATION PURPOSE OF THE SMM MAINTENANCE MULTIPROCESSOR STATION

� supervision and management of the ALCATEL 1000 El0 system,

� storage of system data,

� control station defense,

� supervision of communication multiplexes,

� man-machine communication processing

� overall initialization and re-initialization.

LOCATION OF THE SMM The maintenance station is connected to the following communication equipment:

� The inter-station multiplex (MIS): handles data exchanges with the main control stations

(SMC),

� The alarm multiplex (MAL): collects the power alarms.

The SMM can be connected to the telecommunications management network (TMN) via X25 links.

Page 115: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

115

FUNCTIONAL ARCHITECTURE OF SMM Overall description The SMM comprises the following sub-assemblies

� Two identical Multiprocessor Stations (SM), each built around processing systems plus primary memories derived from the A8300 system and connected to the inter-station multiplex (MIS),

� A Secondary Memory connected, to small computer system interface (SCSI) buses, which is accessed by either SMMA or SMMB,

� External interfaces which are assigned to the active station via the Terminal Bus.

In the duplex configuration the SMM consists of two Control Stations which are physically identified by the acronyms SMMA and SMMB. One of the two is the active or pilot, the other is the reserve. Functional Organization

Page 116: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

116

HARDWARE ARCHITECTURE The Processing Units There are two identical processing units (SMM A and SMM B), with only one being in control at a given time. Each processing unit forms a SMM on the Inter-Station Multiplex (MIS). It is designed around the XBUS bus (general bus of the ALCATEL 8300 system). The processing unit features the following boards:

� two pairs of ACUTG - ACMGS board processor and memory (connected by a local 32

bit-address bus),

� a pair of boards ACAJA/ACAJB for coupling with the Inter-Station Multiplex (MIS),

� a coupler board ACFTD for managing the terminal bus interface,

� two ACBSG boards for managing the interface between two SCSI buses,

� a system board ACCSG,

Each processing unit has an interface with the MIS and an interface with the secondary memory (disk, streamer, magnetic tape unit). The 2 processing units each interface with a terminal bus via a dedicated coupler board (ACFTD). The terminal bus carries the synchronous and asynchronous communication line couplers plus the terminal couplers. Each processing unit has one system board (ACCSG): the two system boards control switchover between the two processor units (DUPLEX operation). They dialogue via an HDLC serial link and exchange status signals (Master / Reserve / Maintenance).

Page 117: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

117

Figure 1: Processing Units

ACUTG/ACMGS

Support RTOS and the application software:

� ACUTG:

o 68030 processor,

o 16 Mbytes private RAM,

� ACMGS:

o 16Mbytes

o accessible by the XBUS and the local bus (BL)

ACCSG

� restarts a processing unit in the event of a reset or switchover,

� acts as the LOCAVAR pilot for the XBUS components,

� exchanges the information required for tests or switchover operations with the ACCSG

of the other processing unit.

ACFTD

Page 118: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

118

� interfaces the processing system with the Terminal bus,

� manages the lines and coupler line controllers.

ACBSG

� interfaces with the SCSI bus,

� an I/O software on the SCSI bus (SCSI driver) is loaded into the RAM during

initialization,

� each ACBSG board manages 2 independent SCSI buses (SCSI A and SCSI B) Inter-Station Multiplex (MIS) Coupler

� provides access to the other SM of the 0CB283,

� made up by the two boards ACAJAIACAJB.

Secondary Memory (or mass storage)

The Secondary Memory comprises all the means of data storage on electromagnetic peripherals:

disks, tapes and streamer.

The secondary memory comprises:

Disks ACDDGI: 1.2 Gigabytes

Streamer ACSTGI: 1.2 Gigabytes

Optional DBM 1600 BPI (Bytes per inch) - 2400 FEET

These items are connected to the SCSI buses via controllers (integrated in the disks and streamer). Figure 2:

Line Couplers

Page 119: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

119

The couplers active interface is with the active processing unit at a given moment, and can manage asynchronous/synchronous links with a data rate of 19.200 bauds or less (board ACTUJ), synchronous or high data rate links (ACJ64 board), and the alarm multiplexes of the 0CB283 (ACRAL2 board). Asynchronous Links

� provided by the ACTUJ boards,

� allow connection of:

o General Supervisory Station (PGS),

o Workstation Access Method (WAM),

o Intelligent Terminal (TI),

o display consoles,

o printers,

� the SMM can manage a maximum of 48 lines (6 ACTUJ boards)

Synchronous Links

� provided by ACJ64 boards,

� 64 kbit/s digital links,

� Interface with TMN,

Main Alarm Coupler

The ACRAL board is a line coupler connected to the SMM terminal bus which controls the alarm multiplexes (MAL). it records the alarms and controls the alarm remote relay junctions. It is associated with:

� the Terminal bus dual interface,

� one or two alarm multiplexes (MAL) which collect the alarms from the control stations

and the centre,

� the source end of an alarm loop signalling total failure of the system.

The SMM can control a maximum of 4 alarm multiplexes (each comprising 2 rings A and B) distributed between two ACRAL boards.

Page 120: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

120

FIGURE 3: Line Coupler

LAYOUT AND INSTALLATION IN RACK SMM Rack Figure 4:

SSE: Station Supervision Environment The SSE contains the ACALA couplers in charge of collection of the environment alarms and re-transmission of the remote control Figure 5: Rack Assembly

Page 121: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

121

SMM SHELVES

ALARM COLLECTION The system that records and displays the alarms is responsible •r collecting the signals sent by the alarm loops, by telecomm and transmissions (supervision, miscellaneous telecomm ands) and reception of command signals (reception telecomm ands). The system comprises 1 to 4 Alarm Collection and Display circuits (CVA). Each CVA is made up of two totally independent systems which operate in Pilot/Reserve mode, comprising:

� a Main Alarm Coupler (CCAL),

� a Secondary Alarm Coupler (CSAL),

� an Alarm Multiplex (MAL).

Block Diagram of a CVA

Page 122: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

122

Brief description of the Main Alarm Coupler (CCAL) The CCAL is responsible for the acquisition of events (alarms, telecomm ands) and relaying command signals to the supervision devices and miscellaneous telecomm ands. It is also responsible for protecting the associated secondary alarm couplers and the alarm multiplex. One ACRAL board can support 2 CCAL. Brief description of the Alarm Multiplex (MAL)

The MAL comprises:

� a data link (LAM),

� a clock link (H),

� a pilot link (PIL) for setting the CSAL to Pilot or Reserve mode and resetting them to

zero.

Brief description of the CSAL Each CSAL is supported by one ACALA board. The main role of the ACALA board is to collect the alarms from an OCB283 stations. It formats the alarms into a serial message for the Maintenance Station (SMM). It must also relay messages from the upstream ACALA boards, but this function is transparent. When requested by the SMM, it executes telecomm ands for the station in which it is located. It can also be used to position a 16-light alarm array via an interface board (ACTLC). In this case it does not collect the alarms.

Page 123: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

123

Figure 6: Alarm Collection Circuit

Page 124: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

124

RECORDED ANNOUNCEMENT MACHINE MPNA (ALCATEL Digital Announcement Machine) is mounted in the ABLAS sub rack.

� the MPNA,

� the ACALA board (used for MPNA and streamer alarms),

� the ACSTGI streamer support board.

MPNA Digital Recorded Announcement Machine (MPNA) Configuration

2 inseparable boards:

� ICMPN2: Main board (maximum 60 recorded announcement),

� ICSMP: Secondary board (interface with microphone, earphones, tape recorder) backup

of the ICMPN2 announcement

Capacity

� 30 announcements, 2 of which can have external sources connected by an LF pair.

These are wired via the distribution frame.

� Provision is made for 2 PCM; only 1 is used.

Connection to 1 SMT module.

Management of the Recorded Announcement Machine (MPNA)

Use of a control micro-terminal to manage the MPNA (creation, modification, cancellation, announcement listening). SMM SOFTWARE

Note: EL = Software se

Page 125: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

125

Introduction

The SMM software is composed of:

� The basic system RTOS (Real Time Operating System)

� The RTOS application software EL (software set)

o EL AES: Administration operating system

o EL IAS: Station alarms interface

o EL SUP: Supervisor

� The OM (Operating/Maintenance) application software

o OM sub-system (SSOM)

o Telephone and system application

� Eventually the EL TMN (Telecommunication Network Management Software Set)

Basic system RTOS

It manages the following functions:

� Task management, basic clock management, inter-processor communication

� Duplex function management though the inter-ACCSG link (data updating, SMM

switchover)

� Software and hardware resources management.

Software set < EL AES

This is .an RTOS application in charge of the SMM station operation. Using this software set the operator, can managed the station, using the MMC accessible from the PCWAM (interrogation, positioning, test of the SMM boards). Software set EL IAS

This is an <<RTOS>> system application in charge of the software and hardware alarms management.

� The <<IAS>> receives from the application <<EL>> the alarms indication

� The <<IAS>> watches for a new state of all the station boards and sends to the <<OM>>

application a start or end of alarm message. This message contains the faulty board name

and its state. The <<OM>> application manages the << start >> or <<end >> hardware

alarm messages.

Software set <<EL SUP>>

This is an <<RTOS system application in charge of the global defense of the station application. To do that it gives to the different applications the following functions:

� Possibility to watch application

Page 126: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

126

� Possibility to warn an application than a SMM switchover is requested (by RTOS or by

an another application)

� Possibility to request a global defense action (for example switchover).

Software set <<EL OM>>

This is the main application of the OM. Its function is the management of the exchange. It’s comprised the OM sub-system (SSOM) and the OM applications. The < SSOM realize the interface between OM > and RTOS >> applications. The << OM applications are:

� Telephonic applications

o Subscribers management

o Trunk circuits management Translation management

o Charging management

o Observations management

� System application

o Equipment management

o Data management

o Alarms management Fault management

o Terminals management

TMNK (Telecommunication Management Network Kernel)

This comprise all the TMN software set.

Page 127: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

127

DISK CONFIGURATION

� a physical disk is divided in logic disk (DL)

� the logic disk called “Mirror” are created on the both disk and contain the same data

� simultaneous writing on the 2 records (DL)

� reading from disk A or disk B of the DL in function of the first ACBSG which answers

� the physical disks are not mirrors and not interchangeable.

DATA MANAGEMENT Type of Data

The data are divided into three major categories

Permanent

Data whose content does not vary in normal use. The inst part of software is a typical example. These data are characteristic of a functional application and are generated in the development centers. As such they are also called “system” data.

Semi-permanent

Data which evolves during normal operation and requires storage in non volatile memory so that they can be recovered when reloading the system. The semi-permanent data can be modified either by operator commands (e.g. subscriber creation) or by the action of a subscriber. Semi-permanent data can be divided into two subsets:

1. So-called “site” data which provide a record of the site environment (subscribers,

configuration, etc...),

2. So-called “contract” data which are identical for all sites in a given country (e.g.

preliminary analysis data).

Temporary

Page 128: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

128

Data which can be dynamically regenerated. These data are either selected by default (local data segment in software when loaded into memory) or deduced from the environment (circuit status, ongoing communication context, etc.) File The data are grouped together in files. Like their content, these files also have a type:

� permanent

file containing permanent data only,

� semi-permanent

file containing at least one semi-permanent data item,

� temporary

file containing temporary data only.

Normally, a file contains data of the same type. Archive

An archive is a set of files described by a catalogue. The files making up an archive form a coherent unit because they are grouped according to common functional criteria, usually per software machine (ML). There are two types of archive:

“Site” archives, which contain semi-permanent data,

“System” archives, which contain permanent and temporary files.

Page 129: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

129

ARCHIVES LIST

Page 130: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

130

Page 131: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

131

TOKEN RING GENERAL FEATURES OF TOKEN RING

� Standardized (IEEE 802.5 Standard),

� maximum of 250 stations on one ring,

� rates: 4 Mbit/s,

� directional asynchronous transmission between stations,

� facility for broadcasting from one station to several, or all,

� excellent transmission quality (coding, CRC),

� ring management:

o decentralized arbitration on all stations,

o an elected station performs the monitor function.

TOKEN RING COUPLER

Page 132: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

132

Characteristics A Token Ring Coupler (ACAJQ). Within the context of OCB 283 there are two types of Communications Multiplex:

� the Interstation Multiplex (MIS) (1 MIS multiplex for command),

� the Main Control Station Access Multiplex (MAS) (up to 4 MAS multiplexes for the

SMA - SMT and SMX).

Couplers which allow access to the MIS multiplex are called UCMISU. Couplers which allow access to the MAS multiplex are called “CMAS”. Each multiplex is made up of two rings:

� Ring A

� Ring B

When both rings are in service, they work in load sharing mode. If one of the rings comes out of service the remaining ring must support all traffic. Depending on its external positioning, a coupler can be called a “main coupler” or a “secondary coupler”. The role of the main coupler is to provide supervision vis à-vis other components of the station. The hardware make-up of a coupler is the same whether it is a CMIS, a CMAS, a Main or a Secondary coupler. Depending of the configuration, there are:

� 0 to 4 MAS

� Allocation of the MAS number

MAS: 1 2 3 4 T S T T

MAS <<S>> used to connect the SMA containing the MLPUPE with or without MLETA MAS <<T>> used to connect the SMT, SMX and SMA with MLETA only. Physical Form A token ring coupler is made up of:

� an ACAJA board which comprises:

o a mother board which supports the management part of the coupler and ensures

access to the multiprocessor station bus (ACAJM board),

Page 133: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

133

o a daughter board (ADAJ) which supports access to Ring A. This board handles

Levels I and 2 of IEEE 802.5 Standard (the topology of the ring and the insertion

command do not meet Level 1, and Level 2 is limited to the Framing and Access

Control),

� an ACAJB board which supports access to Ring B. This board handles Level I and 2 of

IEEE 802.5, with the same restrictions as the ADAJ board. This board also makes it

possible to read the Station Number supplied by the Backplane,

� 2 AAISM mini-PCBs installed on the backplane perform the following functions:

o insertion of the adapter of the ADAJ board on Ring A,

o the other insertion of the adapter of the ACAJB board on Ring B.

Figure 1:

Page 134: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

134

Page 135: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

135

SIMPLIFIED LOCAL CALL

BETWEEN 2 SUBSCRIBERS CONNECTED ON A CSN

The following diagrams show the functional organization of Alcatel 1000 E10 equipped with 2 local subscriber digital access units. For each one of the stages of establishment of simplified local communication, the function or functions implemented and the path followed by interchanges between those functions are shown. Note:

This concerns local communication between an ordinary A subscriber, equipped with a pulse telephone set, connected to a local subscriber digital access unit going to a free ordinary B subscriber connected to another local subscriber digital access unit.

NEW CALL

Page 136: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

136

DATA REQUEST OF CALLING SUBSCRIBER

Page 137: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

137

SENDING OF DIAL TONE

Page 138: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

138

FIRST DIGIT RECEPTION

STOP SENDING OF DIAL TONE

Page 139: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

139

DIGIT ANALYSIS AND RECEPTION OF FOLLOWING DIGITS

Page 140: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

140

TEST AND RINGING OF CALLED SUBSCRIBER

Page 141: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

141

SENDING OF RING TONE

Page 142: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

142

CALLED SUBSCRIBER ANSWER

Page 143: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

143

STOPPING OF RING TONE

Page 144: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

144

CONNECTION

Page 145: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

145

STARTING OF CHARGING

Page 146: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

146

Page 147: Alcatel Adv e10

QUETTA TELECOM COLLEGE QUETTA

147