98
Characterization of Real-World Emission from Non-Road Mining Trucks in the Athabasca Oil Sands Region during October, 2010 DRI Contract Number: 010109-123109 Prepared by: John G. Watson, Ph.D. Judith C. Chow, Sc.D. Xiaoliang Wang, Ph.D. Douglas H. Lowenthal, Ph.D. Steven D. Kohl, M.S. Steven Gronstal, M.S. Desert Research Institute Nevada System of Higher Education 2215 Raggio Parkway Reno, NV 89512 Prepared for: Wood Buffalo Environmental Association Kevin Percy and Veronica Chisholm #100 – 300 Thickwood Boulevard Ft. McMurray, AB, Canada T9K 1Y1 Finalized January 31, 2014

Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

Characterization of Real-World Emission from Non-Road Mining Trucks in the Athabasca Oil Sands Region during October, 2010

DRI Contract Number: 010109-123109

Prepared by:

John G. Watson, Ph.D. Judith C. Chow, Sc.D. Xiaoliang Wang, Ph.D.

Douglas H. Lowenthal, Ph.D. Steven D. Kohl, M.S. Steven Gronstal, M.S.

Desert Research Institute

Nevada System of Higher Education 2215 Raggio Parkway

Reno, NV 89512

Prepared for:

Wood Buffalo Environmental Association Kevin Percy and Veronica Chisholm #100 – 300 Thickwood Boulevard

Ft. McMurray, AB, Canada T9K 1Y1

Finalized January 31, 2014

Page 2: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

i

Table of Contents Page List of Abbreviations ...................................................................................................................... ii List of Tables ................................................................................................................................. iii List of Figures ..................................................................................................................................v Executive Summary ..................................................................................................................... viii 1  Introduction ................................................................................................................... 1-1 

1.1  Background ................................................................................................................... 1-1 1.2  Study Objectives ........................................................................................................... 1-2 1.3  Overview of the Report ................................................................................................. 1-2 

2  Experimental Methods .................................................................................................. 2-1 2.1  Overview ....................................................................................................................... 2-1 2.2  Sampling System and Its Modifications........................................................................ 2-1 2.3  Sampling Conditions ..................................................................................................... 2-4 2.4  Fuel Specifications ........................................................................................................ 2-5 2.5  Truck Operating Cycles ................................................................................................ 2-7 2.6  Test Procedure ............................................................................................................... 2-8 2.7  Data Reduction .............................................................................................................. 2-8 2.8  Laboratory Analysis .................................................................................................... 2-10 

3  Emission Factors ......................................................................................................... 3-13 3.1  Description of Fuel-based Emission Factors ............................................................... 3-13 3.2  Data Consistency ......................................................................................................... 3-14 3.3  Diesel Engine Emission Factors .................................................................................. 3-15 3.4  Variability in Emissions within a Test Cycle .............................................................. 3-42 3.5  Sub-activity Emission Factors ..................................................................................... 3-42 3.6  Emission Factor Summary .......................................................................................... 3-45 

4  Source Profiles .............................................................................................................. 4-1 4.1  NMHC Source Profiles ................................................................................................. 4-1 4.2  PM2.5 Source Profiles .................................................................................................... 4-1 

5  Summary, Conclusion and Recommendations ............................................................. 5-1 6  References ..................................................................................................................... 6-1 Appendix A ................................................................................................................................ A-1 Appendix B .................................................................................................................................B-1 Appendix C .................................................................................................................................C-1

Page 3: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

ii

List of Abbreviations ρi : density for emittant i. AAS: atomic absorption spectroscopy AC: automated colorimetry AgNO3: silver nitrate AOSR: Athabasca Oil Sands Region ATN: optical attenuation babs: light absorption coefficient BC: black carbon BSFC: brake-specific fuel consumption Ca++: calcium ion CAC: criteria air contaminants CaCl2: calcium chloride CAT: Caterpillar CH4: methane Cl-: chloride CMB: chemical mass balance CMFfuel: carbon mass fraction of the fuel Ci: concentration of emittant i CI: compression-ignition CO: carbon monoxide CO2: carbon dioxide COV: coefficient of variation CPC: condensation particle counter DF: dilution factor DNPH: 2,4-dinitrophenylhydrazine DPM: diesel particulate matter DRI: Desert Research Institute EC: elemental carbon EC1, EC2, and EC3: elemental carbon evolved at 580,

740, and 840 °C, respectively, in a 98% He / 2% O2 atmosphere

EF: emission factors ER: emission rate GC-FID/MS: gas chromatography-flame ionization

detector/mass spectrometry GHG: greenhouse gases GPS: Global Positioning System H2O: water H2S: hydrogen sulfide HD:heavy duty HEPA: high efficiency particulate air HPLC: high performance liquid chromatograph HULIS: humic-like substances ICP/MS: inductively coupled plasma/mass spectrometry IC: Ion chromatography ID: inner diameter IMPROVE: Interagency Monitoring of Protected Visual

Environments K+: potassium ion K2CO3: potassium carbonate LST: local standard time Mg++: magnesium ion MATES: Multiple Air Toxics Exposure Study MDL: Minimum detection limit MSATs: Mobile Source Air Toxics MDSP: Mining Decision Support Program

Mi: atomic or molecular weight of species i MW: molecular weight N2: nitrogen Na+: sodium ion NH3: ammonia NH4

+: ammonium NMHC: non-methane hydrocarbon NO: nitrogen oxide NO2: nitrogen dioxide NO2

-: nitrite NO3

-: nitrate NOx: nitrogen oxides O2: oxygen O3: ozone OAL: Organic Analytical Laboratory OC: organic carbon OC1, OC2, OC3, and OC4: organic carbon evolved at

140, 280, 480, and 580 °C, respectively, in a 100% He atmosphere

OES: optical emission spectrometry OP: pyrolyzed carbon OPC: optical particle counter P: pressure PAH: polycyclic aromatic hydrocarbon PAMS: photochemical assessment monitoring stations PID: photo ionization detector PM: particulate matter PM2.5: particles with aerodynamic diameter < 2.5 µm PO4

≡: phosphate R: universal gas constant RH: relative humidity SI: spark ignition SiO2: silica gel SO2: sulfur dioxide SO4

=: sulfate SVOCs: semi-volatile organic compounds T: temperature TC: total carbon TD-GC/MS: thermal desorption-gas

chromatography/mass spectrometry TOC: total organic carbon analyzer TOR: thermal-optical reflectance UFP: ultrafine particles U.S. EPA: United States Environmental Protection

Agency VIMS: Vehicle Information Management System VOCs: volatile organic compounds WBEA: Wood Buffalo Environmental Association WSOC: water-soluble organic carbon XRF: X-ray fluorescence

Page 4: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

iii

List of Tables Page Table 2-1. Specification of the Liebherr T282B and Caterpillar (CAT) 797B mining trucks

(Caterpillar Inc., 2003; Liebherr Mining Equipment Co., 2004). .................................... 2-5 Table 2-2. Procedures for field testing of in-use vehicles with an on-board dilution

sampling system. .............................................................................................................. 2-9 Table 2-3. Summary of experimental parameters for each run. ................................................ 2-10 Table 3-1. Average fuel-based EFs for gases and particulate emittants for each test for

trucks: a) Liebherr T282B, b) CAT 797B-3, and c) CAT 797B-4. The ratio of each truck normalized to truck CAT 797B-3 is shown in the last column. ........................... 3-17

Table 3-2. Comparison of EFs from this study with emission standards, EPA Nonroad Model, and certification tests. ........................................................................................ 3-22

Table 3-3. Comparison of EFs from this study with EFs from other studies. ........................... 3-22 Table 3-4. Comparison of annual emissions (tonnes/year) calculated by three different

methods used by different oil sands facilities with those from real-world measurement. Values in read indicate that emission estimates might underestimate real-world emissions. ..................................................................................................... 3-23

Table 3-5. EFs for 55 PAMS compounds and other identified non-methane hydrocarbons (NMHC). The highest emission factors species are highlighted in green, and the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Species that belong to both categories are highlighted in purple. The last column showed the ratio of each truck-average using truck CAT 797B-3 as reference. (Cells with “<” indicates that the species is below the instrument detection limit.) .............................................................................................................. 3-27

Table 3-6. EFs for 14 halocarbons. The rightmost column shows the ratio of each truck-average using truck CAT 797B-3 as reference. (Cells with “<” indicates that the species is below the instrument detection limit). ........................................................... 3-30

Table 3-7. EFs for 14 carbonyl compounds. Species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. (Cells with “<” indicates that the species is below the instrument detection limit.) ........................................................... 3-31

Table 3-8. EFs for PM2.5 chemical components. The rightmost column shows the ratio of each truck-average using truck CAT 797B-3 as reference. (Cells with “<” indicates that the species is below the instrument detection limit.) .............................................. 3-32

Table 3-9. EFs for Cs, Ba, 14 rare earth elements, and Pb (measured by ICP/MS) in PM2.5. (Cells with “<” indicates that the species is below the instrument detection limit.) ..... 3-35

Table 3-10. EFs for non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from quartz-fiber filter samples. (Cells with “<” indicate the compound is below instrument detection limit.) .............................................................................................................................. 3-36

Table 3-11. EFs for PM2.5 carbohydrates, organic acids, and water-soluble organic carbon (WSOC) acquired on quartz-fiber filters. (Cells with “<” indicate the compound is below instrument detection limit.) ................................................................................. 3-41

Table 3-12. Squared correlation (R2) between emittants and truck parameters. (Yellow highlights indicate R2 > 0.4.) ......................................................................................... 3-45

Table 4-1. Non-methane hydrocarbons (NMHC) source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most

Page 5: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

iv

abundant species are highlighted in green, the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Species that belong to both categories are highlighted in purple. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs. ...................... 4-2

Table 4-2. Halocarbon source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. ...................................................... 4-8

Table 4-3. Carbonyl compounds source profiles normalized by the sum of 14 carbonyls. ......... 4-9 Table 4-4. Summary of the PM2.5 source profiles for the 14 tests conducted at Facilities S

(Liebherr T282B), A (CAT 797B-3), and C (CAT797B-4). Data are expressed as a percentage of the Teflon-membrane filter mass concentration. ..................................... 4-10

Table 4-5. Summary of the source profiles of Cs, Ba, 14 rare earth elements, and Pb (measured by ICP/MS) in PM2.5 for the eight tests conducted at Facilities S, A, and C. Data are expressed as a percentage of the Teflon-membrane filter mass concentration. ................................................................................................................. 4-13

Table 4-6. Source profiles of non-polar organic compounds from PM2.5 quartz-fiber filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Due to the low concentration in organic compounds data are expressed as a (percentage x 1000) of the Teflon-membrane filter mass concentration. ................................................................................................................. 4-19

Table 4-7. Source profile of carbohydrates, organic acids and WSOC. Data are expressed as a percentage of the Teflon filter mass concentration. ................................................ 4-25

Table 4-8. Source profile of NH3, SO2, and H2S measured from impregnated backup filters. Data are expressed as a percentage of the Teflon-membrane filter PM2.5 mass concentration. ........................................................................................................ 4-28 

Page 6: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

v

List of Figures Page Figure 2-1. Schematic diagram of the in-plume emission measurement system used in the

2010 sampling. The listed flow rates are for operation with a dilution factor of 40. The dilution factor can be adjusted by changing the dilution and makeup flows. ........... 2-2

Figure 2-2. Response time of various drying agents to a step change in CO2 concentration (Elia et al., 1986); CaCl2 has the fastest response time while silica gel (SiO2) has the slowest response. ........................................................................................................ 2-3

Figure 2-3. Examples of diluted and undiluted CO2 concentrations from truck exhaust when the undiluted CO2 was dried by: a) silica gel, and b) CaCl2. The undiluted CO2 showed much faster time response when dried by CaCl2 (The diluted CO2 was not dried.). ................................................................................................................. 2-3

Figure 2-4. Photograph of the sampling port setup and location of the dilution sampling system on a Liebherr T282B mining truck. ..................................................................... 2-6

Figure 2-5. Photograph of the sampling port setup and location of the dilution sampling system on a CAT 797B mining truck. ............................................................................. 2-7

Figure 2-6. Chemical analyses on filter substrates (Chow and Watson, 2012). ........................ 2-12 Figure 3-1. Relationship of PM2.5 mass concentration from mining trucks measured by the

DustTrak DRX and gravimetric method. ....................................................................... 3-14 Figure 3-2. Relationships between elemental carbon (EC) by thermal/optical reflectance

following the IMPROVE_A protocol, light absorption coefficient (babs) by densitometer, and black carbon (BC) by micro-aethalometer. ...................................... 3-15

Figure 3-3. Relationships between total VOCs measured by the PID analyzer and sum of non-methane hydrocarbon (NMHC) collected by the canister. ..................................... 3-15

Figure 3-4. Fuel-based EFs for major gases and PM2.5 in each run. Detailed data are in Table 3-1. ....................................................................................................................... 3-18

Figure 3-5. Fuel-based EFs for gases and particles measured in 2009 and 2010 at the three facilities. ......................................................................................................................... 3-19

Figure 3-6. Comparison of EFs of the five tested trucks with U.S. EPA non-road emission standards for: a) Tier 1, b) Tier 2, and c) Tier 4 for CO, NMHC, NOx, (or NMHC+NOx), and PM2.5. ............................................................................................ 3-21

Figure 3-7. NMHC EFs grouped into four sub-categories: alkanes and cycloalkanes, alkanes, acetylene, and aromatics. (Error bars indicate the standard deviation of multiple runs on the same truck.) ................................................................................... 3-25

Figure 3-8. Fuel-based EFs for NMHC and halocarbons from the five trucks.......................... 3-25 Figure 3-9. Elemental carbon (EC) and total carbon (TC) EFs obtained by thermal/optical

reflectance analysis (TOR) (Chow et al., 2007a) with a slope of 0.63 when the intercept is not zero, and 0.72 when the intercept is forced through zero. .................... 3-26

Figure 3-10. Relationship between organic carbon (OC) and water soluble organic carbon (WSOC) EFs. ................................................................................................................. 3-26

Figure 3-11. Time series of emission concentration and truck operation parameters from truck Liebherr T282B for Run S5 for 12:35 – 13:53 LST on 10/17/10. The individual panels are: a) Total VOCs in ppm by PID analyzer; b) CO in ppm by emission analyzer; c) Undiluted CO2 in ppm by CO2 analyzer; d) Diluted CO2 in ppm by CO2 analyzer; e) Background CO2 in ppm by CO2 analyzer; f) CO/CO2 ratio by CO2 analyzer and emission analyzer; g) NOx in ppm by emission analyzer;

Page 7: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

vi

h) Number concentration in cm-3 by CPC; i) Black carbon (BC) concentration in mg/m3 by micro-aethalometer; j) PM2.5 concnetration in mg/m3 by DustTrak DRX; k) Engine speed in RPM by truck ; l) Ground speed in miles per hr (mph) by GPS; and m) Elevation in meters by GPS. .................................................................... 3-43

Figure 3-12. Time series of emission concentration and truck operation parameters from truck Liebherr T282Bfor part of Run S5 from 12:35 – 13:22 LST on Oct. 17, 2010. The letters (i–vi) in front of individual activity correspond to the bullet points discussed in the text. The individual panels are: a) Total VOCs in ppm by PID analyzer; b) CO in ppm by emission analyzer; c) Undiluted CO2 in ppm by CO2 analyzer; d) Diluted CO2 in ppm by CO2 analyzer; e) Background CO2 in ppm by CO2 analyzer; f) CO/CO2 ratio by CO2 analyzer and emission analyzer; g) NOx in ppm by emission analyzer; h) Number concentration in cm-3 by CPC; i) Black carbon (BC) concentration in mg/m3 by micro-aethalometer; j) PM2.5 concentration in mg/m3 by DustTrak DRX; k) Engine speed in RPM by truck ; l) Ground speed in miles per hr (mph) by GPS; and m) Elevation in meters by GPS. ..... 3-44

Figure 3-13. Correlations between diluted emittants (without averaging or dilution correction) for truck Liebherr T282B during Run S5 (12:35–12:53 LST) on 10/17/10 for: a) total VOCs vs. CO2, b) total VOCs vs. NOx, c) total VOCs vs. particle number, d) NOx vs. CO2, e) particle number vs. CO2, and f) particle number vs. NOx. ............................................................................................................ 3-47

Figure 3-14. Fuel-based emission factor for idle, load-to-dump and dump-to-load sub-activities for truck Liebherr T282B during Run S5 (12:35–12:53 LST) on 10/17/10. .. 3-48

Figure 4-1. Concentration of NMHC groups normalized to the sum of 55 photochemical assessment monitoring station (PAMS) compounds. Error bars indicate the larger of standard deviation and uncertainty of average of multiple runs on the same truck. ........ 4-5

Figure 4-2. Averaged NMHC source profiles from trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4 for species with abundance >1% of the sum of 55 PAMS compounds for at least one of the trucks. (The height of each bar indicates the averaged fractional abundance for the indicated NMHC [normalized to the total of 55 PAMS compounds], while the dot shows the larger of standard deviation and uncertainty of average of multiple runs.) ......................................................................... 4-6

Figure 4-3. Averaged NMHC source profiles from trucks CAT 797B-1 and CAT 797B-2 for species with abundance >1% of the sum of 55 PAMS compounds for at least one of the trucks. (The height of each bar indicates the averaged fractional abundance for the indicated NMHC [normalized to the total of 55 PAMS compounds], while the dot shows the larger of standard deviation and uncertainty of average of multiple runs.) ................................................................................................ 4-7

Figure 4-4. Averaged PM2.5 source profiles for the five trucks. (The height of each bar indicates the average fractional abundance for the indicated chemical [normalized to PM2.5 mass concentration], while the dot shows the larger of the standard deviation or uncertainty of average of multiple runs. .................................................... 4-14

Figure 4-5. Grouped PM2.5 chemical compositions of the five trucks. .................................... 4-15 Figure 4-6. Abundance of carbon fractions (percentage of PM2.5), where OC1–OC4 are

carbon evolved at 140, 280, 480, and 580 °C in a 100% helium [He] atmosphere, and EC1–EC3 are carbon evolved at 580, 740, and 840 °C in a 98% He/2% oxygen

Page 8: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

vii

atmosphere following the IMPROVE_A_TOR protocol (Chow et al., 2007a). Pyrolysis correction is used to obtain OC4 and EC1. .................................................... 4-17

Figure 4-7. Abundance of stable lead isotopes in the engine exhaust vs. natural abundance. .. 4-17 Figure 4-8. Lead isotope ratios of a) 204Pb/207Pb vs 206Pb/207Pb and b) 208Pb/207Pb

vs 206Pb/207Pb . ........................................................................................................... 4-18 Figure 4-9. Abundances of: a) hopanes and b) steranes of the five trucks (normalized to

total hopanes or steranes for each truck). ....................................................................... 4-27

Page 9: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

viii

Executive Summary This study applied a Portable Emissions Monitoring System (PEMS) with plume dilution

to emissions from heavy mining trucks to quantify real-world emission factors (EFs) for emittants relevant to multiple environmental effects during October, 2010. These tests expand on real-world tests of two Caterpillar (CAT) 797B heavy haulers made during September, 2009 (referred to as trucks CAT 797B-1 and CAT 797B-2, respectively). Three additional heavy haulers, including a Liebherr T282B at Facility S, a CAT 797B at Facility A, and a CAT 797B at Facility C (referred to as trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively) were measured in 2010. Fuel-based EFs and chemical source profiles of gases and particulates were quantified. Since only one Liebherr truck was tested, the test results are not as stable as the averages and standard deviations derived from the 797B tests.

Regulated species include: non-methane hydrocarbons (NMHC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM2.5). The five trucks tested in 2009 and 2010 all belong to the Tier 1 category (Model Year 2000-2004). The real-world tests showed that emissions from the five trucks were below Tier 1 emission limits for NMHC, CO, and PM2.5, but exceeded the NOx limit by 20%, 27%, 22%, 70%, and 195% for CAT 797B-1, CAT 797B-2, CAT 797B-3, CAT 797B-4, and Liebherr T282B, respectively. Emissions from the four CAT 797Bs met the Tier 2 and Tier 4 limits for CO, while the Liebherr T282B exceeded the CO limits. Emissions from all five trucks exceeded the Tier 2 limit for the sum of NMHC and NOx (i.e., NMHC+NOx), but were lower than the Tier 2 limit for PM2.5. Emissions from all trucks except the CAT 797B-2 met the Tier 4 limit for NMHC, but exceeded the NOx and PM2.5 limits.

The Liebherr T282B EFs were higher than those for CAT 797B-1, CAT 797B-2, and CAT 797B-3 for methane (CH4; 2–3.4 times), CO (3.1–5.0 times), NOx (2.2–2.4 times), particle number (1.4–15 times), PM2.5 (1.1–1.7 times), and black carbon (BC; 1.2–2.2 times). The Liebherr T282B had CH4 EFs similar to those of CAT 797B-4, while its particle number EF was ~24% lower than that for CAT 797B-4. CAT 797B-3 used fuel additives intended to reduce emissions. It emitted similar amounts of NOx, 60–85% higher CH4, CO, and BC, but 56% lower particle numbers, and 27% less PM2.5 than CAT 797B-2 operating on the standard fuel in the same facility. Emissions of greenhouse gas (GHG) halocarbons were <72 mg/kg fuel.

The average NMHC EF ranged from 170–951 mg/kg fuel among the five trucks. Benzene and toluene had EFs 3–27 mg/kg fuel. The sum of NMHC EFs varied by a factor of five among the five trucks. Truck CAT 797B-2 had the highest (951±289 mg/kg fuel) while truck CAT 797B-3 (with fuel additive) had the lowest (170±73 mg/kg fuel) EFs.

Emittant EFs varied among sub-activities of idling, traveling with load, and traveling without load. For all trucks, the NO EF was highest during idling. However, fuel consumption rate is lowest during idling, so total NO emission rate will be higher during non-idling activities.

Alkenes and alkanes were the dominant NMHC species, accounting for 59±17% and 35±21% of the sum of photochemical assessment monitoring stations (PAMS) compounds for all trucks, respectively. Formaldehyde, acetaldehyde, and acetone are the most abundant carbonyls species.

For all trucks, carbon was the most abundant PM2.5 species, with total carbon (TC) accounting for 68-88% of PM2.5 mass. The two carbon forms: organic and elemental carbon (OC and EC, respectively) accounted for 14–36% and 49–67% of PM2.5 mass, respectively. Soluble ions contributed <8% of PM2.5 mass, with the highest abundances for PO4

≡ (1.1±1.0%), NO3-

(0.7 ± 0.5%), SO4= (0.3 ± 0.2%), and Ca++ (0.7 ± 0.8%). Trace element abundances were low

Page 10: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

ix

(typically < 0.1%) with elevated abundances for lubrication oil constituents: Ca (0.9 ± 0.8%), Zn (0.5 ± 0.3%), P (0.4 ± 0.3%), and S (0.1 ± 0.1%). Abundances of rare earth elements were low (<0.002%).

Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the most abundant PM2.5 non-polar organic species for all trucks, accounting for 0.03–0.05% and 0.02–0.04% of PM2.5, respectively, for the three trucks tested in 2010. Particle-associated PAHs were mostly two- to four- ring semi-volatile PAHs. Hopanes and steranes abundances were low but were significantly above MDLs, accounting for 0.001–0.005% and 0.0004–0.002% of PM2.5. Abundances of non-polar organic compounds were 2–5 times lower than tests in 2009.

Page 11: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

1-1

1 Introduction 1.1 Background

In the Athabasca Oil Sands Region (AOSR) of Northern Alberta, diesel engines are vital workhorses, powering bus fleets, utility pickups, large trucks, heavy haulers, generators, pumps, graders, and dozers. Diesel exhaust is a complex mixture of gases and particles (Lloyd and Cackette, 2001) that has multiple effects on human health, ecosystems, material damage, visibility, and climate (Cao et al., 2013; Chow et al., 2010; Chow and Watson, 2011; Hidy and Pennell, 2010; U.S.EPA, 2012). Gaseous components in diesel exhaust include non-methane hydrocarbons (NMHC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen (N2), nitrogen compounds, sulfur compounds, oxygen (O2), and water vapor (H2O). Diesel particulate matter (DPM) is composed mainly of organic and elemental carbon (OC and EC, respectively), with small amounts of nitrate (NO3

-), sulfate (SO4=), and trace elements. Particle mass is

predominated (80‒95%) by particles with aerodynamic diameters (dp) <2.5 µm (PM2.5) size range; ultrafine particles (UFP, dp <0.1 µm) account for 1‒20% of total particle mass but dominate (50‒90%) particle numbers (Kittelson, 1998; Ris, 2007). CO, volatile organic compounds (VOCs, of which the NMHC are a subset), ammonia (NH3), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter (PM) are among the criteria air contaminants (CAC) regulated in Canada due to their effects on human health, the environment, and property (Bachmann, 2007; Chow et al., 2007d). NOx and VOCs are precursors that form ozone (O3). As re-designed engines and after-engine treatment systems penetrate the diesel fleet to attain emission limits established in North America and Europe, the pollutants in diesel engine exhaust are changing in terms of quantity (lower levels) and composition (Hesterberg et al., 2011).

Watson et al. (2013) reviewed the diesel exhaust formation processes and real-world emission (Watson et al., 2012) sampling methods, concluding that current engine certification tests conducted in laboratories do not provide accurate emission estimates from mine fleets used in the AOSR. These differences occur owing to the differences in operating cycles, fuels, and maintenance for AOSR mine fleets compared to the laboratory certification tests. Watson et al. (2013) also evaluated the different pollutants needed to assess diesel source contributions at receptors and to created speciated emission inventories, finding that most real-world measurements are lack many important components for multipollutant/multieffect air quality management. Several Portable Emission Measurement Systems (PEMS) and related microsensors were evaluated to assemble components applicable to relevant mine-fleet diesel emissions.

A PEMS (Wang et al., 2012) was assembled and applied to heavy haulers in the AOSR during September, 2009 to determine real-world emission rates (ERs, amount emitted per unit time), emission factors (EFs, amount emitted per unit of fuel used), and source profiles (mass fractions of chemical compounds in VOC and PM2.5 emissions) from two Caterpillar (CAT) 797B mining trucks (CAT 797B-1 and CAT 797B-2) under in-use conditions at two facilities (S and A. The main findings from the 2009 study ) (Watson et al., 2013) were:

EFs for NMHC, CO, and PM2.5 were lower than the U.S. EPA Tier 1 emission standards for non-road diesel engines, but the EF for NOx exceeded the Tier 1 standard. CO and PM2.5 were also below Tier 2 limits, while the sum of NMHC and NOx exceeded the Tier 2 limit.

Page 12: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

1-2

Among the measured NMHC, alkanes and alkenes reported the highest EFs, in the range of 103 to 669 mg/kg fuel. Most NMHC species listed as MSATs by U.S. EPA had EFs > 1 mg/kg fuel.

EFs for NH3 and hydrogen sulfide (H2S) were low, usually less than detection limits. Average ultrafine particle number EFs measured from the CAT 797B-2 were (5.423.12)1015 particle/kg fuel, ~10 times higher than those for CAT 797B-1 [(5.141.43)1014 particle/kg fuel]. The EFs for CAT 797B-2 are in the same range as those measured from highway tunnels restricted to on-road heavy duty diesel trucks.

Gas and particle EFs varied based on vehicle operating conditions. NOx and particle number EFs were higher during engine idling. Black carbon (BC) and PM2.5 EFs were higher during the dump-to-load segment when the truck was empty and the route was generally downhill.

Alkanes, cycloalkanes, and alkenes accounted for ~30–60% of the sum of 55 NMHCs routinely quantified at photochemical assessment monitoring stations (PAMS). Aromatics constituted ~10% of the PAMS NMHC.

Carbon was the most abundant species in the PM2.5 profile, with total carbon (TC; OC+EC) accounting for 88.1 ± 6.1% and 84.5 ± 8.8% of the total PM2.5 from CAT 797B-1 and CAT 797B-2, respectively. OC contributed 21.1 ± 6.0% and 35.9 ± 16.4%, respectively, while EC contributed 67.0 ± 7.0% and 48.6 ± 13.4% to PM2.5 mass, respectively. Approximately 40-95% of EC was in the high temperature EC2 fraction (740 C in a 98% helium [He]/2% oxygen [O2] atmosphere).

Lube oil constituents (calcium [Ca], potassium [P], sulfur [S], and zinc [Zn]) were detected (~0.1–1% of PM2.5) in diesel exhaust.

Among the 113 measured PM2.5 non-polar organic compounds, alkanes were the most abundant species. Particle-associated polycyclic aromatic hydrocarbons (PAHs) were mostly two- to four- ring semi-volatile PAHs. Relative abundance of hopanes and steranes are similar between Facilities S and A, with more abundant hopanes found in low molecular weight species.

Since more than 200 hundred heavy hauler mining trucks operated 24 hours per day, seven days per week in the AOSR in 2009–2010, additional tests were conducted on additional trucks in 2010 to better understand the variability of the real-world EFs.

1.2 Study Objectives

Specific objectives of the October 11 – 23, 2010 emission tests were to:

Improve the on-board PEMS to increase reliability, ease of operation, and acquire EFs for additional species.

Quantify fuel-specific EFs for the largest heavy haulers in AOSR under real-world conditions.

Determine chemical source profiles for NMHC and PM2.5 for receptor modeling source apportionment and speciated emission inventories.

1.3 Overview of the Report

Section 1 reviews the background and effects of diesel engine exhaust emissions and states the study objectives. Improvements made to the on-board measurement system are given in Section 2 along with experimental conditions, fuel specifications, data reduction procedures, and laboratory analysis methods. Section 3 reports measured diesel exhaust emission factors

Page 13: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

1-3

(EFs) for different emittants. Characteristics and chemical abundances of emission source profiles for NMHC and PM2.5 are detailed in Section 4. Study results are summarized in Section 5 with a bibliography and references provided in Section 6. Appendix A provides time-series of emittant concentrations and truck parameters from continuous monitors. Appendix B documents EFs for different parts of the truck operating cycle. Profiles normalized to PM2.5 organic carbon (OC) are summarized in Appendix C.

Page 14: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-1

2 Experimental Methods 2.1 Overview

The in-plume PEMS (Wang et al., 2011; 2012) draws a sample from the engine exhaust duct, dilutes it with filtered air, and continuously quantifies total VOCs (isobutylene equivalent), CO, CO2, nitrogen oxide (NO), nitrogen dioxide (NO2), SO2, O2, particle number, size-segregated particle mass, and BC on a continuous basis (1–6 second averages). Integrated samples are acquired in a stainless steel canister, a 2,4-dinitrophenylhydrazine (DNPH) cartridge, and impregnated filters over several driving cycles for laboratory analyses of speciated VOCs, carbonyls, NH3, H2S, and SO2. PM2.5 is characterized for light absorption coefficient (babs), mass, elements, lead isotopes, water-soluble ions, OC, EC, and organic compounds including PAHs on the filter samples.

Emissions from three heavy haulers were tested at three AOSR facilities in the during the fall of 2010: a Liebherr T282B (SN152) at Facility S, a CAT 797B at Facility A (SN112), and a CAT 797B at Facility C (SN110). These three trucks are referred to as Liebherr T282B, CAT 797B-3, and CAT 797B-4 in this report. As in the 2009 measurements with the CAT 797B-1 and CAT 797B-2, sampling was conducted during normal working cycles, including idling, loading, dumping, and traveling with and without load.

2.2 Sampling System and Its Modifications

The in-plume PEMS is illustrated in Figure 2-1. Instruments were packaged into five units: 1) sample conditioning module, 2) continuous gas monitoring module, 3) integrated sampling module, 4) continuous PM monitoring module, and 5) power supply module. Detailed specifications for the real-time instruments and description of the sampling system can be found in Watson et al. (Watson et al., 2013). To improve time resolution and measurea wider range of chemical concentrations, the system was modified from the 2009 configuration by: 1) installation of a water trap at the sampling inlet; 2) replacement of drying desiccant for undiluted CO2; 3) addition of a DNPH cartridge for carbonyls collection; 4) automation of flow control; and 5) addition of a Global Positioning System (GPS).

During the 2009 tests (Watson et al., 2013), the sample transfer line from the tailpipe to the sampling inlet was thermally insulated. However, due to the low ambient temperature, water condensed at the end of the transfer line. During 2010 testing, a water trap effectively collected liquid water, prevented sample line blockage, and avoided entry of liquid water to the measurement instruments.

During the 2009 tests the tailpipe CO2 was dried with silica gel (SiO2), which partially adsorbed and later released CO2 (Elia et al., 1986), thereby increasing the CO2 measurement response time in the undiluted tailpipe CO2 measurement. Figure 2-2 shows that calcium chloride (CaCl2) has the fastest response to CO2 concentration changes, so a CaCl2 desiccant was used for the 2010 tests. Figures 2-3a and b compares CO2 response between undiluted and diluted CO2 concentrations; the undiluted CO2 dried by CaCl2 during the 2010 study showed much faster response than the silica gel used during the 2009 study, and better correlation with the diluted CO2 without additional averaging.

Engine exhaust can be a large source of carbonyls (Grosjean et al., 2001; Wagner and Wyszynski, 1996). Some carbonyl compounds such as formaldehyde, acetaldehyde, and acrolein are listed as Mobile Source Air Toxics (MSATs) (U.S.EPA, 2001). Carbonyls are also precursors to free radicals, ozone, and peroxyacylnitrate (PAN) (Carlier et al., 1986). For the 2010 tests, a DNPH cartridge was added to the integrated sample module to collect carbonyl compounds.

Page 15: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

After colperforma

Abbreviation

Abbr PAgNO3: sbabs: lBC: bC2 – C12: vCH4: mCO: cCO2: c

Figure 2-1flow rates and makeu

llection, the ance liquid c

s:

Parameter silver nitrate light absorption, sublack carbon volatile organic comethane carbon monoxide carbon dioxide

. Schematic diare for operati

up flows.

cartridges whromatograp

urrogate for black

ompounds

agram of the inion with a dilut

were cappedphy (HPLC;

AbbrCPC

carbon DNPEC: H2S:K2CONH3:NO:

n-plume emisstion factor of 4

2-2

d and returne U.S.EPA, 1

r Parameter/I

condensatioPH 2,4-dinitrop

elemental chydrogen su

O3: potassium c: ammonia

nitrogen ox

sion measurem40. The dilution

ed to the lab1999a; Zielin

Instrument on particle counterphenylhydrazine carbon ulfide carbonate

xide

ment system usen factor can be

boratory for nska et al., 2

Abbr Par NO2: ni

O2: oxOC: orP: prSO2: suT: temWSOC: w

ed in the 2010 e adjusted by c

analysis by2001).

arameter itrogen dioxide xygen rganic carbon ressure ulfur dioxide mperature ater-soluble organ

sampling. Thechanging the di

y high

nic carbon

e listed ilution

Page 16: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-3

Figure 2-2. Response time of various drying agents to a step change in CO2 concentration (Elia et al., 1986); CaCl2 has the fastest response time while silica gel (SiO2) has the slowest response.

Figure 2-3. Examples of diluted and undiluted CO2 concentrations from truck exhaust when the undiluted CO2 was dried by: a) silica gel, and b) CaCl2. The undiluted CO2 showed much faster time response when dried by CaCl2 (The diluted CO2 was not dried.).

0

20000

40000

60000

80000

0

2000

4000

6000

8000

10000

16:19:12 16:26:24 16:33:36 16:40:48 16:48:00 16:55:12 17:02:24 17:09:36

Un

dilu

ted

CO

2(p

pm

)

Dilu

ted

CO

2(p

pm

)

Time

Diluted

Undiluted

(a) Undiluted CO2 dried by Silica Gel

0

30000

60000

90000

120000

0

4000

8000

12000

16000

15:43:12 15:46:05 15:48:58 15:51:50 15:54:43 15:57:36

Un

dilu

ted

CO

2(p

pm

)

Dilu

ted

CO

2(p

pm

)

Time

Diluted

Undiluted

(b) Undiluted CO2 dried by CaCl2

SiO2 absorbs CO

2 and slows CO

2

measurement response time

Replacement: CaCl2

Page 17: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-4

Flow control was added to better retain constant flow rates through the filter packs. A computer program inputs flow meter readings and adjusts the pump voltage to maintain the set flow rates. The makeup flow can also be changed by the computer program to adjust the dilution factor during testing.

As not all trucks are equipped with Global Positioning Systems (GPS), a high-resolution GPS (Garmin 18X-PC OEM) was added to record the truck longitude, latitude, elevation, and speed every second. These data provide useful information about truck activities such as idling or moving uphill or downhill.

2.3 Sampling Conditions

During 2010, one Liebherr T282B was tested at Facility S (Liebherr T282B) and two CAT 797Bs at Facilities A (CAT 797B-3) and C (CAT 797B-4). Key specifications for the Liebherr T282B and CAT 797B mining truck are listed in Table 2-1. Both the CAT 797B-1 and Liebherr T282B trucks operated at Facility S, while both CAT 797B-2 and CAT 797B-3 operated at Facility A. The fuel used in CAT 797B-3 was blended with proprietary additives. These trucks are off-highway, ultra class, two-axle heavy haulers. The Liebherr T282B is powered by a 20 cylinder MTU DD 20V4000 diesel engine with a gross power of 3650 hp (2722 kW). The diesel engine is coupled to a Siemens-Liebherr AC electric drive system. The CAT 797B is powered by a twin turbocharged version of the 24 cylinder CAT 3524B diesel engine with a gross power of 3,550 hp (2,647 kW). Both the Liebherr MTU DD 20V4000 and CAT 3524B engines are in compliance with U.S. EPA Tier 1 emissions standards.

The heavy haulers are configured with either single or dual exhaust outlets. The flow rate through each exhaust outlet is non-uniform, and the exhaust flow path layout through the truck body differs among the trucks. The body disconnects the exhaust pipe from the muffler elbow extension when the truck is dumping the load, which results in venting of engine exhaust directly to ambient air without traveling through the truck body. Also during operation, the truck tires mechanically suspend fugitive dust (Watson et al., 2000) behind the body’s exhaust outlet, thereby potentially mixing with the engine exhaust sample. These issues were avoided by extracting the exhaust sample directly from the tailpipe instead of sampling from the plume after the exhaust vents to ambient air. All emissions are normalized to carbon emissions to estimate fuel-based EFs that do not require the actual exhaust flow rates (Dreher and Harley, 1998; Singer and Harley, 1996).

As reviewed by Watson et al. (2013), hot diesel exhaust must be diluted to: 1) reduce the concentrations in the original exhaust to levels that are within the instrument specification ranges; 2) lower the exhaust temperature to close to ambient temperature; and 3) simulate gas-particle partitioning, particle nucleation, condensation and coagulation so that occurs after release to the atmosphere (Burtscher, 2005; Kittelson, 1999).

During sampling, engine exhaust was extracted from an elbow section of the tailpipe downstream of the muffler. For the Liebherr T282B (Figure 2-4), an 8 m-long copper tube with an inner diameter [ID] of 1 cm transferred the sample from sampling port to the water trap and then to the sample introduction port of the sample conditioning module (Figure 2-1). For the CAT 797Bs, the sample transfer line was 3 m long (Figure 2-5). The transfer lines were thermally insulated to reduce water condensation before dilution. The dilution sampling system containers were placed on the platform at the opposite end of the driver’s cabin near the fire extinguishers. The ambient temperature ranged from -5.7–13.0 °C during the measurement period.

Page 18: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-5

Table 2-1. Specification of the Liebherr T282B and Caterpillar (CAT) 797B mining trucks (Caterpillar Inc., 2003; Liebherr Mining Equipment Co., 2004).

Parameters Specifications

Liebherr T282B CAT 797B Introduction to Service 2004 2002 Nominal Payload Capacity 400 short tons (363 tonnes) 380 short tons (345 tonnes) Gross Machine Operating Weight 661 short tons (600 tonnes) 688 short tons (624 tonnes)

Engine Model MTU DD 20V4000 + Siemens-Liebherr AC electric drive system

CAT 3524B High Displacement

Engine Power 3,430 hp (2,558 kW) net 3,370 hp (2,513 kW) net Displacement 90 L 117.1 L Top Speed (Loaded) 40 mph (64 km/h) 42 mph (68 km/h) Overall Height to Top of ROPS (Empty)

25 ft 9 in (7.84 m) 24 ft 11 in (7.59 m)

Overall Height (Body Raised) 49 ft 3 in (15.01 m) 50 ft 2 in (15.29m) Overall Length 50 ft 3in (15.31 m) 47 ft 5 in (14.45 m) Overall Tire Width 24 ft 2 in (7.35 m) 32 ft 0 in (9.75 m) Fuel Capacity 1,250 US gal (4,732L) 1,800 US gal (6,814L)

2.4 Fuel Specifications

Diesel fuel is a complex mixture of normal, branched, and cyclic alkanes (C9–C30, 60–>90% volume), aromatic compounds, especially alkylbenzenes (5–40% volume), and small amounts of alkenes (0–10% volume). It is produced from the fractional distillation of crude oil between 200 °C (392 °F) and 350 °C (662 °F) at atmospheric pressure. The average chemical formula for common diesel fuel is C12H23, ranging from C10H20 to C15H28 (Risher and Rhodes, 1995). Benzene, toluene, ethylbenzene, and xylenes, as well as PAHs, especially naphthalene and its methyl-substituted derivatives, may be present at ppmw levels in diesel fuel. The sulfur (S) content of diesel fuels depends on the source of crude oil and the refining process. At room temperature, diesel fuels are moderately volatile, slightly viscous, flammable, brown liquids with a kerosene-like odor. The boiling point ranges 140–385 °C and density is 0.85–1.0 g/cm3 at 20 °C (International Programme on Chemical Safety, 1996). The quality and composition of diesel fuel influences diesel engine emissions. Important fuel variables are: ignition behavior (expressed in terms of cetane number), density, viscosity, and S content, which is directly related to gaseous SO2 and DPM emissions.

At the Tier 1-3 stage (all equipment with phase-in schedules from 2000 to 2008), the sulfur content in nonroad diesel fuels was not limited by environmental regulations in Canada or U.S. The oil industry specification was maximum 5,000 ppmw, with the average in-use sulfur level of about 3,000 ppmw. To enable sulfur-sensitive control technologies in Tier 4 engines, such as catalytic particulate filters and NOx scrubbers, Environment Canada Amended Diesel Fuel Regulations (Environment Canada, 2012) in 2005 (SOR/2005-305) with the following deadlines:

Concentration of sulfur in diesel fuel produced or imported for use in nonroad engines shall not exceed 500 ppmw from 1 June 2007 until 31 May 2010, and 15 ppmw after that date.

Concentration of sulfur in diesel fuel sold for use in nonroad engines shall not exceed 500 ppmw from 1 October 2007 until 30 September 2010, and 15 ppmw after that date.

Page 19: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

Cea

Sfollows (

5f

12

Figure 2-4mining tru

Concentratioengines shaland 15 ppmw

imilarly, the(U.S.EPA, 20

500 ppm efffuels. 15 ppm (ultr2012 for loco

. Photograph ock.

on of sulfur ill not exceedw after that d

e U.S. EPA m004a):

fective in Ju

ra-low sulfuomotive and

of the sampling

in diesel fued 500 ppmwdate.

mandated re

une 2007 fo

ur diesel) efd marine fuel

g port setup and

2-6

el sold in thew from 1 De

eductions in

or nonroad, l

ffective in Juls.

d location of th

e northern suecember 200

sulfur conte

locomotive,

une 2010 fo

he dilution sam

upply area fo08 until 30

ent in nonroa

and marine

or nonroad f

mpling system o

or use in offNovember 2

ad diesel fue

e (NRLM) d

fuel, and in

on a Liebherr T

f-road 2011,

els as

diesel

June

T282B

Page 20: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

Figure 2-5mining tru

TupgradedCAT 797(Calgaryreduce emEnergy.

2.5 Tr

Doverburdtravelingreturningground is

5. Photograph ock.

The diesel fued product an7B-3 at Faci, Alberta, Cmissions. Th

uck Operat

During sampden or oil sg from the log to the mines unpaved, a

of the samplin

el used for trnd off-highwility A is a

Canada). Fuehe fuel used

ting Cycles

pling, the msands. A typading to the e site after dand can be fla

ng port setup a

ruck Liebheway fuel suptype of ultr

el additives for truck CA

mining truckpical drivindumping sit

dumping (witat, uphill, or

2-7

and location o

rr T282B at pplied by Ima low-sulfur(proprietary

AT 797B-4 a

ks operatedng cycle incte (with a lothout a load)r downhill.

f the dilution

Facility S wmperial Oil Lr diesel fuel

y formulae) wat Facility C

under realcludes: 1) load), 3) dump). The road

sampling syst

was a mixturLtd. The fuel supplied bywere used wwas also su

l-world conoading mat

mping materiafrom the loa

em on a CAT

re of the faciel used for y Suncor Enwith the inteupplied by Su

nditions to merial (idlingal (idling), aading to dum

T 797B

ility’s truck nergy ent to uncor

move g), 2) and 4) mping

Page 21: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-8

The Liebherr T282B operating parameters were logged into the Mining Decision Support Program (MDSP) at Facility S with a time resolution of every two minutes. The on-board data include: electric horsepower (erroneous), engine speed, coolant temperature, fuel level, ground speed, fuel injection rate (erroneous), air intake temperature, and throttle position. The Vehicle Information Management System (VIMS) at Facility A only reported engine data once every two hours, and the vehicle data from Facility C is not available due to malfunction of the data logging system.

2.6 Test Procedure

The operating procedures before, during, and after each sampling run are summarized in Table 2-2. Zero and ambient concentration checks were performed on each of the continuous instruments to ensure accuracy within the specified ranges. Flow rates were checked. Filter packs and DNPH cartridges along with the field data sheet were packaged individually in an airtight container and stored cold in a cooler. Table 2-3 lists the key experimental parameters for each of 14 test runs conducted during 10/16 –21/2010. The average dilution factor was ~10 for most runs. To study the effects of dilution, some runs had average dilution factors as low as 3 and as high as 32. Sample durations ranged from 60 to 150 minutes per run.

2.7 Data Reduction

Data reduction procedures are described by Watson et al. (2013) and include the following steps:

Raw data files of each real-time instrument for each run were combined into a single Excel worksheet.

Raw data from the AE51 were adjusted using the following equation to account for effects of particle loading on BC concentration (Hansen et al., 2007):

1000

ATNkexp (reported) BC ) (corrected BC (2-1)

where k is set to 7.5 since the particles are fresh with low-albedo direct combustion emissions, and ATN is the reported optical attenuation. BC data were smoothed by a 20 second running average. This step was performed by a “Micro Aethalometer Data Display and Performance Analysis Sheet” supplied by Dr. Tony Hansen at Magee Scientific.

Time stamps were rescaled to second-by-second resolution for all instruments. Time responses of individual instruments were synchronized using the diluted CO2 as

reference. The dilution factor (DF) was calculated using the diluted, background, and exhaust pipe

CO2 concentrations:

22

22

CO Background-CO Diluted

CO Background-CO TailpipeDF

(2-2)

Real-time emittant concentrations were multiplied by the dilution factor to obtain the exhaust pipe concentrations.

EFs were calculated from the exhaust pipe concentrations as explained in Section 3.1.

Page 22: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-9

Concentrations of chemical species from laboratory analysis of filter and canister samples are reported in µg/m3, ppm, and ppbC. These data can be used directly for fuel-based EF and source profile calculations as described in Sections 3 and 4.

Table 2-2. Procedures for field testing of in-use vehicles with an on-board dilution sampling system. Procedures Before Run Connect tubing; install test filters on filter samplers.

Install the isoproponyl alcohol (IPA) cartridge on the CPC. Make electric connections and turn on instruments. Install the critical orifice on the canister inlet, check the starting pressure, and install the

canister with inlet valve closed. Check and reset time stamps for the DRX and AE 51. Set DRX logging to manual mode. Start the LabView program, type in date, site and Run ID (Init). Set the makeup flow to ~ 6 L/min and dilution flow ~32 L/min After CPC is warmed up, expose CPC to ambient air and adjust the dilution bridge to achieve

a dilution factor of ~50. Measure flow rates of DRX (3 L/min), AE51 (0.05 L/min), CPC (1 L/min), Testo (1 L/min),

HNU (0.16 L/min), and CO2 analyzers (1 L/min). Check readings for ambient concentrations of each instrument to make sure the readings are

reasonable. Start to sample engine exhaust. Adjust the dilution flow and makeup flow so that the DRX measures ~1 mg/m3. This ensures

that the filters collect ~0.6 mg PM for a 2-hour run at a flow rate of 5 L/min, avoiding overloading and under-loading.

Ensure instruments respond to the LabView program with no error messages. Stop all instruments.

Unplug power to the integrated sample box. Change from test filters to sample filters. Re-plug in power and record the filter start time.

Change Run ID to the real Run ID in the LabView program. Start program. Ensure that every instrument is responding, no errors occur and spans are in the most sensitive ranges.

Turn on the DNPH pump and open the valve at the canister inlet. Record the DNPH and canister start time.

During Run Look into the file directory and make sure that data from every instrument is being logged. Examine the measured values to ensure that they are within the operating range limits. Ensure

that the filter flows do not drop by >10% during the run due to loading. Click “Stop All” button to stop the program at the end of the run. Close the inlet valve of the canister, and unplug power to the integrated sample module and

the DNPH pump. Record the sample stop time. After Run Unload the four sampled filter packs and replace with test filters.

Remove the sampled canister and DNPH cartridge and put a new canister and DNPH cartridge in line. Leave inlet valve closed and DNPH pump off.

Check dilution factor of the CPC. Check if the AE51 filter need be replaced. Check if the cyclone need be cleaned. Check filter/CaCl1/soda lime on gas and undiluted CO2 lines.

End of the Day Download data from DRX, AE51, Testo, and HNU. Clear internal memory for DRX, AE51, Testo, and HNU. Check if inlet and sampling line need be cleaned. Replace the IPA cartridge of the CPC with the shipping cartridge. Charge the batteries overnight or until the battery monitor shows battery fully charged.

Page 23: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-10

Table 2-3. Summary of experimental parameters for each run. Run ID

Date Time Truck Type Truck

Operation Dilution Factor

Filter ID

Canister ID

DNPH

S1 10/16/2010 12:20 - 13:43 T282B 2 loads 6.3 F65 Can13 D27-D28 S2 10/16/2010 14:01 - 16:04 T282B 3 loads 19.2 F66 Can21 D29-D30 S3 10/17/2010 9:41 - 10:55 T282B 3 loads 7.9 F67 - - S4 10/17/2010 11:15 - 12:21 T282B 3 loads 16.2 F68 Can16 D31 S5 10/17/2010 12:41 - 13:52 T282B 3 loads 9.4 F69 Can19 D32 S6 10/17/2010 14:08 - 15:12 T282B 1 load 29.0 F70 - - A1 10/19/2010 10:15 - 11:42 CAT 797B 1 load 3.2 F72 - D34 A2 10/19/2010 11:57 - 13:16 CAT 797B 1 load 13.5 F73 Can18 D11-D12 A3 10/19/2010 13:41 - 15:11 CAT 797B 1 load 11.6 F74 Can20 D13-D14 A4 10/19/2010 15:35 - 16:47 CAT 797B 1 load 11.4 F75 Can22 D15-D16 C1 10/21/2010 8:49 - 11:19 CAT 797B 2 loads 32.4 F76 - D33 C2 10/21/2010 11:29 - 12:54 CAT 797B 2 loads 18.7 F77 Can15 D17-D18 C3 10/21/2010 14:12 - 15:28 CAT 797B 1 load 30.9 F78 Can14 D19-D20 C4 10/21/2010 15:39 - 17:42 CAT 797B 2 loads 14.4 F79 Can17 D21-D22

2.8 Laboratory Analysis

Laboratory analysis methods are described in greater detail by Watson et al. (2013). Canister samples were analyzed for VOCs using gas chromatography-flame ionization detector/mass spectrometry (GC-FID/MS) following U.S. EPA Method TO-15 (U.S.EPA, 1999b). Light hydrocarbons are deposited to a Varian CP-Sil5 column (15 m × 0.32 µm × 1 µm) plumbed to a column-switching valve in the GC oven, then to a Chrompack Al2O3/KCl column (25 m × 0.53 mm × 10 µm) leading to the flame ionization detector for quantitation of light hydrocarbons. The mid-range and heavier hydrocarbons cryo-focused in the rear trap are deposited to a J&W DB-1 column (60 m × 0.32 mm × 1 µm) connected to the ion trap MS. The initial GC temperature is 5 C held for approximately 9.5 minutes, then ramps by 3 C/min to 200 C for a total run time of 80 minutes. A 74 component reference standard prepared by Apel-Reimer was used to confirm retention times and calibrate detector response. The minimum detection limit (MDL) is determined as recommended by U.S. EPA Method TO-15.

DNPH cartridges were analyzed for carbonyls using HPLC according to the U.S. EPA Compendium Method TO-11A (U.S.EPA, 1999a; Zielinska et al., 2001). The loaded DNPH Sep-Pak cartridges are eluted with 2-mL acetonitrile to remove the hydrazone products produced during sampling of carbonyl compounds. An aliquot of the eluent is transferred into a 2-mL septum vial and injected with an autosampler into a high performance liquid chromatograph (HPLC; Waters 2690 Alliance System with 996 Photodiode Array Detector) for separation and quantification of the hydrazones. The chromatographic conditions are as follows: The HPLC program is: 60% A and 40% B for 0.02 min., 50% A and 50% B over 15 min., 30% A and 70% B over 6 min., and 100% B over 1 min., final hold at 100% B for 1 mi; total run time: 30 min. C1 through C7 compounds are analyzed, including the following 14 carbonyls: formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, crotonaldehyde, methyl ethyl ketone, methacrolein, butyraldehyde, benzaldehyde, glyoxal, valeraldehyde, m-tolualdehyde, and hexanaldehyde. The original carbonyl concentrations in the sample (in ppb) are computed from the amounts measured after blank correction, and after accounting for the volume of syngas

Page 24: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-11

sampled. MDLs are determined according to the method described above for VOCs, and are generally in the range of 0.1–0.2 ppbv.

Detailed chemical analyses for the seven filter substrates are illustrated in Figure 2-6 (Chow and Watson, 2012). Teflon-membrane filters were analyzed for mass by gravimetry, light transmission (babs) by densitometer, 51 elements by X-ray fluorescence (i.e., sodium, magnesium, aluminum, silicon, phosphorous, sodium, chlorine, potassium, calcium, scanadium, titanium, vanadium, chromium, manganese, iron, cobalt, nickle, copper, zinc, gallium, arsenic, selenium, bromine, rubidium, strontium, yttrium, zirconium, niobium, molybdenum, palladium, silver, cadmium, indium, tin, antimony, caesium, barium, lanthanum, cerium, samarium, europium, terbium, hafnium, tantalum, tungsten, iridium, gold, mercury, thallium, lead, and uranium; Watson et al., 1999), and 14 rare-earth elements (i.e., lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium), as well as cesium, barium, and four lead isotopes (i.e., Pb-204, Pb-206, Pb-207, and Pb-208) by inductively coupled plasma/mass spectrometry (ICP/MS).

Half of the quartz-fiber filters were extracted in water and analyzed for chloride (Cl-), nitrite (NO2

-), nitrate (NO3-), phosphate (PO4

≡) and sulfate (SO4=) by ion chromatography (IC;

Chow and Watson, 1999). Water-soluble sodium (Na+), potassium (K+), magnesium (Mg++) and calcium (Ca++) were determined by atomic absorption spectroscopy (AAS), and ammonium (NH4

+) was measured by automated colorimetry (AC).

Total water soluble organic carbon (WSOC) was measured from the water extract by total organic carbon analyzer (TOC). Three WSOC classes (i.e., neutral, mono-/di-carboxylic acids, and polycarboxylic acids including humic-like substances (HULIS)) were separated by HPLC and analyzed by TOC. Seventeen carbohydrates (i.e., glycerol, inositol, erythritol, xylitol, levoglucosan, arabitol, sorbitol, mannosan, malitol, arabinose, glucose, xylose, galactose, fructose, sucrose, trehalose, and mannitol) and nine organic acids (i.e., oxalic acid, malonic acid, succinic acid, glutaric acid, lactic acid, acetic acid, formic acid, maleic acid, and methanesulfonic acid) were measured by IC. OC, EC, and eight thermal fractions (OC1-OC4, pyrolyzed carbon [OP], EC1-EC3) were quantified by the Interagency

Monitoring of Protected Visual Environments (IMPROVE_A) thermal/optical protocol (Chow et al., 1993; 2001; 2004; 2005; 2007a). The second half of the quartz-fiber filters were analyzed for 113 non-polar speciated OC compounds including n-alkanes, iso/anteiso-alkanes, hopanes, steranes, other alkanes, one alkene, cyclohexanes, and PAHs by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS; Chow et al., 2007b; Ho and Yu, 2004). The backup citric acid-impregnated cellulose-fiber filters behind the Teflon-membrane front filters were analyzed for NH3 by AC. The backup potassium carbonate-impregnated cellulose-fiber filters behind the quartz-fiber front filters were analyzed for SO2 by IC and the backup silver nitrate-impregnated cellulose-fiber filters behind the quartz-fiber front filters were analyzed for H2S by x-ray fluorescence (XRF).

Page 25: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

2-12

Figure 2-6. Chemical analyses on filter substrates (Chow and Watson, 2012).

C

hem

ical

A

nal

ysis

a

Nuc

lepo

re

poly

carb

onat

e-m

embr

ane

filte

r

Silv

er n

itrat

e-im

preg

nate

d ce

llulo

se-f

iber

fil

ter

K2C

O3-

impr

egna

ted

cellu

lose

-fib

er

filte

r

Citr

ic a

cid-

impr

egna

ted

cellu

lose

-fib

er

filte

r

Qua

rtz-

fiber

fil

ter

Qua

rtz-

fiber

fil

ter

Teflo

n-m

embr

ane

filte

r

~1-

2 cm

2 pu

nch

0.5

cm2

punc

h ½

filt

er

extr

acte

d in

20

ml

dist

illed

-de

ioni

zed

wat

er (

DD

W)

XRF

for

51

elem

ents

b

Aci

d D

iges

tion

ICP-

MS

for

rare

-ear

th

elem

ents

and

is

otop

esd

OC,

EC,

carb

on

frac

tions

, ca

rbon

ate

by

ther

mal

/opt

ical

ca

rbon

Org

anic

M

arke

rs b

y TD

-GC

/MSc

Am

mon

ia b

y AC

½ f

ilter

ex

trac

ted

in

10 m

l 1:1

1 hy

drog

en

pero

xide

: D

DW

dilu

tion

Who

le f

ilter

w

ithou

t ex

trac

tion

Elem

enta

l an

alys

is o

r m

orph

olog

ical

an

alys

is f

or

liche

n st

udie

s

Sul

fur

diox

ide

by

IC

Hyd

roge

n su

lfide

by

XRF

as s

ulfu

r

½ f

ilter

ex

trac

ted

in

10 m

l DD

W

10 m

l for

ani

ons

and

catio

nse

by I

C,

AC,

and

AAS

, ac

idifi

ed t

o pH

2 w

ith

HCl

1 m

l for

tot

al

WSO

C b

y th

erm

al/o

ptic

al

carb

on

Filtr

atio

n of

5 m

l thr

ough

0.2

µm

PT

FE s

yrin

ge f

ilter

1 m

l spe

ciat

ed W

SOC

sepa

rate

d in

to t

hree

cl

asse

s: N

C,

MD

A,

and

PA b

y H

PLC-I

EC a

nd

UV/

Vis

det

ectio

n at

25

4 nm

1 m

l for

NC

spec

iatio

n (e

.g.,

carb

ohyd

rate

s) b

y IC

-PAD

1 m

l for

MD

A

spec

iatio

n (e

.g.,

or

gani

c ac

ids)

by

IC

with

con

duct

ivity

de

tect

or

1 m

l for

PA

spec

iatio

n (e

.g.,

HU

LIS)

by H

PLC–

SEC

–ELS

D–U

V/V

IS

a Ana

lytic

al I

nstr

umen

ts:

AAS:

Ato

mic

abs

orpt

ion

spec

tros

copy

AC:

Aut

omat

ed c

olor

imet

ry

EL

SD

: Ev

apor

ativ

e lig

ht s

catt

erin

g de

tect

or

H

PLC

-IEC

: H

igh

perf

orm

ance

liqu

id

chro

mat

ogra

phy

with

an

ion

exch

ange

co

lum

n

IC:

Ion

chro

mat

ogra

phy

IC

-PAD

: IC

with

pul

sed

ampe

rom

etri

c de

tect

or

IC

P-M

S:

Indu

ctiv

ely

coup

led

plas

ma

– m

ass

spec

trom

etry

PTFE

: Pol

ytet

raflu

oroe

thyl

ene

SEC

: Siz

e-ex

clus

ion

chro

mat

ogra

phy

TD

-GC/M

S:

Ther

mal

des

orpt

ion-

gas

chro

mat

ogra

phy/

mas

s sp

ectr

omet

ry

U

V/V

IS:

Ultr

avio

let

dete

ctor

XRF:

X-r

ay f

luor

esce

nce

Obs

erva

bles

OC

: O

rgan

ic c

arbo

n

EC:

Elem

enta

l car

bon

H

ULI

S:

Hum

ic-l

ike

subs

tanc

es

M

DA:

Mon

o/di

carb

oxyl

ic a

cids

NC:

Neu

tral

/bas

ic c

ompo

unds

PA:

Poly

carb

oxyl

ic a

cids

b Al –

U (

see

Tabl

e 7-

1)

c 12

4 org

anic

mar

ker

spec

ies

(see

Ta

ble

7-1)

d

Cs,

Ba,

La,

Ce,

Pr,

Nd,

Sm

, Eu

, G

d, T

b, D

y, H

o, E

r, T

m,

Yb, Lu

, Pb

204,

205

, 20

6, 2

07,

208

e C

l- , N

O2,

NO

3- , PO

4=,

SO4=

(by

IC

); N

H4+

(by

AC);

Na+

, M

g++, K

+,

and

Ca+

+ (

by A

AS)

Page 26: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-13

3 Emission Factors 3.1 Description of Fuel-based Emission Factors

Emission estimates for non-road engines often use fuel-based EFs, which are calculated based on carbon mass balance (Dreher and Harley, 1998; Fraser et al., 1998; Kean et al., 2000; Moosmüller et al., 2003) as:

CO

CCO

CO

CCO

ifueli

M

MC

M

MC

CCMFEF

2

2

(3-1)

where EFi is in gram emittant per gram fuel for gaseous emittants and particle mass emission, and in number of particles per gram fuel for particle number emission. CMFfuel is the carbon mass fraction of the fuel, which is 86.2% for diesel assuming it has an average formula of C12H23. Ci is the concentration of emittant i in g/m3 or particle number/m3, and CCO2 and CCO are the concentrations of CO2 and CO in g/m3, respectively. MC, MCO2, and MCO are the atomic or molecular weights of C, CO2, and CO in g per mole. Eq. 3-1 assumes that the carbon content in CH4, NMHC, and PM is negligible compared to carbon in CO and CO2.

The gas concentration of species i (Ci) measured in units of ppm can be converted to values in g/m3 by:

63ii

3i 10g/mρppmCg/mC (3-2)

where ρi is the density for emittant i. Since gas measurements were carried out at ambient pressures and temperatures, the pressure (P) measured by the Testo Emission Analyzer and the temperature (T) measured by the mass flow meters are used in the density calculation with the ideal gas law:

RT

PMρ i

i (3-3)

where Mi is the molecular weight of gaseous emittant i, and R is the universal gas constant (8.314 J/K×mol). Eq. 3-1 can then be simplified by substituting Eq. 3-3 for gaseous species:

COCOC

iifueli CCM

CMCMFEF

2

(3-4)

where Ci, CCO, and CCO2 are in ppm.

The U.S. EPA Tier 1-4 Standards for a non-road compression-ignition (CI) engine with rated power > 900 kW regulate NMHC, NOx (or NMHC+NOx), PM, and CO with EFs in g/kW-hr derived from the certification tests. Note that the emission standards require NOx to be reported as NO2, i.e., using the molecular weight of NO2 (46) to convert NO and NO2 in ppm to g/m3 (U.S.EPA, 2005a; U.S.EPA, 2013). EFs in g/kW-hr are converted to EFs by:

EF[g/kg fuel] = hr]-fuel/kW BSFC[kg

hr]-EF[g/kW, (3-5)

where the brake-specific fuel consumption (BSFC) is assumed to be 0.223 kg/kW-hr (0.367 lb/hp-hr) (U.S.EPA, 2004b).

Page 27: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-14

3.2 Data Consistency

The in-plume sampler measures PM2.5 mass concentration by the DustTrak DRX (Wang et al., 2009) in real time. It also collects particles on Teflon-membrane filters and measures mass concentration by gravimetry. Since the DustTrak DRX estimates mass concentrations based on light scattering using a calibration factor derived from Arizona road dust, the calibration factor needs to be adjusted for engine exhaust aerosols. Figure 3-1 shows PM2.5 concentrations measured by the DustTrak DRX and filters from the exhaust of five mining trucks tested in 2009 and 2010. The relationship between these two mass measurements is consistent for different trucks and different test times, with the DustTrak DRX reading 1.89±0.32 times higher than the filter. The PM2.5 concentrations from filters were used for EF calculations, while the real-time PM2.5 concentration from the DustTrak DRX was normalized to filter concentrations for evaluating variations among different parts of the operating cycle.

Figure 3-1. Relationship of PM2.5 mass concentration from mining trucks measured by the DustTrak DRX and gravimetric method.

Light absorbing particles were measured using three different methods: real-time BC by micro-aethalometer, filter optical density or light absorption coefficient (babs) on Teflon-membrane filters by Tobias densitometer, and EC on quartz-fiber filters by thermal-optical reflectance (TOR) following the IMPROVE_A protocol (Chow et al., 2007). Figure 3-2 shows good correlation (R2 = 0.97) between babs and EC. Data from tests in 2009 were more scattered than those collected in 2010. On the other hand, the relationship between BC and EC shows more scatter than observed in 2009.

Total VOCs were measured by photo ionization detector (PID) in real time. They were also collected in canisters and analyzed by GC-FID/MS. The PID analyzer ionizes VOCs by a UV lamp and measures the ion current by an electrometer. It reports total VOC in isobutylene-equivalent concentration. VOCs analyzed by GC-FID/MS are calibrated to standards, and quantitatively report individual concentrations and, therefore, are absolute. Figure 3-3 shows the relationship between total VOCs by the PID analyzer and the sum of NMHC from canister. Note

DRX = 1.70 x Filter + 0.22R² = 0.96

0

1

2

3

4

5

6

7

0 1 2 3 4

DustTrak DRX PM

2.5(m

g/m

3)

Gravimetric PM2.5 (mg/m3)

Test 2010

Test 2009

Page 28: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-15

that these two measurements have fair correlation at higher concentrations. However, the data showed scatter at canister concentrations below 300 ppbv. In this report, NMHC from the canister are used for reporting EFs, while the total VOCs from the PID analyzer are used to evaluating real-time variations.

Figure 3-2. Relationships between elemental carbon (EC) by thermal/optical reflectance following the IMPROVE_A protocol, light absorption coefficient (babs) by densitometer, and black carbon (BC) by micro-aethalometer.

Figure 3-3. Relationships between total VOCs measured by the PID analyzer and sum of non-methane hydrocarbon (NMHC) collected by the canister.

3.3 Diesel Engine Emission Factors

Table 3-1 lists the fuel-based EFs for GHG, other gases, particle number, PM2.5, and BC averaged from each truck tested in 2010: a) Liebherr T282B, b) CAT 797B-3, and c) CAT 797B-4. The rightmost column of Table 3-1c lists the ratio of EFs among the three trucks (i.e., Liebherr

babs = 15.1x + 150R² = 0.97

0

5000

10000

15000

20000

25000

0 200 400 600 800 1000 1200 1400 1600

babs (M

m‐1)

EC Concentration (µg/m3)

Test 2010

Test 2009

0

500

1000

1500

2000

2500

0 200 400 600 800 1000 1200 1400 1600

BC (µ

g/m

3 )

EC Concentration (µg/m3)

Test 2010

Test 2009

y = 0.02xR² = 0.75

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700

PID Analyzer Total VOCs (ppmV)

Canister VOCs (ppbV)

Page 29: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-16

T282B: CAT 797B-3: CAT 797B-4) using truck CAT 797B-3 as reference. The same data, excluding NO, NO2, SO2, and H2S, are plotted in Figure 3-4. Key observations are:

CO2 was the largest combustion product. Due to the dominance of carbon content in CO2 among all exhaust components, and the assumption that carbon content in species other than CO and CO2 are negligible (see Eq. 3-1), the CO2 EFs were relatively constant among the 14 runs with some disparity due to variations of CO EFs.

CH4 EFs were low (<8 g/kg fuel) and variable from run to run and truck to truck. Total VOCs (expressed as isobutylene equivalent) were relatively constant for each truck

(except Run S4). Total VOCs EF of the Liebherr T282B was ~twice of that of the CAT 797B-3 and CAT 797B-4. Similarly, the Liebherr T282B average EFs of CO, NO, NOx were ~2-3 times higher than CAT 797B-3 and CAT 797B-4.

The EFs for SO2 and H2S were very low, with all 14 runs below the measurement MDLs, likely due to the ultra low S fuel used in these trucks. EFs for NH3 were also low, with five out of the six runs on Liebherr T282B and two out of the four runs on truck CAT 797B-3 below the MDLs. EFs for NH3 were above MDL for truck CAT 797B-4, but they were orders of magnitude lower than those from light-duty gasoline vehicles (~0.4 g/kg fuel). This observation supports earlier findings that heavy-duty diesel trucks are a minor source of NH3 emissions compared to light-duty gasoline vehicles (Kean et al., 2009).

EFs for particle number and PM2.5 were relatively stable from run to run for CAT 797B-3 and CAT 797B-4 (with coefficients of variation [COVs] of 42% and 15%, respectively), but were more variable (COV=93%) for Liebherr T282B. On average, CAT 797B-3 has the lowest EFs for particle number and PM2.5.

EFs for BC varied ±60% from run to run. The BC EFs of Liebherr T282B were ~20% higher than CAT 797B-3. BC was not measured at Facility C due to failure of the micro-aethalometer.

Average EFs for all emittants (except the low concentration NH3) varied within a factor of 3.5 among the three trucks. Except for the low concentration NO2, SO2, H2S, and NH3, CAT 797B-3 had the lowest EFs for all emittants among the three trucks.

Figure 3-5 compares the average EFs of the five trucks for both 2009 and 2010 tests. Key observations are:

Truck Liebherr T282B had higher EFs than truck CAT 797B-1 (both are in Facility S): 2.8 times CH4, 3.4 times CO, 2.5 times NOx, 2.8 times NH3, 15 times particle number, 1.7 times PM2.5, and 2.2 times BC. Emissions from the Liebherr T282B were also higher than CAT 797B-2 and CAT 797B-3. On the other hand, the Liebherr T282B had similar CH4 and PM2.5 EFs as truck CAT 797B-4, and ~24% lower in particle number.

The variations in EFs for the two CAT 797Bs at Facility A tested in 2009 and 2010 (CAT 797B-2 and CAT 797B-3, respectively) may be attributed to differences in truck, operating and environmental conditions, and fuel and lube oil compositions. A special fuel additive was used in truck CAT 797B-3. Compared to truck CAT 797B-2, truck CAT 797B-3 had similar EFs for NOx, 60-85% higher for CH4, CO, and BC, ~18 times higher for NH3, but 56% and 27% less for particle number and PM2.5, respectively.

Page 30: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-17

Table 3-1. Average fuel-based EFs for gases and particulate emittants for each test for trucks: a) Liebherr T282B, b) CAT 797B-3, and c) CAT 797B-4. The ratio of each truck normalized to truck CAT 797B-3 is shown in the last column.

Emission factors of GHG, gases, and PM in g/kg fuel or particle number/kg fuel

a). Run IDa S1 S2 S3 S4 S5 S6

Liebherr T282BAverage

GH

G

CO2 (g/kg) 3151 3147 3161 3132 3150 3146 3148 ± 9 CH4 (g/kg) 1.21 8.00 - 5.65 - - 4.95 ± 3.45

Oth

er g

ases

Total VOCs (g/kg) 12.06 16.92 - 36.83 13.05 18.12 19.39 ± 10.07 CO (g/kg) 17.29 30.83 29.62 60.86 28.70 29.57 32.81 ± 14.62 NO (g/kg) 45.24 79.25 51.69 149.39 58.83 90.32 79.12 ± 38.41 NO2 (g/kg) 0.395 1.526 0.002 0.002 0.005 0.024 0.33 ± 0.61 NOx as NO+NO2

(g/kg) 45.63 80.78 51.69 149.39 58.84 90.34 79.45 ± 38.35

NOx as NO (g/kg) 45.50 80.25 51.69 149.39 58.84 90.33 79.33 ± 38.37 NOx as NO2 (g/kg) 69.76 123.05 79.25 229.07 90.22 138.51 121.64 ± 58.83 SO2(g/kg) < 9.24E-04 < 1.01E-03 < 1.79E-03 < 2.77E-03 < 1.70E-03 < 3.60E-03 <1.97E-03 H2S(g/kg) < 4.86E-04 < 5.29E-04 < 9.43E-04 < 1.47E-03 < 8.97E-04 < 1.90E-03 <1.04E-03 NH3(g/kg) < 9.20E-04 < 1.00E-03 4.46E-04 < 2.78E-03 < 1.70E-03 < 3.60E-03 <1.74E-03

PM

Number (#/kg) 5.89E+15 2.47E+15 6.04E+15 2.18E+16 4.01E+15 5.42E+15 (7.61 ± 7.09)E+15 PM2.5 (g/kg) 0.40 1.44 0.56 1.19 0.61 1.17 0.89 ± 0.42 BC (g/kg) 0.23 0.88 1.67 1.82 0.80 1.17 1.10 ± 0.59

Emission factors of GHG, gases, and PM in g/kg fuel or particle number/kg fuelb). Run IDa A1 A2 A3 A4 CAT 797B-3 Average

GH

G

CO2 (g/kg) 3156 3152 3154 3154 3154 ± 2 CH4 (g/kg) - 0.63 2.77 4.09 2.49 ± 1.74

Oth

er g

ases

Total VOCs (g/kg) 5.81 11.58 8.67 7.90 8.49 ± 2.39 CO (g/kg) 9.56 8.01 13.88 11.21 10.66 ± 2.51 NO (g/kg) 27.00 29.14 38.70 35.18 32.50 ± 5.39 NO2 (g/kg) 0.101 0.960 0.359 0.537 0.49 ± 0.36 NOx as NO+NO2 (g/kg) 27.10 30.10 39.06 35.72 32.99 ± 5.40 NOx as NO (g/kg) 27.06 29.76 38.93 35.53 32.82 ± 5.39 NOx as NO2 (g/kg) 41.49 45.64 59.70 54.49 50.33 ± 8.27 SO2(g/kg) < 5.33E-04 < 1.88E-03 < 1.71E-03 < 1.66E-03 <1.44E-03 H2S(g/kg) < 2.83E-04 < 9.92E-04 < 9.01E-04 < 8.78E-04 <7.63E-04 NH3(g/kg) < 5.36E-04 4.34E-03 9.21E-04 < 1.66E-03 <1.86E-03

PM

Number (#/kg) 2.79E+15 3.77E+15 3.85E+15 1.22E+15 (2.91 ± 1.22)E+15 PM2.5 (g/kg) 0.57 0.57 0.64 0.57 0.59 ± 0.04 BC (g/kg) 0.13 1.66 1.25 0.57 0.90 ± 0.68

Emission factors of GHG, gases, and PM in g/kg fuel or particle number/kg fuelc). Run IDa C1 C2 C3 C4 CAT 797B-4 Average Ratio S:A:C

GH

G

CO2 (g/kg) 3151 3154 3147 3154 3152 ± 3 1.0:1.0:1.0 CH4 (g/kg) - 2.41 7.20 3.43 4.35 ± 2.52 2.0:1.0:1.7

Oth

er g

ases

Total VOCs (g/kg) 11.93 8.19 17.2 8.28 11.39 ± 4.22 2.3:1.0:1.3 CO (g/kg) 15.46 8.73 6.70 26.41 14.32 ± 8.88 3.1:1.0:1.3 NO (g/kg) 48.97 33.92 55.87 43.41 45.54 ± 9.27 2.4:1.0:1.4 NO2 (g/kg) 0.093 0.022 0.334 0.196 0.16 ± 0.14 0.7:1.0:0.3 NOx as NO+NO2 (g/kg) 49.06 33.95 56.20 43.61 45.70 ± 9.38 2.4:1.0:1.4 NOx as NO (g/kg) 49.03 33.94 56.09 43.54 45.65 ± 9.34 2.4:1.0:1.4 NOx as NO2 (g/kg) 75.18 52.04 86.00 66.76 69.99 ± 14.33 2.4:1.0:1.4 SO2(g/kg) < 3.59E-03 < 3.44E-03 < 5.54E-03 < 2.45E-03 <3.76E-03 - H2S(g/kg) < 1.91E-03 < 1.82E-03 < 2.94E-03 < 1.30E-03 <1.99E-03 - NH3(g/kg) 2.18E-03 1.19E-03 1.59E-02 3.40E-03 (5.67 ± 6.89)E-03 0.0:1.0:2.2

PM

Number (#/kg) 1.09E+16 8.97E+15 1.18E+16 8.64E+15 (10.07 ± 1.51)E+15 2.6:1.0:3.5 PM2.5 (g/kg) 1.25 0.80 0.67 0.82 0.80 ± 0.32 1.5:1.0:1.5 BC (g/kg) - - - - - 1.2:1.0:-

a

Run IDs S1 – S6 represent the six runs on truck Liebherr T282B in Facility S; Run IDs A1 – A4 represent the four runs on truck CAT 797B-3 in Facility A; Run IDs C1 – C4 represent the four runs on truck CAT 797B-4 in Facility C.

Page 31: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-18

FFigure 3-4. Fuel-ba

3130

3135

3140

3145

3150

3155

3160

3165

S1 S2 S3 S

CO

2E

mis

sio

n F

ac

tor (

g/k

g fu

el)

CO2

0

10

20

30

40

50

60

70

S1 S2 S3 S

CO

Em

iss

ion

(g/k

g fu

el)

CO Em

0.0E+00

5.0E+15

1.0E+16

1.5E+16

2.0E+16

2.5E+16

S1 S2 S3Pa

rtic

le N

um

be

r Em

iss

ion

(#/k

g fu

el)

Particle

ased EFs for major

4 S5 S6 A1 A2 A3 A

Run ID

2 Emission Factor (by CO

4 S5 S6 A1 A2 A3 A

Run ID

ission Factor (by Emissi

S4 S5 S6 A1 A2 A3 A

Run ID

e Number Emission Facto

gases and PM2.5 in

A4 C1 C2 C3 C4

O2 Analyzer)

CH

4E

ii

(/k

fl)

A4 C1 C2 C3 C4

on Analyzer)

NO

Em

issi

on

(g/k

gfu

el)

A4 C1 C2 C3 C4

or (by CPC)

PM

25E

mis

sio

n (g

/kg

fue

l)

n each run. Detailed

0

1

2

3

4

5

6

7

8

9

S1 S2 S3 S4

CH

4 E

mis

sio

n (g

/kg

fue

l)

CH4 Emis

0

50

100

150

200

250

S1 S2 S3 S4 S

NO

xE

mis

sio

n (

g/k

g f

uel

)

NOx (as NO2) Emiss

0.0E+00

2.0E-01

4.0E-01

6.0E-01

8.0E-01

1.0E+00

1.2E+00

1.4E+00

1.6E+00

S1 S2 S3 S4

2.5

(gg

)

PM2.5 Emission F

d data are in Table

S5 S6 A1 A2 A3 A4

Run ID

sion Factor (by Canister-

S5 S6 A1 A2 A3 A4 C

Run ID

sion Factor (by Emission

S5 S6 A1 A2 A3 A4

Run ID

Factor (by Teflon-membr

3-1.

C1 C2 C3 C4

-GC/FID)

To

tal V

OC

s E

mis

sio

n (g

/kg

fue

l)

C1 C2 C3 C4

n Analyzer)

0

3

6

9

NH

3E

mis

sio

n (g

/kg

fue

l)

C1 C2 C3 C4

rane Filter)

BC

Em

iss

ion

(g/k

g fu

el)

0

5

10

15

20

25

30

35

40

S1 S2 S3 S4 S

Total VOCs Emissio

0.0E+00

3.0E-03

6.0E-03

9.0E-03

1.2E-02

1.5E-02

1.8E-02

S1 S2 S3 S4 S5

NH3 Emission

0.0

0.5

1.0

1.5

2.0

S1 S2 S3 S4 S

BC Emission Facto

S5 S6 A1 A2 A3 A4 C1

Run ID

on Factor (by PID Analyze

5 S6 A1 A2 A3 A4 C1

Run ID

n Factor (by Filter-AC)

5 S6 A1 A2 A3 A4 C1

Run ID

or (by micro-aethalomete

C2 C3 C4

er)

C2 C3 C4

C2 C3 C4

er)

Page 32: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-19

F Figure 3-5. Fuel-ba

3125

3130

3135

3140

3145

3150

3155

3160

CAT 797B-1 C

CO

2E

mis

sio

n (

g/k

g f

uel

)CO2 Em

0

5

10

15

20

25

30

35

40

45

50

CAT 797B-1 C

CO

Em

issi

on

(g

/kg

fu

el)

CO Em

0.0E+00

2.0E+15

4.0E+15

6.0E+15

8.0E+15

1.0E+16

1.2E+16

1.4E+16

1.6E+16

CAT 797B-1 C

Par

ticl

e N

um

ber

Em

issi

on

(#/

kg f

uel

)

Particle

ased EFs for gases

CAT 797B-2 CAT 797B-3 CAT

mission Factor (by CO2 A

CAT 797B-2 CAT 797B-3 CAT

mission Factor (by Emiss

CAT 797B-2 CAT 797B-3 CAT

Number Emission Factor

and particles measu

T 797B-4 LiebherrT282B

Analyzer)

T 797B-4 LiebherrT282B

ion Analyzer)

T 797B-4 LiebherrT282B

r (by CPC)

ured in 2009 and 2

0

1

2

3

4

5

6

7

8

9

CAT 797B-1 CA

CH

4E

mis

sio

n (

g/k

g f

uel

)

CH4 Emis

0

30

60

90

120

150

180

210

CAT 797B-1 CA

NO

xE

mis

sio

n (

g/k

g f

uel

)

NOx (as NO2)E

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

CAT 797B-1 CA

PM

2.5

Em

issi

on

(g

/kg

fu

el)

PM2.5 Emissio

010 at the three fac

AT 797B-2 CAT 797B-3 CAT 7

ssion Factor (by Canister

AT 797B-2 CAT 797B-3 CAT 7

mission Factor (by Emis

AT 797B-2 CAT 797B-3 CAT 7

n Factor (by Teflon-mem

cilities.

797B-4 LiebherrT282B

r-GC/FID)

Tota

lVO

Cs

Em

issi

on

(g/k

gfu

el)

97B-4 LiebherrT282B

sion Analyzer)

NH

Em

issi

on

(g/k

gfu

el)

797B-4 LiebherrT282B

brane Filter)

BC

Em

issi

on

(g/k

gfu

el)

0

5

10

15

20

25

30

35

CAT 797B-1 CA

Tota

l VO

Cs

Em

issi

on

(g

/kg

fu

el)

Total VOC

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

CAT 797B-1 CA

NH

3E

mis

sio

n (

g/k

g f

uel

)

NH3 Emiss

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CAT 797B-1 CAT

BC

Em

issi

on

(g

/kg

fu

el)

BC Emis

AT 797B-2 CAT 797B-3 CAT 79

Cs Emission Factor (by PI

AT 797B-2 CAT 797B-3 CAT 79

sion Factor (by Filter-AC)

T 797B-2 CAT 797B-3 CAT 79

ssion Factor (by micro-ae

97B-4 LiebherrT282B

ID Analyzer)

97B-4 LiebherrT282B

)

97B-4 LiebherrT282B

ethalometer)

Page 33: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-20

Figure 3-6 compares the five mining truck EFs for CO, NMHC, NOx, (or NMHC+ NOx), and PM2.5 with Tier 1, 2, and 4 non-road emission standards (Environment Canada, 2005; 2011; U.S.EPA, 2004a). The EF values in the standards were converted from g/kW-hr to g/kg fuel using Eq. 3-5 assuming a BSFC value of 0.223 kg/kW-hr (0.367 lb/hp-hr). The BSFC calculated from truck CAT 797B-3 was 0.241 kg/kW-hr, which is close to the EPA assumption. Key observations are:

The EFs for CO, NMHC, and PM2.5 were below the Tier 1 limits for all five trucks, but the NOx (as NO2) EFs exceeded the limit by 20%, 27%, 22%, 70%, and 195% for CAT 797B-1, CAT 797B-2, CAT 797B-3, CAT 797B-4, and Liebherr T282B, respectively.

All trucks except the Liebherr T282B met the Tier 2 limit for CO; the Liebherr T282B exceeded Tier 2 CO limit by a factor of approximately two. All trucks exceeded the Tier 2 limit for NMHC+NOx, while all of them met Tier 2 limit for PM2.5.

Tier 4 has the same CO limit as Tier 2. Therefore, all trucks except truck Liebherr T282B met the Tier 4 limit for CO. All trucks except truck CAT 797B-2 met the Tier 4 limit for NMHC. However, all trucks exceeded Tier 4 limits for NOx and PM2.5.

The COV for the four CAT 797Bs are 31%, 53%, 16%, and 25% for CO, NMHC, NOx, and PM2.5, respectively. Since these four trucks were randomly selected for testing in three major facilities, and there was variability in fuel and truck maintenance and operating conditions, this level of variability indicates the tests are repeatable and the four CAT 797B trucks reasonably represent the CAT 797B emissions in AOSR. Only one Liebherr T282B was measured in this study. Therefore, replicate emission measurement from Liebherr T282B is needed to evaluate the representativeness of data from this study

Table 3-2 compares EFs measured from this study with emission standards, EPA Nonroad Model (U.S.EPA, 2005b), and certification tests. Compared to the EFs in Nonroad Model for Tier 1 trucks, the real-world CAT 797B emissions were 68% and 56% lower for NMHC and PM2.5, but 33% and 55% higher for CO and NOx, respectively. On the other hand, the Liebherr T282B real-world emissions of NMHC and PM2.5 were 86% and 44% lower than Nonroad model, but CO and NOx were 4.3 and 3.4 times of the Nonroad model, respectively. Compared to certificate tests, the CAT 797B real-world emissions have comparable values of PM2.5, NMHC was 58% lower, while CO and NOx were 75% and 48% higher, respectively; NMHC from the Liebherr real-world emissions was only 10% of certification tests, but CO, NOx, and PM2.5 were 6.3, 3.5, and 1.2 times higher.

Table 3-3 compares the heavy hauler EFs with several Tier 1 construction equipment in the U.S EPA Nonroad Model (U.S.EPA, 2005b) as well as values reported in previous studies for on-road and nonroad vehicles. The CO EFs for the CAT 797B trucks are lower than on-road light duty gasoline vehicles (Kean et al., 2003), comparable to the Tier 1 backhoes and graders in the Nonroad Model as well as the backhoe (Frey et al., 2008) and military medium tactical vehicle (Zhu et al., 2011), but are higher than the Tier 1 dozers and excavator in the Nonroad Model and the front-end loader and motor grader measured in real world (Frey et al., 2008). The CO EF for the Liebherr T282B is comparable to gasoline vehicles and higher than most diesel engines. NMHC EFs for the heavy haulers are lower than values reported in the literature, while NOx EFs are higher. PM2.5 EFs are 2‒5 times lower than the construction equipment in the Nonroad Model and on-road HD diesel vehicles, but are higher than real-world EFs for construction equipment and on-road light duty vehicles.

Page 34: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-21

a)

b)

c)

Figure 3-6. Comparison of EFs of the five tested trucks with U.S. EPA non-road emission standards for: a) Tier 1, b) Tier 2, and c) Tier 4 for CO, NMHC, NOx, (or NMHC+NOx), and PM2.5.

9.6

0.7

49.3

0.5

6.5

1.0

52.4

0.8

10.7

0.2

50.3

0.6

14.3

0.6

70.0

0.9

32.8

0.3

121.6

0.9

51.0

5.8

41.2

2.4

0.1

1

10

100

1000

Emission Fctor (g/kg fuel)

Emittant

CAT 797B‐1 CAT 797B‐2 CAT 797B‐3CAT 797B‐4 Liebherr T282B Tier 1 Standards

NMHC NOxCO PM2.5

Tier 1 (Model Years 2000‐2005)

9.6

49.9

0.5

6.5

53.3

0.8

10.7

50.5

0.6

14.3

70.6

0.9

32.8

121.9

0.9

15.728.6

0.9

0.1

1

10

100

1000

Emission Fctor (g/kg fuel)

Emittant

CAT 797B‐1 CAT 797B‐2 CAT 797B‐3CAT 797B‐4 Liebherr T282B Tier 2 Standards

NMHC + NOxCO PM2.5

Tier 2 (Model Years 2006‐2010)

9.6

0.7

49.3

0.5

6.5

1.0

52.4

0.8

10.7

0.2

50.3

0.6

14.3

0.6

70.0

0.9

32.8

0.3

121.6

0.9

15.7

0.9

15.7

0.2

0.1

1

10

100

1000

Emission Fctor (g/kg fuel)

Emittant

CAT 797B‐1 CAT 797B‐2 CAT 797B‐3CAT 797B‐4 Liebherr T282B Tier 4 Standards

NMHC NOxCO PM2.5

Tier 4 (Model Years 2015+)

Page 35: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-22

Table 3-2. Comparison of EFs from this study with emission standards, EPA Nonroad Model, and certification tests.

Pollutants

Emission Factors in g/kg fuel

Emission Standards EPA Nonroad Modela DRI On-Board Measurement

Certification Testsb

Tier 1 Tier 2 Tier 4 Tier 1 Tier 2 Tier 4 CAT 797B

Liebherr T282B

CAT797B

Liebherr T282B

CO 51.12 15.70 15.70 7.74 7.74 0.79 10.3±3.2 32.8±14.6 5.90 5.19 NMHC 5.83 NA 0.85 1.88 1.06 0.81 0.61±0.32 0.26±0.04 1.44 3.02

NOx 41.26 NA 15.70 35.76 23.80 14.66 55.5±9.8 121.6±58.8 37.51 34.35

NMHC+NOx 47.09 28.70 16.55 37.64 24.87 15.47 56.1±9.8 121.9±58.8 38.95 37.38

PM2.5 2.42 0.90 0.18 1.60 0.89 0.24 0.70±0.18 0.89±0.42 0.79 0.74 aData were obtained from EPA NONROAD2008 and adjusted for deterioration and sulfur content. bData provided by Facility S and adjusted for transient and deterioration factors. Table 3-3. Comparison of EFs from this study with EFs from other studies.

Equipment CO NMHC NOx PM Reference

CAT 797B 10.3±3.2 0.6±0.3 55.5±9.8 0.7±0.2 This study

Liebherr T282B 32.8±14.6 0.26±0.04 121.6±58.8 0.9±0.4 This study

Backhoe (e.g., CAT 450) 11.3 4.0 31.7 2.8 EPA Nonroad Model

Grader (e.g., CAT 24H) 11.9 1.2 33.8 1.5 EPA Nonroad Model

Dozer (e.g., CAT 988G) 6.9 1.8 34.6 1.4 EPA Nonroad Model

Excavator (e.g., Komatsu PC300-7) 6.8 1.9 31.3 1.8 EPA Nonroad Model

Excavator (Komatsu PC300-7) 4.4 3.2 34.2 0.2 Abolhasani et al. (2008)

Backhoe 13.7 3.1 32.3 0.4 Frey et al. (2008)

Front-end loader 4.7 5.0 37.9 0.3 Frey et al. (2008)

Motor grader 4.7 5.0 33.9 0.3 Frey et al.(2008)

On-road light duty diesel truck 9.0±0.4 0.11±0.01 Kirchstetter (1999)

On-road heavy duty diesel truck 57±7 2.7±0.3 Kirchstetter (1999)

On-road light duty diesel truck 3.0±0.2 0.07±0.02 Ban-Weiss et al. (2008)

On-road heavy duty diesel truck 40±3 1.4±0.3 Ban-Weiss et al. (2008)

On-road light duty gasoline vehicle 22-101 1.5-7.2 Kean et al. (2003)

Military medium tactical vehicle 9.8±7.1 23±11 0.36±0.21 Zhu et al (2011)

Military logistics vehicle 3.9±1.9 33±0.7 4.3±2.5 Zhu et al (2011)

Different methods are used by different oil sands facilities to estimate their diesel exhaust emission rate (ER in g/year) for compliance submissions. Facility A used fuel-based emission factors derived by U.S. EPA in 1985 (U.S.EPA, 1985) multiplied by annual fuel consumption (Method 1). This facility changed emission estimates since 2004 to use the product of emission standards, gross operating hours, rated vehicle power, and a conservative load factor (Method 2). Facility S uses emission standards or a weighted sum of certification emissions, whichever is larger, and adds a 10% safety margin (Method 3). The three calculation methods are summarized below:

Method 1: ER (g/year) = EF (g/kg fuel) from U.S. EPA AP-42 × annual fuel consumption (kg/year). EF is selected for pre-1985 engines from U.S. EPA (1985) AP-42.

Page 36: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-23

Method 2: ER (g/year) = EFStandard (g/kWh) × operating hours (hr/year) × rated vehicle power (kW) × load factor. Load factors are taken conservatively (59% for heavy haulers and 100% for supporting equipment as recommended by U.S. EPA).

Method 3: ER (g/year) = max (EFStandard, EFcert composite) (g/kWh)×1.1/BSFC (kg fuel/kWh)× fuel consumption (kg fuel/year).

These approaches all err on the side of overestimating emissions. As illustrated in Table 3-4, however, these approaches differ among each other and from real-world measurements. Facility estimates of annual emissions are generally conservative for NMHC and PM, but may underestimate CO and NOx emissions, especially for Liebherr T282B.

Table 3-4. Comparison of annual emissions (tonnes/year) calculated by three different methods used by different oil sands facilities with those from real-world measurement. Values in read indicate that emission estimates might underestimate real-world emissions.

Emittant Calculated Measured Real-World

Method 1 (Facility A)

Method 2 (Facility A)

Method 3 (Facility S)

CAT 797B (four trucks)

Liebherr T282B (one truck)

CO 30.5 121.7 79.2 19.0 66.8

NMHC 6.7 13.9 9.0 1.3 0.4

NOx 73.0 98.2 63.9 91.8 254.0

PM 6.0 5.8 3.7 1.2 1.9

Table 3-5 summarizes EFs (in mg/kg fuel) for the 55 PAMS compounds and other identified NMHC. The top ten species with the highest EFs averaged from all three trucks are (in descending order): ethene, propylene, isobutene, isopentane, n-decane, toluene, acetylene, ethane, isobutylene, and benzene. Among the MSATs (U.S.EPA, 2001) species, benzene and toluene had EFs 3–26 mg/kg fuel, similar to EFs found in 2009 (6–27 mg/kg fuel). Total identified NMHC EFs of 0.26±0.04, 0.17±0.07, and 0.64±0.37 g/kg fuel for trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively, were 30–70% of PM2.5 EFs. In contrast, the identified NMHC EFs measured in 2009 were 19-33% higher than PM2.5 EFs. The rightmost column of Table 3-5 shows the ratio of each truck using CAT 797B-3 as the reference. Note that CAT 797B-4 has higher EFs for almost all NMHC species. For example, the EFs for isobutane and isopentane were >100 times higher than trucks Liebherr T282B and CAT 797B-3.

Figure 3-7 groups NMHC EFs into four sub-categories: alkanes and cycloalkanes, alkenes, acetylene, and aromatics. Alkanes and cycloalkanes, and alkenes have the highest EFs of all NMHC species, accounting for 83-90% of total NMHC. CAT 797B-4 emitted higher amounts of alkanes and cycloalkanes and aromatics than the other two trucks.

Table 3-6 lists EFs (in mg/kg fuel) for 14 halocarbons that are considered GHGs. The four halocarbon species with the highest EFs are dichloromethane, tetrachloroethene,1,1,2,2-tetrachloroethane, and dichlorodifluoromethane. Similar to the NMHC species, truck CAT 797B-4 has the highest EFs for halocarbons, with tetrachloroethene being ~100 and 200 times higher than trucks Liebherr T282B and CAT 797B-3, respectively. In contrast, 1,3-dichlorobenzene had the highest EFs during the test in 2009, followed by 1,1,2,2-tetrachloroethane, dichloromethane, and dichlorodifluoromethane.

Page 37: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-24

Figure 3-8 compares the NMHC and halocarbon EFs for the five trucks. CAT 797B-3 had the lowest EF of NMHC, approximately 20–68% of the other trucks. Trucks Liebherr T282B and CAT 797B-4 had the lowest and highest halocarbon EFs, respectively. Trucks CAT 797B-1 and CAT 797B-4 had similar EFs for NMHC.

Table 3-7 lists EFs for carbonyl compounds from the three trucks tested in 2010. Note that formaldehyde was detectable in all runs for all three trucks. Most other species were below MDLs for trucks Liebherr T282B and CAT 797B-3. Truck CAT 797B-4 has more detectable carbonyls, including acetaldehyde (4.2±1.9 mg/kg fuel), acetone (3.9±3.0 mg/kg fuel), crotonaldehyde (1.4±0.8 mg/kg fuel), and valeraldehyde (0.06±0.02 mg/kg fuel).

Table 3-8 lists EFs for speciated PM2.5 components (i.e., elements, ions, and carbon fractions). Carbon has the largest EF, with TC EFs of 497±227, 361±58, and 576±130 mg/kg fuel for trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively. The EC/TC ratio ranges from 0.61–0.85, with an average of 0.74. Figure 3-9 shows that the EC is reasonably correlated with TC (R2 =0.93). For PM2.5 from trucks Liebherr T282B and CAT 797B-3, approximately 88–95% of EC is in the high-temperature EC2 fraction evolved in a 98% He and 2% O2 atmosphere at 740 C, indicative of emissions from diesel exhaust (Watson et al., 1994). In contrast, EC2 in PM2.5 from truck CAT 797B-4 is 12–58% of EC, while EC1 ranges from 42–88% of EC. Note that PM2.5 from truck CAT 797B-4 has significantly higher elemental (e.g., Na, P, S, Cl, K, Ca, Fe, and Zn) and ionic (e.g., NO2

-, NO3-, PO4

Ξ, SO4=, and Ca++) species than the

other two trucks. The catalytic effects of elements and ions (e.g., in forms of oxides) may have caused EC to evolve at lower temperatures (Lin and Friedlander, 1988).

Lube oil constituents (e.g., calcium [Ca], zinc [Zn], and phosphorus [P]) are the major elemental species, with EFs ranging from 2.8–4.3 mg/kg fuel for Ca, 1.9–7.6 mg/kg fuel for Zn, and 1.7–7.5 mg/kg fuel for P. These findings are in agreement with several previous studies (Fujita et al., 2007; Lombaert et al., 2004; Toner et al., 2006).

Table 3-9 lists EFs (in µg/kg fuel) for Cs, Ba, 14 rare earth elements, and lead (Pb). Most species are below detection limits. Pb was detectable in all three trucks, with average EFs of 5.7±7.5 µg/kg fuel, 0.95±0.56 µg/kg fuel, and 9.5±6.5 µg/kg fuel for trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively.

Table 3-10 lists EFs for 113 non-polar organic compounds grouped into nine categories (i.e., PAHs, n-alkanes, iso- and anteiso-alkanes, hopanes, steranes, methyl-alkanes, branched alkanes, cyclo-alkanes, and alkenes). PM2.5 n-alkanes and PAHs are the most abundant compounds, suggesting unburned fuel and lube oil as the main sources (Maricq, 2007). The sum of the 113 non-polar organic compounds accounts for 0.1–0.7% of the OC. Most of the OC is unidentified or un-quantified (Fraser et al., 1999).

Table 3-11 lists EFs for carbohydrates, organic acids, WSOC classes, and total WSOC. Most carbohydrates, organic acids, and WSOC classes are near or below MDLs. WSOC accounts for 20–40% of the OC EFs. Figure 3-10 shows that WSOC EFs are poorly correlated with OC (R2

= 0.13). The percentage of WSOC in OC was much lower for the trucks tested in 2009 (i.e., 8.1% for CAT 797B-1 and 2.9% for CAT 797B-2).

Page 38: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-25

Figure 3-7. NMHC EFs grouped into four sub-categories: alkanes and cycloalkanes, alkanes, acetylene, and aromatics. (Error bars indicate the standard deviation of multiple runs on the same truck.)

Figure 3-8. Fuel-based EFs for NMHC and halocarbons from the five trucks.

0

100

200

300

400

500

600

700

NM

HC

Em

iss

ion

Fa

cto

r (m

g/k

g f

ue

l)

NMHC Compound Group

Liebherr T282B

CAT 797B-3

CAT 797B-4

Alkanes and cycloalkane

Alkenes  Acetylene Aromatics

0

200

400

600

800

1000

1200

1400

CAT 797B-1 CAT 797B-2 CAT 797B-3 CAT 797B-4 Liebherr T282B

NM

HC

Em

issi

on

(m

g/k

g f

uel

)

Truck

NMHC Emission Factor

0

20

40

60

80

100

120

140

CAT 797B-1 CAT 797B-2 CAT 797B-3 CAT 797B-4 Liebherr T282B

Hal

oca

rbo

n E

mis

sio

n (

mg

/kg

fu

el)

Truck

Halocarbon Emission Factor

Page 39: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

Figure 3-9(TOR) (Chthrough ze

Figure 3-1Figure

9. Elemental chow et al., 2007ro.

0. Relationship

1

2

3

4

5

6

7

Emission Factor of EC (mg/kg fuel)

carbon (EC) an7a) with a slop

p between orga

y = 0R

0

100

200

300

400

500

600

700

0

nd total carbope of 0.63 when

anic carbon (OC

.63x + 48.75R² = 0.93

200

Emissio

3-26

on (TC) EFs on the intercept

C) and water s

5

400

on Factor o

obtained by this not zero, an

soluble organic

600

of TC (mg/

hermal/optical nd 0.72 when th

c carbon (WSO

800

/kg fuel)

reflectance anhe intercept is

OC) EFs.

1000

nalysis forced

Page 40: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-27  

Table 3-5. EFs for 55 PAMS compounds and other identified non-methane hydrocarbons (NMHC). The highest emission factors species are highlighted in green, and the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Species that belong to both categories are highlighted in purple. The last column showed the ratio of each truck-average using truck CAT 797B-3 as reference. (Cells with “<” indicates that the species is below the instrument detection limit.)

EFs for speciated NMHC in mg/kg fuel

NMHC Compound MW C# Run ID Liebherr T282B

Average CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 A3 A4 C2 C3 C4

PAMS Compound

Acetylene 26.04 2 17.321 10.773 9.984 4.513 19.038 18.598 12.691 14.047±4.630 7.248±3.869 16.776±3.544 1.9:1.0:2.3

Ethene 28.05 2 112.853 93.837 60.133 31.678 84.060 78.839 66.908 103.345±13.446 45.906±20.121 76.602±8.792 2.3:1.0:1.7

Ethane 30.07 2 7.788 11.106 3.317 1.508 12.481 42.723 13.228 9.447±2.346 2.413±1.279 22.811±17.249 3.9:1.0:9.5

Propylene 42.08 3 65.201 46.853 39.656 24.132 59.948 66.593 44.178 56.027±12.974 31.894±10.978 56.906±11.513 1.8:1.0:1.8

Propane 44.1 3 1.064 1.109 0.947 0.147 7.478 41.149 12.132 1.087±0.031 0.547±0.566 20.253±18.246 2.0:1.0:37.0

1-Butene 56.11 4 16.417 11.833 8.938 5.689 13.289 14.552 9.602 14.125±3.242 7.314±2.298 12.481±2.572 1.9:1.0:1.7

cis-2-Butene 56.11 4 1.522 1.131 0.536 0.599 1.606 2.105 0.989 1.326±0.276 0.568±0.044 1.567±0.559 2.3:1.0:2.8

trans-2-Butene 56.11 4 2.510 1.686 1.149 0.953 2.302 3.094 1.598 2.098±0.583 1.051±0.139 2.331±0.748 2.0:1.0:2.2

n-Butane 58.12 4 0.640 0.715 1.538 0.793 4.757 24.821 7.689 0.678±0.054 1.166±0.527 12.422±10.837 0.6:1.0:10.7

Isobutane 58.12 4 0.305 0.468 0.471 0.159 18.956 152.388 46.635 0.387±0.116 0.315±0.220 72.660±70.420 1.2:1.0:230.6

Isoprene 68.11 5 <0.024 <0.034 <0.049 <0.039 <0.092 0.622 <0.064 <0.029±0.007 <0.044±0.267 <0.260±0.314 0.7:1.0:5.9

Cyclopentane 70.13 5 0.038 0.037 0.060 0.034 1.115 7.963 2.393 0.038±0.000 0.047±0.018 3.824±3.641 0.8:1.0:80.8

cis-2-Pentene 70.13 5 0.414 0.315 0.279 0.190 0.471 0.458 0.294 0.364±0.070 0.234±0.063 0.407±0.099 1.6:1.0:1.7

1-Pentene 70.13 5 5.360 3.971 2.906 1.836 3.846 4.283 2.687 4.665±0.982 2.371±0.757 3.606±0.825 2.0:1.0:1.5

trans-2-Pentene 70.13 5 0.904 0.633 0.580 0.375 0.859 1.025 0.559 0.768±0.191 0.478±0.145 0.814±0.236 1.6:1.0:1.7

Isopentane 72.15 5 0.362 0.382 0.766 0.349 17.810 134.961 38.732 0.372±0.014 0.558±0.295 63.834±62.480 0.7:1.0:114.5

n-Pentane 72.15 5 0.286 0.214 0.679 0.289 0.706 1.373 1.111 0.250±0.051 0.484±0.276 1.063±0.336 0.5:1.0:2.2

Benzene 78.11 6 7.233 6.473 11.029 5.853 18.036 27.219 10.269 6.853±0.537 8.441±3.660 18.508±8.485 0.8:1.0:2.2

Cyclohexane 84.16 6 0.411 0.202 0.252 0.177 5.064 27.860 9.781 0.307±0.148 0.214±0.053 14.235±12.033 1.4:1.0:66.4

Methylcyclopentane 84.16 6 0.449 0.251 0.285 0.168 3.355 24.730 7.352 0.350±0.140 0.226±0.082 11.812±11.364 1.5:1.0:52.2

2-Methyl-1-Pentene 84.16 6 6.569 4.795 3.766 2.534 5.350 6.535 3.726 5.682±1.254 3.150±0.871 5.204±1.410 1.8:1.0:1.7

2,2-Dimethylbutane 86.17 6 0.103 0.124 0.142 0.078 1.125 6.773 1.949 0.114±0.014 0.110±0.046 3.282±3.051 1.0:1.0:29.9

2,3-Dimethylbutane 86.17 6 0.098 0.127 0.246 0.091 2.670 17.737 5.303 0.113±0.021 0.168±0.110 8.570±8.048 0.7:1.0:50.9

n-Hexane 86.17 6 0.705 0.412 0.733 0.349 1.504 1.702 0.760 0.559±0.207 0.541±0.272 1.322±0.497 1.0:1.0:2.4

2-Methylpentane 86.17 6 1.383 1.015 0.892 0.099 0.532 0.750 0.308 1.199±0.260 0.496±0.561 0.530±0.221 2.4:1.0:1.1

3-Methylpentane 86.17 6 0.291 0.184 0.285 0.164 3.396 21.105 6.356 0.237±0.076 0.224±0.085 10.286±9.486 1.1:1.0:45.9

Page 41: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-28  

Table 3-5 Continued. EFs for speciated NMHC in mg/kg fuel

NMHC Compound MW C# Run ID Liebherr T282B

Average CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 A3 A4 C2 C3 C4

Toluene 92.14 7 2.706 3.278 7.707 4.327 23.570 42.705 10.942 2.992±0.404 6.017±2.390 25.739±15.992 0.5:1.0:4.3

2-Methylhexane 98.19 7 0.468 0.292 0.843 0.513 2.251 2.325 1.003 0.380±0.124 0.678±0.233 1.860±0.742 0.6:1.0:2.7

Methylcyclohexane 98.19 7 2.044 1.304 1.352 0.737 4.644 19.733 6.636 1.674±0.524 1.044±0.435 10.338±8.197 1.6:1.0:9.9

3-Methylhexane 100.2 7 0.607 0.333 0.870 0.509 2.445 3.240 1.218 0.470±0.194 0.689±0.256 2.301±1.019 0.7:1.0:3.3

n-Heptane 100.2 7 1.761 1.034 1.921 1.056 5.207 9.097 2.508 1.398±0.514 1.489±0.612 5.604±3.313 0.9:1.0:3.8

2,3-Dimethylpentane 100.2 7 0.580 0.637 1.029 0.582 2.772 9.866 2.852 0.608±0.040 0.805±0.316 5.164±4.073 0.8:1.0:6.4

2,4-Dimethylpentane 100.2 7 <0.033 <0.045 <0.066 <0.052 1.115 4.082 1.247 <0.039±0.009 <0.058±7.012 2.148±1.676 0.7:1.0:36.6

Styrene 104.1 8 <0.041 0.026 0.099 <0.065 0.133 1.464 0.050 <0.034±0.010 <0.081±5.924 0.549±0.794 0.4:1.0:6.7

o-Xylene 106.16 8 0.427 0.472 1.555 0.965 2.875 7.212 2.214 0.450±0.032 1.260±0.417 4.100±2.715 0.4:1.0:3.3

Ethylbenzene 106.17 8 0.191 0.270 0.848 0.509 1.678 4.485 1.211 0.230±0.056 0.678±0.240 2.458±1.771 0.3:1.0:3.6

m/p-Xylene 106.2 8 0.681 0.847 2.775 1.702 5.463 13.784 4.020 0.764±0.117 2.239±0.759 7.755±5.270 0.3:1.0:3.5

2-Methylheptane 114.2 8 1.102 0.843 0.936 0.556 1.882 2.636 1.139 0.973±0.184 0.746±0.269 1.886±0.748 1.3:1.0:2.5

3-Methylheptane 114.2 8 0.593 0.476 0.662 0.405 1.269 1.373 0.530 0.535±0.083 0.534±0.182 1.057±0.459 1.0:1.0:2.0

n-Octane 114.2 8 2.314 2.236 3.372 1.871 6.158 13.070 4.185 2.275±0.055 2.621±1.062 7.804±4.665 0.9:1.0:3.0

2,2,4-Trimethylpentane 114.2 8 0.678 0.607 0.619 0.353 1.872 7.651 2.393 0.642±0.050 0.486±0.187 3.972±3.197 1.3:1.0:8.2

2,3,4-Trimethylpentane 114.2 8 0.098 0.079 0.246 0.103 0.644 1.922 0.580 0.088±0.014 0.175±0.101 1.049±0.757 0.5:1.0:6.0

1,2,4-Trimethylbenzene 120.19 9 0.125 0.157 0.821 0.711 1.565 4.137 1.197 0.141±0.023 0.766±0.078 2.300±1.602 0.2:1.0:3.0

1,2,3-Trimethylbenzene 120.2 9 0.038 0.052 0.246 0.250 0.450 1.226 0.365 0.045±0.010 0.248±0.003 0.681±0.475 0.2:1.0:2.7

1,3,5-Trimethylbenzene 120.2 9 0.033 0.045 0.235 0.185 0.460 1.300 0.380 0.039±0.009 0.210±0.035 0.713±0.509 0.2:1.0:3.4

Isopropylbenzene 120.2 9 0.207 0.258 0.750 0.431 1.258 4.064 1.046 0.233±0.036 0.590±0.225 2.123±1.684 0.4:1.0:3.6

m-Ethyltoluene 120.2 9 0.054 0.064 0.438 0.345 0.798 2.068 0.573 0.059±0.007 0.391±0.066 1.147±0.806 0.2:1.0:2.9

n-Propylbenzene 120.2 9 0.024 0.022 0.181 0.147 0.368 0.879 0.251 0.023±0.001 0.164±0.024 0.499±0.334 0.1:1.0:3.1

o-Ethyltoluene 120.2 9 0.024 0.034 0.252 0.228 0.460 1.153 0.322 0.029±0.007 0.240±0.017 0.645±0.445 0.1:1.0:2.7

p-Ethyltoluene 120.2 9 0.027 0.034 0.224 0.177 0.409 1.080 0.294 0.030±0.005 0.201±0.034 0.594±0.425 0.2:1.0:3.0

n-Nonane 128.3 9 1.301 2.881 4.773 2.711 9.084 20.758 5.862 2.091±1.117 3.742±1.458 11.901±7.837 0.6:1.0:3.2

m-Diethylbenzene 134.22 10 <0.049 <0.067 0.055 0.056 0.072 0.238 0.072 <0.058±0.013 0.055±0.001 0.127±0.096 1.1:1.0:2.3

p-Diethylbenzene 134.22 10 <0.049 <0.067 0.088 0.078 0.133 0.366 0.122 <0.058±0.013 0.083±0.007 0.207±0.138 0.7:1.0:2.5

n-Decane 142.3 10 4.933 5.117 16.744 6.340 25.094 72.286 20.315 5.025±0.130 11.542±7.357 39.232±28.725 0.4:1.0:3.4

n-Undecane 156.3 11 0.291 0.438 1.839 1.211 1.944 7.395 2.479 0.365±0.104 1.525±0.444 3.939±3.005 0.2:1.0:2.6

Other identified NMHC

1,2-Butadiene 54.09 4 0.199 0.146 0.153 0.039 0.225 0.403 0.158 0.172±0.037 0.096±0.081 0.262±0.127 1.8:1.0:2.7

Page 42: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-29  

Table 3-5 Continued. EFs for speciated NMHC in mg/kg fuel

NMHC Compound MW C# Run ID Liebherr T282B

Average CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 A3 A4 C2 C3 C4

1,3-Butadiene 54.09 4 <0.016 <0.022 1.243 <0.026 4.072 10.361 <0.043 <0.019±0.004 <0.634±1.869 <4.825±5.200 0.0:1.0:7.6

Isobutylene 56.11 4 8.104 6.469 10.564 3.310 23.928 30.294 3.590 7.286±1.156 6.937±5.129 19.271±13.948 1.1:1.0:2.8

2-Methyl-1-Butene 70.13 5 2.044 1.798 3.043 1.047 4.338 <0.165 1.942 1.921±0.174 2.045±1.411 <2.148±2.094 0.9:1.0:1.1

2-Methyl-2-Butene 70.13 5 0.245 0.187 0.285 0.159 0.450 0.677 0.279 0.216±0.041 0.222±0.089 0.469±0.200 1.0:1.0:2.1

Cyclopentene 82.15 5 1.402 1.094 0.941 0.642 1.320 1.629 0.853 1.248±0.218 0.792±0.212 1.267±0.391 1.6:1.0:1.6

Cyclohexene 82.15 6 0.879 0.723 0.744 0.526 0.972 1.318 0.681 0.801±0.111 0.635±0.155 0.990±0.319 1.3:1.0:1.6

c-2-Hexene 84.16 6 0.242 0.184 0.153 0.095 0.256 0.275 0.165 0.213±0.042 0.124±0.041 0.232±0.059 1.7:1.0:1.9

t-2-Hexene 84.16 6 0.528 0.393 0.307 0.203 0.460 0.714 0.322 0.461±0.095 0.255±0.074 0.499±0.199 1.8:1.0:2.0

1,3-Dimethylcyclopentane 98.2 7 0.343 0.199 0.230 0.125 1.381 8.109 2.422 0.271±0.102 0.177±0.074 3.971±3.621 1.5:1.0:22.4

1-Heptene 98.2 7 4.070 3.079 2.173 1.319 5.228 19.641 6.478 3.574±0.700 1.746±0.604 10.449±7.985 2.0:1.0:6.0

2,3-Dimethyl-2-Pentene 98.2 7 <0.033 <0.045 <0.066 <0.052 <0.123 <0.220 <0.086 <0.039±0.009 <0.058±7.012 <0.143±0.069 0.7:1.0:2.4

4-Methylheptane 114.2 8 0.297 0.228 0.334 0.185 0.644 0.842 0.330 0.263±0.048 0.260±0.105 0.605±0.258 1.0:1.0:2.3

Indan 118.2 9 <0.041 0.019 0.126 0.129 0.194 0.494 0.150 <0.030±0.016 0.128±0.002 0.280±0.187 0.2:1.0:2.2

Alpha-Pinene 136.2 10 0.109 0.116 0.290 0.397 0.962 1.428 0.573 0.113±0.005 0.343±0.075 0.988±0.428 0.3:1.0:2.9

Sum of PAMS 271.537 220.480 201.052 109.814 395.830 991.554 383.238 246.008±36.102 155.433±64.515 590.207±347.633 1.6:1.0:3.8

Sum of Identified NMHC 289.998 235.115 221.638 117.990 440.259 1067.738 401.181 262.557±38.808 169.814±73.290 636.393±374.067 1.5:1.0:3.7

Page 43: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-30

Table 3-6. EFs for 14 halocarbons. The rightmost column shows the ratio of each truck-average using truck CAT 797B-3 as reference. (Cells with “<” indicates that the species is below the instrument detection limit).

EFs of halocarbons in mg/kg fuel

Compound MW C# Run ID Liebherr T282B

Average CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 A3 A4 C2 C3 C4

Dichloromethane 84.93 1 1.391 1.697 31.025 15.154 19.539 42.485 10.892 1.544±0.216 23.089±11.222 24.306±16.327 0.1:1.0:1.1

Chlorobenzene 112.56 6 0.093 <0.056 0.060 <0.065 <0.153 0.238 0.072 <0.074±0.026 <0.062±4.303 <0.154±0.083 1.2:1.0:2.5

Chloroform 119.4 1 0.079 0.075 0.148 0.065 0.225 0.348 0.122 0.077±0.003 0.106±0.059 0.232±0.113 0.7:1.0:2.2

Dichlorodifluoromethane (F-12) 120.91 1 0.495 0.723 0.980 0.690 1.800 3.643 1.225 0.609±0.161 0.835±0.205 2.223±1.263 0.7:1.0:2.7

TrichloroEthene 131.39 2 0.044 <0.067 0.088 0.030 0.113 0.238 0.208 <0.055±0.017 0.059±0.041 0.186±0.065 0.9:1.0:3.2

1,3-Dichlorobenzene 147 6 0.305 0.090 0.361 0.168 0.522 1.428 0.408 0.197±0.152 0.265±0.137 0.786±0.559 0.7:1.0:3.0

o-Dichlorobenzene 147 6 <0.890 <0.079 <0.361 0.030 <0.829 <1.538 <0.408 <0.484±0.574 <0.195±7.234 <0.925±0.571 2.5:1.0:4.7

p-Dichlorobenzene 147 6 0.359 0.045 0.312 0.078 0.297 0.714 0.265 0.202±0.222 0.195±0.166 0.425±0.250 1.0:1.0:2.2

Tetrachloromethane 153.8 1 0.057 0.086 0.120 0.103 0.215 0.476 0.172 0.072±0.020 0.112±0.012 0.288±0.165 0.6:1.0:2.6

Tetrachloroethene 165.8 2 0.193 0.135 0.509 0.207 43.017 50.832 10.734 0.164±0.041 0.358±0.214 34.861±21.257 0.5:1.0:97.4

1,1,2,2-Tetrachloroethane 167.84 2 0.996 1.540 2.633 1.616 3.898 11.862 3.712 1.268±0.384 2.125±0.719 6.490±4.652 0.6:1.0:3.1

1,2-dichlorotetrafluoroethane (F-114) 170.92 2 0.027 0.037 0.049 0.039 <0.246 0.146 <0.172 0.032±0.007 0.044±0.007 <0.188±0.051 0.7:1.0:4.3

1,1,2-Trichloro-1,2,2-Trifluoroethane 187.38 2 0.316 0.221 0.367 0.289 0.491 0.897 0.387 0.268±0.067 0.328±0.055 0.592±0.269 0.8:1.0:1.8

Dibromochloromethane 208.28 1 0.340 0.258 0.181 0.103 0.573 2.215 0.709 0.299±0.058 0.142±0.055 1.166±0.911 2.1:1.0:8.2

Sum of Halocarbons 4.696 4.907 36.832 18.572 70.689 115.522 28.907 4.801±0.149 27.702±12.912 71.706±43.316 0.2:1.0:2.6

Page 44: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-31

Table 3-7. EFs for 14 carbonyl compounds. Species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. (Cells with “<” indicates that the species is below the instrument detection limit.)

EFs for carbonyls in mg/kg fuel

Carbonyl Compound

MW C#

Run ID Liebherr T282B

Average

CAT 797B-3 Average

CAT 797B-4 Average S1 S2 S4 S5 A1 A2 A3 A4 C1 C2 C3 C4

Formaldehyde 30.03 1 0.659 1.237 0.117 0.101 0.411 2.425 2.386 1.267 5.192 1.596 4.532 2.149 0.528±0.539 1.622±0.969 3.367±1.762

acetaldehyde 44.05 2 0.109 0.147 <0.016 <0.011 <0.004 0.857 1.226 0.694 6.840 2.735 4.227 2.926 <0.071±0.068 <0.695±0.512 4.182±1.892

Acrolein 56.07 3 0.026 0.017 <0.016 <0.011 <0.004 <0.019 <0.020 0.084 <0.036 <0.034 <0.051 <0.025 <0.017±0.006 <0.032±0.036 <0.037±0.011

Glyoxal 58.04 2 0.033 0.053 <0.016 <0.011 0.017 0.093 0.066 0.020 0.255 0.084 0.295 0.040 <0.028±0.019 0.049±0.037 0.169±0.125

acetone 58.08 3 <0.011 <0.015 0.111 0.048 <0.004 0.481 0.692 0.600 8.118 2.031 4.150 1.428 <0.046±0.046 <0.444±0.306 3.932±3.025

Propionaldehyde 58.08 3 0.014 0.040 <0.016 <0.011 <0.004 <0.020 <0.021 0.210 1.552 <0.035 <0.053 0.463 <0.020±0.013 <0.064±0.098 <0.526±0.712

Crotonaldehyde 70.09 4 <0.009 <0.012 <0.015 <0.010 <0.004 0.240 0.271 0.229 2.485 0.997 1.432 0.793 <0.012±0.003 <0.186±0.123 1.427±0.754

Methacrolein 70.09 5 <0.009 <0.012 <0.015 <0.010 <0.004 <0.016 <0.017 <0.013 <0.034 <0.028 <0.042 <0.021 <0.012±0.003 <0.012±0.006 <0.031±0.009

n-butyraldehyde 72.12 4 <0.009 <0.013 <0.015 <0.011 <0.004 <0.016 0.076 <0.014 <0.035 <0.029 <0.044 <0.022 <0.012±0.003 <0.028±0.033 <0.032±0.009 2-Butanone (MEK) 72.12 4 <0.009 <0.013 <0.015 <0.011 <0.004 <0.016 <0.017 0.015 <0.035 <0.029 <0.044 <0.022 <0.012±0.003 <0.013±0.006 <0.032±0.009

Valeraldehyde 86.14 5 <0.011 0.066 <0.018 <0.013 <0.005 0.043 0.052 0.030 0.070 0.032 0.065 0.075 <0.027±0.026 <0.033±0.021 0.061±0.020

Hexaldehyde 100.2 6 <0.010 <0.013 <0.014 0.010 <0.004 <0.017 <0.018 <0.014 <0.033 <0.030 <0.045 <0.022 <0.012±0.002 <0.013±0.006 <0.033±0.010

benzaldehyde 106.1 7 <0.010 0.134 <0.015 <0.010 <0.004 0.236 0.150 0.090 <0.035 0.132 0.454 0.124 <0.042±0.061 <0.120±0.098 <0.186±0.184

m-Tolualdehyde 120.1

6 8 <0.012 <0.016 <0.017 <0.012 <0.005 0.265 <0.021 <0.017 <0.039 <0.036 0.907 <0.027 <0.014±0.003 <0.077±0.125 <0.252±0.436

Sum of carbonyls <0.933 <1.786 <0.418 <0.279 <0.479 <4.744 <5.033 <3.298 <24.759 <7.829 <16.339 <8.137 <0.854±0.682 <3.388±2.083 <14.266±8.029

Page 45: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-32

Table 3-8. EFs for PM2.5 chemical components. The rightmost column shows the ratio of each truck-average using truck CAT 797B-3 as reference. (Cells with “<” indicates that the species is below the instrument detection limit.)

EFs for PM2.5 chemical components in mg/kg fuel

Species Run ID Liebherr T282B

Average CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Cl- <1.612 <1.620 <3.112 <4.825 <2.954 <5.667 <0.928 <3.241 <2.940 <2.887 <6.254 <5.932 <9.651 <4.191 <3.298±1.658 <2.499±1.059 <6.507±2.284 -

NO2- 0.759 1.926 2.236 12.017 <4.114 <7.892 0.789 <4.566 <4.143 2.086 2.983 <8.363 6.899 7.638 <4.824±4.319 <2.896±1.774 <6.471±2.401 3.9:1.0:6.1

NO3- 1.077 1.356 2.488 5.369 1.905 2.258 1.569 1.739 2.363 2.785 12.564 7.702 9.123 8.618 2.409±1.545 2.114±0.563 9.501±2.125 1.1:1.0:4.5

PO4Ξ 2.402 2.925 2.665 6.383 2.752 3.745 3.335 4.502 5.941 5.970 24.589 18.496 19.681 21.152 3.479±1.494 4.937±1.269 20.979±2.640 0.7:1.0:4.2

SO4= 0.685 0.714 1.153 2.005 1.030 <4.875 0.577 <2.822 1.478 1.066 4.793 3.574 5.160 4.819 <1.744±1.607 <1.486±0.964 4.587±0.696 1.2:1.0:5.9

NH4+ 0.764 1.141 2.064 3.417 1.708 2.878 0.573 1.416 1.998 2.357 2.670 <5.214 <8.460 1.747 1.995±1.013 1.586±0.779 <4.523±3.007 1.3:1.0:0.7

Na+ <0.105 <0.104 <0.199 <0.310 <0.189 <0.362 <0.059 <0.212 0.218 <0.184 <0.412 <0.384 <0.632 <0.278 <0.212±0.106 <0.168±0.074 <0.427±0.148 0.0:1.0:0.0

Mg++ <0.057 <0.057 <0.108 <0.168 <0.103 <0.198 <0.033 <0.115 <0.105 <0.102 <0.224 <0.211 <0.345 <0.150 <0.115±0.058 <0.088±0.038 <0.233±0.081 -

K+ <0.392 <0.393 <0.755 <1.169 <0.715 <1.374 <0.225 <0.795 <0.721 <0.700 <1.534 <1.453 <2.365 <1.039 <0.799±0.402 <0.610±0.260 <1.598±0.555 -

Ca++ 1.397 1.486 1.464 3.542 1.594 1.304 2.183 2.250 4.240 3.593 19.221 14.932 15.912 18.587 1.798±0.860 3.067±1.017 17.163±2.066 0.6:1.0:5.6

OC1 42.508 48.871 35.684 120.883 35.206 37.047 54.910 30.027 34.296 20.957 125.897 43.414 63.535 34.958 53.367±33.483 35.048±14.362 66.951±41.085 1.5:1.0:1.9

OC2 40.045 45.006 49.967 102.208 42.146 48.130 37.371 22.210 30.456 25.429 117.982 87.867 77.453 74.128 54.583±23.617 28.866±6.608 89.357±19.960 1.9:1.0:3.1

OC3 18.735 24.718 18.269 45.664 21.893 <46.528 13.335 <28.856 <25.924 <24.498 <56.628 <50.142 <79.390 14.510 <29.301±13.219 <23.153±6.792 <50.168±26.877 6.5:1.0:1.1

OC4 8.337 10.354 6.418 20.550 11.551 <15.996 4.329 <9.957 3.484 <8.565 22.167 <18.352 <26.610 16.007 <12.201±5.221 <6.583±3.162 <20.784±4.640 4.9:1.0:4.9

OP <2.038 <2.048 <3.935 <6.101 <3.735 <7.166 <1.174 <4.150 <3.761 <3.651 <8.008 <7.591 <12.348 <5.365 <4.170±2.098 <3.184±1.357 <8.328±2.920 -

EC1 19.258 22.335 18.813 59.398 41.176 19.656 27.877 27.541 31.517 26.469 350.868 253.142 163.035 350.254 30.106±16.705 28.351±2.194 279.325±90.108 1.1:1.0:9.9

EC2 152.803 230.841 381.365 583.964 310.387 316.684 215.831 228.479 338.905 251.735 132.939 107.275 224.143 47.550 329.341±147.599 258.737±55.475 127.977±73.416 1.3:1.0:0.5

EC3 0.510 0.243 <1.230 <1.907 <1.167 <2.240 <0.367 <1.297 0.573 <1.141 <2.503 <2.372 <3.859 <1.676 <1.216±0.771 <0.844±0.445 <2.603±0.913 0.9:1.0:0.0

CO3= <0.653 <0.656 <1.260 <1.954 <1.196 <2.295 <0.376 <1.329 <1.205 <1.169 <2.564 <2.431 <3.954 <1.718 <1.336±0.672 <1.020±0.435 <2.667±0.935 -

OC 109.624 128.949 110.338 289.305 110.796 77.495 109.945 62.497 73.510 49.641 284.843 134.335 116.839 139.602 137.751±76.087 73.898±25.935 168.905±77.902 1.9:1.0:2.3

EC 172.549 253.397 400.136 643.296 351.523 336.263 243.696 255.974 370.955 278.165 483.721 360.336 387.046 397.747 359.527±160.626 287.198±57.632 407.213±53.377 1.3:1.0:1.4

TC 282.173 382.346 510.475 932.601 462.320 413.758 353.641 318.472 444.465 327.807 768.564 494.672 503.885 537.350 497.279±226.873 361.096±57.535 576.118±129.601 1.4:1.0:1.6

Page 46: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-33

Table 3-8. Continued. EFs for PM2.5 chemical components in mg/kg fuel

Species Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Na <4.102 <4.077 <7.897 <12.200 4.834 <14.394 1.154 <8.182 <7.647 <7.330 <16.323 <15.497 <24.544 7.082 <7.918±4.452 <6.078±3.302 <15.862±7.137 2.8:1.0:6.1

Mg <1.335 <1.338 1.053 <4.007 <2.472 <4.710 <0.772 <2.713 <2.473 <2.405 <5.280 <5.011 <8.156 <3.543 <2.486±1.547 <2.091±0.889 <5.498±1.930 -

Al <0.303 <0.306 <0.590 <0.916 <0.561 <1.076 <0.176 <0.622 <0.563 <0.550 <1.207 <1.139 <1.868 <0.808 <0.625±0.316 <0.478±0.204 <1.255±0.444 -

Si <0.603 <0.606 <1.166 <1.816 <1.113 <2.133 <0.351 <1.234 <1.119 <1.091 <2.391 <2.265 <3.693 <1.602 <1.239±0.626 <0.948±0.403 <2.488±0.875 -

P 1.378 1.771 1.488 2.850 1.376 1.392 1.996 1.957 2.802 2.722 9.480 6.995 5.076 8.357 1.709±0.579 2.369±0.455 7.477±1.896 0.7:1.0:3.2

S 0.671 0.489 0.542 0.950 0.445 0.429 0.405 0.353 0.491 0.466 2.592 1.528 1.163 2.184 0.588±0.198 0.429±0.062 1.867±0.642 1.4:1.0:4.4

Cl <0.187 <0.187 <0.361 <0.562 <0.344 <0.659 0.071 0.134 0.253 0.237 0.876 0.630 0.490 0.715 <0.383±0.193 0.174±0.087 0.678±0.161 0.0:1.0:3.9

K <0.091 <0.091 <0.176 <0.274 <0.168 <0.322 0.020 <0.186 <0.169 <0.165 <0.361 <0.342 <0.557 0.202 <0.187±0.094 <0.135±0.077 <0.365±0.146 0.0:1.0:10.1

Ca 2.175 2.508 2.396 4.924 2.435 2.506 3.327 3.598 4.759 5.383 23.073 17.892 13.092 20.573 2.824±1.036 4.267±0.969 18.658±4.271 0.7:1.0:4.4

Sc <0.810 <0.814 <1.571 <2.436 <1.495 <2.865 <0.472 <1.657 <1.501 <1.465 <3.212 <3.047 <4.960 <2.152 <1.665±0.840 <1.274±0.541 <3.343±1.175 -

Ti <0.066 <0.066 <0.127 <0.198 <0.121 <0.233 <0.038 <0.135 <0.122 <0.119 <0.261 <0.247 <0.403 <0.175 <0.135±0.068 <0.104±0.044 <0.271±0.096 -

V <0.044 <0.044 <0.085 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 <0.165 <0.269 <0.117 <0.090±0.046 <0.069±0.029 <0.181±0.064 -

Cr <0.044 <0.045 <0.086 <0.134 <0.082 <0.157 <0.026 <0.091 <0.082 <0.080 <0.176 <0.167 <0.272 <0.118 <0.091±0.046 <0.070±0.030 <0.183±0.064 -

Mn 0.047 <0.136 <0.262 <0.409 <0.250 <0.480 <0.079 <0.278 <0.252 <0.246 <0.538 <0.510 <0.831 <0.361 <0.264±0.162 <0.213±0.091 <0.560±0.197 -

Fe <0.165 <0.166 <0.319 <0.497 <0.304 0.245 <0.096 <0.337 <0.306 0.118 0.359 <0.619 <1.009 0.188 <0.283±0.124 <0.214±0.125 <0.544±0.357 1.4:1.0:4.7

Co <0.044 <0.044 <0.085 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 <0.165 <0.269 <0.117 <0.090±0.045 <0.069±0.029 <0.181±0.064 -

Ni <0.127 <0.128 <0.246 <0.383 <0.235 <0.450 <0.074 <0.260 <0.236 <0.230 <0.504 <0.478 <0.779 <0.338 <0.261±0.132 <0.200±0.085 <0.525±0.185 -

Cu 0.075 0.174 0.107 0.435 0.389 0.346 0.073 <0.323 <0.293 <0.286 <0.626 <0.594 <0.967 <0.420 0.254±0.155 <0.244±0.115 <0.652±0.229 13.9:1.0:0.0

Zn 1.566 1.912 1.654 3.079 1.548 1.929 1.856 2.045 2.623 2.808 9.260 6.828 5.818 8.396 1.948±0.578 2.333±0.455 7.576±1.545 0.8:1.0:3.2

Ga <0.215 <0.216 <0.415 <0.647 <0.396 <0.759 <0.125 <0.439 <0.398 <0.388 <0.851 <0.807 <1.315 <0.570 <0.441±0.223 <0.338±0.144 <0.886±0.311 -

As <0.044 <0.044 <0.085 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 <0.165 <0.269 <0.117 <0.090±0.046 <0.069±0.029 <0.181±0.064 -

Se <0.044 <0.044 <0.085 <0.132 <0.081 0.069 <0.025 <0.090 <0.081 <0.079 <0.174 <0.165 <0.269 0.042 <0.076±0.033 <0.069±0.029 <0.162±0.093 -

Br <0.044 <0.044 <0.085 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 <0.165 <0.269 <0.117 <0.090±0.046 <0.069±0.029 <0.181±0.064 -

Rb <0.044 0.017 <0.085 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 <0.165 <0.269 <0.117 <0.086±0.052 <0.069±0.029 <0.181±0.064 -

Sr <0.044 0.017 <0.085 <0.132 <0.081 <0.155 <0.026 0.031 <0.081 <0.079 <0.174 <0.165 <0.269 0.046 <0.086±0.052 <0.054±0.030 <0.163±0.091 0.4:1.0:1.5

Yt <0.044 <0.044 0.037 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 0.057 <0.269 <0.117 <0.082±0.051 <0.069±0.029 <0.154±0.090 -

Zr <0.071 <0.071 <0.139 <0.213 0.060 <0.250 <0.042 <0.144 <0.131 <0.128 <0.284 <0.265 <0.432 <0.187 <0.134±0.081 <0.111±0.047 <0.292±0.102 -

Nb <0.061 <0.061 <0.118 <0.184 <0.113 <0.216 <0.036 <0.125 <0.113 <0.111 <0.242 <0.230 <0.375 <0.162 <0.126±0.063 <0.096±0.041 <0.252±0.089 -

Mo <0.092 0.040 <0.178 <0.277 <0.169 <0.325 <0.053 <0.188 <0.170 <0.166 <0.365 <0.345 <0.562 <0.244 <0.180±0.107 <0.144±0.061 <0.379±0.133 -

Pd <0.106 <0.106 <0.205 <0.319 <0.195 <0.374 <0.062 <0.217 <0.196 <0.191 <0.419 <0.397 <0.648 <0.281 <0.218±0.110 <0.166±0.071 <0.437±0.153 -

Ag <0.101 <0.102 <0.198 <0.305 <0.187 <0.358 <0.059 <0.207 <0.188 <0.183 <0.402 <0.381 <0.621 <0.269 <0.209±0.105 <0.159±0.068 <0.418±0.147 -

Page 47: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-34

Table 3-8. Continued. EFs for PM2.5 chemical components in mg/kg fuel

Species Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Cd <0.129 <0.129 <0.249 <0.387 <0.237 <0.459 <0.075 <0.263 <0.241 <0.233 <0.510 <0.487 <0.787 <0.344 <0.265±0.135 <0.203±0.086 <0.532±0.185 -

In <0.137 <0.138 <0.266 <0.414 <0.253 <0.486 <0.080 <0.281 <0.255 <0.249 <0.545 <0.516 <0.841 <0.365 <0.282±0.143 <0.216±0.092 <0.567±0.199 -

Sn <0.135 <0.136 <0.259 <0.407 <0.249 <0.474 <0.078 <0.276 <0.251 <0.244 <0.535 <0.507 <0.827 <0.359 <0.277±0.139 <0.212±0.090 <0.557±0.196 -

Sb <0.228 <0.229 <0.441 <0.687 <0.421 <0.807 <0.133 <0.467 <0.425 <0.413 <0.905 <0.857 <1.398 <0.606 <0.469±0.237 <0.360±0.153 <0.942±0.331 -

Cs <0.438 <0.440 <0.847 <1.319 <0.808 <1.550 <0.255 <0.896 <0.813 <0.792 <1.737 <1.646 <2.683 <1.164 <0.901±0.455 <0.689±0.293 <1.808±0.636 -

Ba <0.504 <0.508 <0.974 <1.517 <0.927 <1.773 <0.294 <1.033 <0.940 <0.913 <1.997 <1.904 <3.097 <1.341 <1.034±0.520 <0.795±0.338 <2.085±0.735 -

La <0.629 <0.634 <1.216 <1.887 <1.158 <2.209 <0.363 <1.291 <1.159 <1.133 <2.503 <2.374 <3.898 <1.661 <1.289±0.647 <0.987±0.421 <2.609±0.936 -

Ce <0.589 <0.590 <1.139 <1.779 <1.086 <2.078 <0.343 <1.206 <1.088 <1.067 <2.329 <2.228 <3.618 <1.567 <1.210±0.611 <0.926±0.394 <2.435±0.858 -

Sm <1.045 <1.052 <2.014 <3.142 <1.942 <3.684 <0.611 <2.140 <1.942 <1.886 <4.173 <3.945 <6.391 <2.777 <2.146±1.079 <1.645±0.698 <4.322±1.509 -

Eu <1.528 <1.537 <2.938 <4.579 <2.827 <5.370 <0.887 <3.127 <2.823 <2.757 <6.055 <5.696 <9.325 <4.065 <3.130±1.572 <2.398±1.020 <6.285±2.204 -

Tb <1.167 <1.169 <2.223 <3.494 <2.143 <4.074 <0.669 <2.357 <2.129 <2.076 <4.575 <4.314 <7.060 <3.056 <2.378±1.194 <1.808±0.769 <4.751±1.676 -

Hf <0.319 <0.320 <0.617 <0.953 <0.586 <1.127 <0.185 <0.650 <0.589 <0.577 <1.260 <1.197 <1.945 <0.844 <0.654±0.330 <0.500±0.213 <1.311±0.460 -

Ta <0.176 <0.177 <0.339 <0.528 <0.328 <0.620 <0.103 <0.359 <0.327 <0.317 <0.704 <0.667 <1.087 <0.468 <0.361±0.181 <0.276±0.117 <0.732±0.259 -

Wo <0.501 <0.503 <0.972 <1.510 <0.925 <1.778 <0.291 <1.026 <0.928 <0.905 <1.988 <1.880 <3.070 <1.326 <1.031±0.522 <0.788±0.335 <2.066±0.730 -

Ir <0.079 <0.079 <0.152 <0.241 <0.147 <0.278 <0.046 <0.163 <0.148 <0.142 <0.317 <0.300 <0.482 <0.209 <0.163±0.082 <0.125±0.054 <0.327±0.114 -

Au <0.079 <0.079 <0.152 <0.237 <0.145 <0.278 <0.046 <0.161 <0.146 <0.142 <0.312 <0.296 <0.482 <0.212 <0.162±0.082 <0.124±0.053 <0.326±0.113 -

Hg <0.044 <0.044 <0.085 <0.132 <0.081 <0.155 <0.025 <0.090 <0.081 <0.079 <0.174 <0.169 <0.269 <0.117 <0.090±0.046 <0.069±0.029 <0.182±0.063 -

Tl <0.053 <0.053 <0.102 <0.159 <0.097 <0.186 <0.031 <0.108 <0.098 <0.095 <0.209 <0.198 <0.322 <0.140 <0.108±0.055 <0.083±0.035 <0.217±0.076 -

Pb 0.024 <0.048 0.047 <0.145 <0.089 <0.170 <0.028 <0.098 <0.089 <0.087 <0.190 <0.180 <0.294 <0.127 <0.087±0.059 <0.075±0.032 <0.198±0.070 -

Ur <0.070 <0.070 <0.136 <0.211 <0.130 <0.248 <0.041 <0.144 <0.130 <0.127 <0.278 <0.264 <0.430 <0.186 <0.144±0.073 <0.110±0.047 <0.290±0.102 - Sum of speciesa 292.041 395.594 526.115 970.922 476.150 432.077 365.993 333.123 465.537 351.074 851.089 554.759 567.096 613.270 515.483±236.787 378.932±59.280 646.553±138.663 1.4:1.0:1.7 a Including TC, Na+, Mg++, K, Cl, Ca, PO4

≡, and SO4=

Excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3=, K+, Cl- , and Ca++

Page 48: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-35

Table 3-9. EFs for Cs, Ba, 14 rare earth elements, and Pb (measured by ICP/MS) in PM2.5. (Cells with “<” indicates that the species is below the instrument detection limit.)

EFs for Cs, Ba, 14 rare earth elements, and Pb in µg/kg fuel

Elements

Run ID Liebherr T282BAverage

CAT 797B-3 Average

CAT 797B-4 Average

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Cs <0.019 <0.019 <0.037 <0.058 <0.036 <0.069 <0.011 <0.040 <0.036 <0.035 <0.077 <0.073 <0.119 <0.051 <0.040±0.020 <0.030±0.013 0.080±0.028

Ba 3.039 0.422 1.187 <0.272 8.586 <0.549 0.150 13.486 6.535 2.279 1.025 3.035 1.385 18.966 <2.343±3.225 5.613±5.882 6.103±8.620

La <0.066 <0.052 <0.146 <0.256 <0.146 <0.276 <0.039 <0.146 <0.117 <0.126 <0.164 <0.256 <0.382 <0.182 <0.157±0.093 <0.107±0.047 0.246±0.099

Ce <0.139 <0.105 <0.304 <0.524 <0.297 <0.625 <0.078 <0.299 <0.244 <0.285 <0.355 <0.553 <0.787 <0.379 <0.332±0.207 <0.227±0.102 0.518±0.200

Pr <0.052 <0.131 <0.042 <0.146 <0.055 <0.142 <0.024 <0.086 <0.083 <0.078 <0.164 <0.180 <0.129 <0.105 <0.095±0.050 <0.068±0.029 0.145±0.034

Nd <0.043 <0.044 <0.085 <0.165 <0.090 <0.712 <0.025 <0.079 <0.088 <0.108 <0.176 <0.164 <0.393 <0.118 <0.190±0.259 <0.075±0.036 0.213±0.123

Sm 0.007 <0.020 0.014 <0.062 <0.037 0.025 0.004 0.015 0.013 0.013 0.028 0.027 <0.122 <0.053 <0.028±0.020 <0.011±0.005 0.058±0.045

Eu <0.019 <0.019 <0.037 <0.058 <0.036 <0.069 <0.011 <0.040 <0.036 <0.035 <0.077 <0.073 <0.119 <0.051 <0.040±0.020 <0.030±0.013 0.080±0.028

Gd <0.019 <0.019 <0.037 <0.058 <0.036 <0.069 <0.011 <0.040 <0.036 <0.035 <0.077 <0.073 <0.119 <0.051 <0.040±0.020 <0.030±0.013 0.080±0.028

Tb <0.019 <0.019 <0.037 <0.058 <0.036 <0.069 <0.011 <0.040 <0.036 <0.035 <0.077 <0.073 <0.119 <0.051 <0.040±0.020 <0.030±0.013 0.080±0.028

Dy 0.011 <0.020 <0.041 0.032 <0.039 0.038 0.006 0.022 0.020 0.019 <0.079 0.040 <0.126 0.029 <0.030±0.012 <0.017±0.007 0.069±0.044

Ho <0.059 <0.021 <0.139 <0.073 <0.102 <0.087 <0.052 <0.169 <0.169 <0.157 <0.081 <0.085 <0.135 <0.141 <0.080±0.040 <0.137±0.057 0.110±0.032

Er 0.022 <0.020 <0.038 <0.060 <0.037 <0.071 0.013 0.044 0.040 <0.036 <0.077 0.081 0.132 <0.053 <0.041±0.021 <0.033±0.014 0.086±0.033

Tm <0.020 <0.020 <0.038 <0.060 <0.037 <0.071 <0.011 <0.041 <0.037 <0.036 <0.077 <0.074 <0.121 <0.053 <0.041±0.021 <0.031±0.013 0.081±0.029

Yb <0.019 <0.019 <0.037 <0.058 <0.036 <0.069 <0.011 <0.040 <0.036 <0.035 <0.077 <0.073 <0.119 <0.051 <0.040±0.020 <0.030±0.013 0.080±0.028

Lu <0.019 <0.019 <0.037 <0.058 <0.036 <0.069 <0.011 <0.040 <0.036 <0.035 <0.077 <0.073 <0.119 <0.051 <0.040±0.020 <0.030±0.013 0.080±0.028

Pb 1.793 0.631 20.212 6.368 0.682 4.736 1.004 1.352 1.286 0.143 10.051 3.817 5.629 18.318 5.737±7.458 0.946±0.556 9.453±6.463

Page 49: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-36

Table 3-10. EFs for non-polar speciated organic carbon compounds analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) from quartz-fiber filter samples. (Cells with “<” indicate the compound is below instrument detection limit.)

EFs for non-polar organic compounds in µg/kg fuel

Compound MW Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

PAHs

acenaphthylene 152 <10.442 <10.488 <20.174 <31.257 <19.164 <36.783 <6.014 <21.304 <19.294 <18.786 <30.754 <38.845 <63.292 <27.489 <21.385±10.765 <20.647±6.975 <22.449±16.184

acenaphthene 154 <3.092 <3.106 <5.975 <9.257 <5.675 <10.893 <1.781 <6.309 <5.714 <5.563 <9.108 <11.504 <18.744 <8.141 <6.333±3.188 <6.114±2.066 <6.648±4.793

fluorene 166 <0.889 1.742 <1.718 <2.662 <1.632 <3.133 <0.512 <1.814 <1.643 <1.600 <2.619 <3.308 <5.391 <2.341 <1.963±0.803 <1.900±0.594 <1.912±1.378

phenanthrene 178 9.275 30.895 36.224 37.149 14.143 34.081 20.368 37.707 38.218 39.853 21.979 27.800 27.501 30.563 26.961±12.107 28.810±9.158 29.945±3.596

anthracene 178 <8.591 <8.629 <16.598 <25.716 <15.767 <30.263 <4.948 <17.527 <15.874 <15.456 <25.303 <31.960 <52.073 24.415 <17.594±8.857 <16.987±5.739 <18.470±12.872

fluoranthene 202 2.869 4.758 <4.756 8.988 1.839 <8.672 5.457 5.309 5.548 5.162 17.007 11.666 <14.922 9.309 <5.314±2.948 5.745±0.170 <5.837±3.413

pyrene 202 6.272 9.919 8.250 20.172 3.547 12.692 9.492 7.895 9.123 9.243 28.781 20.105 20.625 15.106 10.142±5.817 10.679±0.712 10.341±5.661

benzo[a]anthracene 228 <1.151 1.273 <2.224 <3.445 <2.112 <4.055 1.460 <2.348 <2.127 <2.071 <3.390 <4.282 <6.977 4.742 <2.377±1.164 <2.428±0.380 <2.608±1.526

chrysene 228 <2.063 2.346 <3.985 <6.174 <3.785 <7.265 2.998 <4.208 <3.811 <3.711 <6.075 <7.673 <12.501 <5.430 <4.270±2.073 <4.425±0.504 <4.736±3.197

benzo[b]fluoranthene 252 <1.180 <1.185 <2.280 <3.532 <2.165 <4.156 2.037 2.586 <2.180 <2.123 <3.475 <4.389 <7.151 <3.106 <2.416±1.216 <2.559±0.244 <2.793±1.829

benzo[j+k]fluoranthene 252 <2.378 <2.389 <4.594 <7.118 <4.364 <8.377 2.152 <4.852 <4.394 <4.278 <7.004 <8.846 <14.414 <6.260 <4.870±2.452 <4.832±1.204 <5.243±3.686

benzo[a]fluoranthene 252 <1.180 <1.185 <2.280 <3.532 <2.165 <4.156 0.961 <2.407 <2.180 <2.123 <3.475 <4.389 <7.151 <3.106 <2.416±1.216 <2.380±0.650 <2.583±1.829

benzo[e]pyrene 252 <1.074 <1.078 <2.074 <3.213 <1.970 <3.782 <0.618 2.450 <1.984 <1.931 <3.162 <3.994 <6.507 <2.826 <2.199±1.107 <2.123±0.787 <2.351±1.664

benzo[a]pyrene 252 <2.316 <2.327 <4.475 <6.934 <4.251 <8.160 <1.334 <4.726 <4.280 <4.167 <6.822 <8.617 <14.040 <6.098 <4.744±2.388 <4.580±1.547 <4.980±3.590

perylene 252 <4.832 <4.853 <9.336 <14.464 <8.868 <17.021 <2.783 <9.858 <8.928 <8.693 <14.231 <17.976 <29.288 <12.720 <9.896±4.982 <9.554±3.228 <10.388±7.489

indeno[1,2,3-cd]pyrene 276 <0.852 <0.856 <1.647 <2.551 <1.564 <3.002 <0.491 <1.739 1.726 1.921 <2.510 <3.171 <5.166 2.635 <1.745±0.879 <1.685±0.658 <1.832±1.231

dibenzo[a,h]anthracene 278 <0.507 <0.509 1.547 <1.516 <0.930 <1.785 0.884 1.497 <0.936 1.681 <1.492 <1.885 <3.071 2.810 <1.132±0.560 <1.195±0.400 <1.360±0.748

benzo[ghi]perylene 276 <1.458 <1.465 <2.818 <4.365 <2.677 <5.137 <0.840 <2.975 <2.695 <2.624 <4.295 <5.425 <8.840 <3.839 <2.987±1.504 <2.884±0.974 <3.135±2.260

coronene 300 <0.848 <0.852 <1.639 <2.539 <1.557 <2.988 <0.489 <1.730 <1.567 2.521 <2.498 <3.155 <5.141 4.918 <1.737±0.874 <1.677±0.837 <1.823±1.303

dibenzo[a,e]pyrene 302 0.222 0.357 1.203 <0.689 <0.423 0.548 0.167 <0.470 0.288 0.400 <0.678 <0.857 5.392 6.558 <0.574±0.347 <0.565±0.133 <0.583±3.045

9-fluorenone 180 4.337 11.929 11.344 17.176 4.948 14.807 7.417 11.026 11.465 14.165 9.419 9.929 <12.258 10.188 10.757±5.183 11.270±2.773 <11.120±1.248

dibenzothiophene 184 1.601 3.552 4.125 6.591 1.576 <5.573 1.114 <3.228 <2.923 <2.846 <4.660 <5.886 <9.590 <4.165 <3.837±2.043 <3.755±0.957 <3.701±2.452

1 methyl phenanthrene 192 7.407 18.765 17.274 26.763 7.663 21.859 5.303 8.031 7.151 6.842 6.541 5.709 <8.238 5.796 16.622±7.752 16.271±1.137 <14.482±1.172

2 methyl phenanthrene 192 3.803 9.785 9.539 13.182 3.941 10.812 3.420 5.309 5.178 4.561 <4.986 <6.298 <10.261 <4.457 8.510±3.817 8.446±0.862 <7.701±2.624 3,6 dimethyl phenanthrene 206 6.873 27.477 57.236 27.762 19.573 21.389 28.169 57.037 36.739 33.851 <2.650 <3.347 6.066 8.607 26.718±16.771 30.268±12.573 <35.194±2.726

methylfluoranthene 216 1.735 5.294 10.571 6.791 3.153 4.231 7.878 8.440 5.918 5.642 <2.688 <3.395 <5.531 5.094 5.296±3.113 6.320±1.397 <6.844±1.355

retene 219 1.335 4.356 8.379 7.590 4.247 5.876 17.601 43.969 24.534 22.687 <3.430 <4.333 8.493 11.944 5.297±2.560 8.008±11.559 <14.610±3.938

Page 50: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-37

Table 3-10. Continued. EFs for non-polar organic compounds in µg/kg fuel

Compound MW Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

PAHs

benzo(ghi)fluoranthene 226 1.268 2.480 3.996 5.992 1.708 <3.132 7.724 6.398 5.178 4.922 7.326 4.220 6.875 7.904 <3.096±1.723 4.172±1.286 4.825±1.630

benzo(c)phenanthrene 228 <0.861 1.541 2.449 2.596 0.788 <3.031 3.766 3.403 3.082 3.241 <2.534 <3.201 <5.216 3.689 <1.878±0.950 2.362±0.293 <2.672±1.140 benzo(b)naphtha [1,2-d]thiophene 234 <0.861 <0.864 <1.662 <2.576 <1.579 <3.031 0.615 <1.756 <1.590 <1.548 <2.534 <3.201 <5.216 <2.265 <1.762±0.887 <1.721±0.516 <1.870±1.334

cyclopenta[cd]pyrene 226 <23.740 <23.844 <45.864 <71.059 <43.567 <83.623 24.441 50.639 <43.863 <42.708 112.771 <88.310 231.329 159.664 <48.616±24.473 <48.733±11.208 <53.199±62.938 benz[a]anthracene -7,12-dione 258 <0.944 <0.948 <1.824 <2.825 <1.732 <3.325 1.345 <1.926 <1.744 <1.698 <2.780 <3.511 <5.721 <2.485 <1.933±0.973 <2.000±0.243 <2.163±1.463

Methylchrysene 242 <1.044 <1.049 <2.018 <3.126 <1.917 <3.679 <0.601 <2.131 <1.930 <1.879 <3.076 <3.885 <6.330 <2.749 <2.139±1.077 <2.065±0.698 <2.245±1.619

benzo(b)chrysene 278 <0.858 <0.862 <1.657 <2.568 <1.574 <3.022 <0.494 <1.750 <1.585 <1.543 <2.526 <3.191 <5.199 2.810 <1.757±0.884 <1.696±0.573 <1.844±1.209

Picene 278 <1.085 <1.090 <2.097 <3.249 <1.992 <3.823 <0.625 <2.214 <2.005 2.161 <3.196 <4.037 <6.578 3.689 <2.223±1.119 <2.146±0.756 <2.333±1.509

Anthanthrene 276 <2.634 <2.646 <5.090 <7.886 <4.835 <9.280 <1.517 <5.375 <4.868 <4.739 <7.759 <9.800 <15.968 <6.935 <5.395±2.716 <5.209±1.760 <5.664±4.083

Alkane/Alkene

n-alkane n-pentadecane (n-C15) 212 <8.609 <8.647 <16.632 <25.769 <15.799 <30.325 <4.958 <17.563 <15.906 <15.487 <25.354 <32.025 <52.179 <22.662 <17.630±8.875 <17.022±5.751 <18.508±13.343 n-hexadecane (n-C16) 226 <10.141 <10.186 <19.593 <30.356 <18.612 <35.723 <5.841 <20.689 <18.738 <18.244 <29.868 <37.725 <61.467 18.560 <20.768±10.455 <20.052±6.774 <21.802±18.166 n-heptadecane (n-C17) 240 <12.289 <12.342 <23.741 <36.783 <22.552 <43.286 6.917 <25.070 <22.705 <22.107 <36.191 <45.713 <74.481 <32.349 <25.166±12.668 <24.270±8.288 <26.392±19.046 n-octadecane (n-C18) 254 7.407 13.940 16.758 20.971 <18.701 <35.894 16.755 <20.789 <18.828 12.844 <30.011 <37.906 <61.762 <26.824 <18.945±9.533 <20.503±3.399 <21.645±15.793 n-nonadecane (n-C19) 268 22.220 33.107 35.321 58.919 10.684 <46.125 44.117 35.665 24.410 36.612 54.946 <48.710 <79.365 <34.469 <34.396±17.041 38.046±8.127 <38.472±18.736 n-icosane (n-C20) 282 23.198 32.079 30.767 53.859 8.349 27.421 40.031 21.599 22.397 26.729 44.132 26.724 32.623 44.380 29.279±14.783 32.084±8.531 30.338±8.757 n-heneicosane (n-C21) 296 25.489 32.638 32.356 71.702 11.078 38.546 36.316 19.058 19.972 22.807 51.807 27.055 44.082 48.479 35.302±20.171 37.106±8.013 34.843±10.998 n-docosane (n-C22) 310 20.996 25.109 24.579 58.054 7.911 33.767 19.740 12.887 14.876 12.324 28.956 16.051 28.175 35.247 28.403±16.782 28.193±3.372 26.156±8.022 n-tricosane (n-C23) 324 18.016 23.389 23.591 60.916 8.013 33.140 17.908 15.110 13.438 12.604 43.172 26.311 45.700 46.020 27.844±18.164 27.826±2.340 26.446±9.413 n-tetracosane (n-C24) 338 18.883 21.580 57.752 59.119 9.064 55.939 20.791 13.749 17.013 17.526 43.434 27.552 61.068 54.099 37.056±22.913 37.374±2.882 36.069±14.588 n-pentacosane (n-C25) 352 16.214 32.772 31.583 78.692 10.159 40.427 34.126 19.602 10.356 21.727 39.509 47.161 73.200 42.682 34.974±24.187 37.960±9.785 35.765±15.365 n-hexacosane (n-C26) 366 15.080 18.363 31.325 15.579 2.452 19.038 <1.237 <4.381 <3.968 9.363 26.427 38.473 35.993 22.659 16.973±9.258 <14.666±3.385 12.335±7.555 n-heptacosane (n-C27) 380 16.348 <2.186 <4.204 27.962 <3.993 <7.665 <1.253 <4.439 <4.021 11.164 62.011 29.537 64.707 <5.728 <10.393±9.982 <7.877±4.208 <8.253±28.154 n-octacosane (n-C28) 394 <2.500 <2.511 <4.830 <7.484 <4.589 <8.807 <1.440 <5.101 <4.620 <4.498 <7.364 <9.301 <15.154 <6.582 <5.120±2.578 <4.944±1.670 <5.375±3.875 n-nonacosane (n-C29) 408 <2.569 <2.580 <4.963 <7.690 <4.715 <9.049 <1.480 <5.241 <4.747 <4.622 <7.566 <9.557 <15.571 <6.763 <5.261±2.648 <5.080±1.716 <5.523±3.982 n-triacontane (n-C30) 422 <3.457 <3.472 <6.679 <10.349 <6.345 <12.178 <1.991 <7.053 <6.388 <6.220 <10.182 <12.861 <20.955 <9.101 <7.080±3.564 <6.836±2.309 <7.433±5.358 n-hentriacotane (n-C31) 436 <4.403 <4.422 <8.507 <13.180 <8.081 <15.510 <2.536 <8.983 <8.135 <7.921 <12.968 <16.379 <26.687 <11.591 <9.017±4.539 <8.706±2.941 <9.466±6.824

Page 51: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-38

Table 3-10. Continued. EFs for non-polar organic compounds in µg/kg fuel

Compound MW Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

n-dotriacontane (n-C32) 450 <5.642 <5.667 <10.901 <16.889 <10.355 <19.875 <3.250 <11.511 <10.425 <10.151 <16.617 <20.989 <34.199 <14.853 <11.555±5.817 <11.156±3.769 <12.130±8.745 n-tritriactotane (n-C33) 464 <6.082 <6.109 <11.750 <18.205 <11.162 <21.424 <3.503 <12.408 <11.238 <10.942 <17.912 <22.625 <36.863 <16.010 <12.455±6.270 <12.026±4.063 <13.075±9.426 n-tetratriactoane (n-C34) 478 <5.206 <5.229 <10.058 <15.584 <9.555 <18.339 <2.998 <10.621 <9.619 <9.366 <15.333 <19.367 <31.555 <13.705 <10.662±5.367 <10.294±3.478 <11.192±8.069 n-pentatriacontane (n-C35) 492 <6.772 <6.802 <13.083 <20.271 <12.428 <23.855 <3.900 <13.816 <12.512 <12.183 <19.945 <25.192 <41.046 <17.827 <13.869±6.981 <13.390±4.524 <14.559±10.496 n-hexatriacontane (n-C36) 506 <19.394 <19.479 <37.468 <58.051 <35.592 <68.315 <11.170 <39.566 <35.833 <34.890 <57.118 <72.145 <117.547 <51.053 <39.717±19.993 <38.346±12.955 <41.694±30.058 n-heptatriacontane (n-C37) 521 <118.819 <119.340 <229.553 <355.656 <218.058 <418.538 <68.433 <242.402 <219.535 <213.756 <349.934 <441.999 <720.160 <312.779 <243.327±122.491 <234.930±79.369 <255.440±184.155 n-octatriacontane (n-C38) 535 <181.262 <182.057 <350.190 <542.565 <332.655 <638.494 <104.396 <369.792 <334.908 <326.092 <533.837 <674.284

<1098.629 <477.155 <371.204±186.864 <358.393±121.080 <389.682±280.934

n-nonatriacontane (n-C39) 549 <157.134 <157.822 <303.575 <470.342 <288.375 <553.502 <90.500 <320.568 <290.328 <282.685 <462.776 <584.528 <952.387 <413.639 <321.792±161.990 <310.686±104.963 <337.810±243.538 n-tetracontane (n-C40) 563 <163.746 <164.464 <316.351 <490.135 <300.510 <576.795 <94.308 <334.058 <302.545 <294.581 <482.251 <609.126 <992.466 <431.046 <335.334±168.807 <323.761±109.380 <352.026±253.787

iso/anteiso-alkane iso-nonacosane (iso-C29) 408 <2.569 <2.580 <4.963 <7.690 <4.715 <9.049 <1.480 <5.241 <4.747 <4.622 <7.566 <9.557 <15.571 <6.763 <5.261±2.648 <5.080±1.716 <5.523±3.982 anteiso-nonacosane (anteiso-C29) 408 <2.569 <2.580 <4.963 <7.690 <4.715 <9.049 <1.480 <5.241 <4.747 <4.622 <7.566 <9.557 <15.571 <6.763 <5.261±2.648 <5.080±1.716 <5.523±3.982 iso-triacontane (iso-C30) 422 <3.457 <3.472 <6.679 <10.349 <6.345 <12.178 <1.991 <7.053 <6.388 <6.220 <10.182 <12.861 <20.955 <9.101 <7.080±3.564 <6.836±2.309 <7.433±5.358 anteiso-triacontane (anteiso-C30) 422 <3.457 <3.472 <6.679 <10.349 <6.345 <12.178 <1.991 <7.053 <6.388 <6.220 <10.182 <12.861 <20.955 <9.101 <7.080±3.564 <6.836±2.309 <7.433±5.358 iso-hentriacotane (iso-C31) 436 <4.403 <4.422 <8.507 <13.180 <8.081 <15.510 <2.536 <8.983 <8.135 <7.921 <12.968 <16.379 <26.687 <11.591 <9.017±4.539 <8.706±2.941 <9.466±6.824 anteiso-hentriacotane (anteiso-C31) 436 <4.403 <4.422 <8.507 <13.180 <8.081 <15.510 <2.536 <8.983 <8.135 <7.921 <12.968 <16.379 <26.687 <11.591 <9.017±4.539 <8.706±2.941 <9.466±6.824 iso-dotriacontane (iso-C32) 450 <5.642 <5.667 <10.901 <16.889 <10.355 <19.875 <3.250 <11.511 <10.425 <10.151 <16.617 <20.989 <34.199 <14.853 <11.555±5.817 <11.156±3.769 <12.130±8.745 anteiso-dotriacontane (anteiso-C32) 450 <5.642 <5.667 <10.901 <16.889 <10.355 <19.875 <3.250 <11.511 <10.425 <10.151 <16.617 <20.989 <34.199 <14.853 <11.555±5.817 <11.156±3.769 <12.130±8.745 iso-tritriactotane (iso-C33) 464 <6.082 <6.109 <11.750 <18.205 <11.162 <21.424 <3.503 <12.408 <11.238 <10.942 <17.912 <22.625 <36.863 <16.010 <12.455±6.270 <12.026±4.063 <13.075±9.426 anteiso-tritriactotane (anteiso-C33) 464 <6.082 <6.109 <11.750 <18.205 <11.162 <21.424 <3.503 <12.408 <11.238 <10.942 <17.912 <22.625 <36.863 <16.010 <12.455±6.270 <12.026±4.063 <13.075±9.426

hopane 22,29,30-trisnorneophopane (Ts) 370 0.512 0.916 0.473 1.132 0.204 0.157 4.945 2.541 2.055 2.361 1.221 0.414 1.483 1.874 0.565±0.388 1.304±1.328 1.575±0.617 22,29,30-trisnorphopane (Tm) 370 0.400 0.938 0.645 0.999 0.219 0.705 1.729 1.225 0.863 0.960 1.308 0.745 1.618 1.405 0.651±0.302 0.872±0.388 0.920±0.373 αβ-norhopane (C29αβ-hopane) 398 1.468 2.413 1.934 3.595 0.613 1.880 11.068 6.670 5.301 5.762 3.925 2.234 5.257 4.216 1.984±0.994 3.584±2.640 4.293±1.254 22,29,30-norhopane (29Ts) 398 0.334 0.268 0.258 0.999 0.131 0.470 1.960 1.225 0.986 0.960 1.308 0.496 1.213 1.054 0.410±0.309 0.681±0.467 0.840±0.363 αα- + βα-norhopane (C29αα- + βα -hopane) 398 0.267 0.402 <0.338 0.999 <0.321 <0.616 1.845 1.089 0.740 0.840 1.047 <0.650 1.213 0.703 <0.490±0.277 0.753±0.500 <0.868±0.271 αβ-hopane (C30αβ -hopane) 412 1.134 1.742 1.289 2.996 0.438 1.410 7.763 3.675 2.836 3.241 3.925 1.986 5.257 3.513 1.502±0.850 2.606±2.282 2.929±1.347 αα-hopane (30αα-hopane) 412 <0.153 <0.153 <0.295 <0.457 <0.280 <0.538 0.384 <0.312 <0.282 <0.275 <0.450 <0.568 <0.926 <0.402 <0.313±0.158 <0.352±0.050 <0.378±0.237

Page 52: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-39

Table 3-10. Continued. EFs for non-polar organic compounds in µg/kg fuel

Compound MW Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

βα-hopane (C30βα -hopane) 412 0.133 0.268 <0.214 0.399 <0.203 <0.390 0.692 0.272 0.247 0.240 0.523 <0.412 0.809 0.527 <0.268±0.107 0.361±0.220 <0.362±0.169 αβS-homohopane (C31αβS-hopane) 426 0.467 0.737 0.516 0.999 0.175 0.705 4.804 1.770 1.233 1.320 1.832 0.993 2.022 1.405 0.600±0.281 1.323±1.698 1.495±0.459 αβR-homohopane (C31αβR-hopane) 426 0.801 1.139 0.773 1.598 0.307 1.175 4.804 2.586 1.726 1.921 2.878 1.241 2.831 1.581 0.965±0.441 1.633±1.412 1.874±0.845 αβS-bishomohopane (C32αβS-hopane) 440 <0.359 0.469 <0.694 1.198 <0.659 <1.265 2.498 0.953 <0.664 <0.646 <1.058 <1.336 <2.177 1.405 <0.774±0.376 <1.131±0.883 <1.211±0.479 αβR-bishomohopane (C32αβR-hopane) 440 0.334 0.402 0.387 0.799 0.131 <0.695 1.960 0.681 0.493 0.480 1.308 <0.734 1.618 0.703 <0.458±0.246 0.729±0.710 <0.776±0.448 22S-trishomohopane (C33) 454 <0.359 <0.361 <0.694 <1.075 <0.659 <1.265 1.114 <0.733 <0.664 <0.646 <1.058 <1.336 <2.177 <0.945 <0.736±0.370 <0.861±0.220 <0.923±0.557 22R-trishomohopane (C33) 454 <0.197 <0.198 0.387 0.599 <0.362 <0.695 0.961 <0.403 <0.365 <0.355 <0.581 <0.734 1.213 <0.520 <0.407±0.205 <0.534±0.294 <0.568±0.314 22S-tretrahomohopane (C34) 468 <0.359 <0.361 <0.694 <1.075 <0.659 <1.265 0.653 <0.733 <0.664 <0.646 <1.058 <1.336 <2.177 <0.945 <0.736±0.370 <0.785±0.040 <0.847±0.557 22R-tetrashomohopane (C34) 468 <0.197 0.201 <0.381 <0.591 <0.362 <0.695 0.500 <0.403 <0.365 <0.355 <0.581 <0.734 <1.197 <0.520 <0.405±0.203 <0.455±0.066 <0.489±0.306 22S-pentashomohopane (C35) 482 <0.359 <0.361 <0.694 <1.075 <0.659 <1.265 0.500 <0.733 <0.664 <0.646 <1.058 <1.336 <2.177 <0.945 <0.736±0.370 <0.759±0.098 <0.821±0.557 22R-pentashomohopane (C35) 482 <0.197 0.335 <0.381 <0.591 <0.362 <0.695 0.461 <0.403 <0.365 <0.355 <0.581 <0.734 <1.197 <0.520 <0.427±0.182 <0.471±0.048 <0.482±0.306

sterane

ααα 20S-Cholestane 372 0.334 0.737 0.516 0.799 0.131 0.470 1.307 0.953 0.740 1.080 0.785 0.496 0.809 0.703 0.498±0.249 0.660±0.237 0.696±0.142

αββ 20R-Cholestane 372 0.267 0.335 0.387 0.799 0.088 0.470 2.190 1.225 1.110 1.200 1.047 0.496 0.809 0.703 0.391±0.238 0.711±0.509 0.860±0.229

αββ 20s-Cholestane 372 0.200 0.335 0.258 0.599 0.088 <0.253 1.460 0.817 0.740 0.840 0.785 <0.267 0.809 0.351 <0.289±0.173 0.499±0.333 <0.579±0.284

ααα 20R-Cholestane 372 0.178 0.313 0.344 0.333 0.073 0.157 0.948 0.771 0.699 0.560 0.436 0.165 1.078 0.644 0.233±0.112 0.361±0.161 0.438±0.385 ααα 20S 24S-Methylcholestane 386 0.245 0.246 0.344 0.333 0.117 0.157 1.524 1.180 0.575 0.680 0.698 0.414 0.674 0.468 0.240±0.091 0.453±0.443 0.609±0.143 αββ 20R 24S-Methylcholestane 386 0.133 0.201 0.129 0.399 0.088 0.235 0.730 0.545 0.370 0.360 0.523 0.248 0.404 0.351 0.198±0.112 0.297±0.175 0.354±0.114 αββ 20S 24S-Methylcholestane 386 0.133 0.268 0.258 0.399 0.088 0.235 0.769 0.545 0.493 0.600 0.523 0.248 0.809 0.351 0.230±0.110 0.336±0.120 0.382±0.245 ααα 20R 24R-Methylcholestane 386 0.133 0.134 <0.045 0.200 0.044 0.235 0.307 0.272 0.123 0.120 0.262 0.248 0.404 0.351 <0.132±0.078 0.161±0.098 0.184±0.074 ααα 20S 24R/S-Ethylcholestane 386 0.133 0.201 0.129 0.200 0.044 0.235 0.307 0.272 0.123 0.120 0.262 0.248 0.404 0.176 0.157±0.069 0.186±0.098 0.198±0.096 αββ 20R 24R-Ethylcholestane 400 0.267 0.268 0.258 0.799 0.088 0.235 0.845 0.545 0.370 0.480 0.785 0.496 0.809 0.351 0.319±0.245 0.415±0.204 0.462±0.224 αββ 20S 24R-Ethylcholestane 400 0.133 0.268 0.258 0.200 0.088 0.235 0.653 0.272 0.247 0.360 0.523 0.248 0.809 0.351 0.197±0.072 0.284±0.187 0.284±0.245 ααα 20R 24R-Ethylcholestane 400 0.200 0.268 <0.221 0.599 0.088 0.470 0.730 0.408 0.247 0.240 0.523 0.745 1.213 0.703 <0.308±0.190 0.396±0.230 0.419±0.294

methyl-alkane

2-methylnonadecane 282 3.047 4.401 3.824 6.924 1.124 3.212 5.137 2.813 2.794 3.441 6.192 3.889 4.314 4.860 3.755±1.907 4.104±1.102 3.839±1.001

3-methylnonadecane 282 3.136 4.155 5.285 6.191 1.095 3.291 5.995 2.859 3.082 3.601 4.971 4.220 4.044 5.094 3.859±1.792 4.335±1.441 4.119±0.527

branched-alkane

Page 53: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-40

Table 3-10. Continued. EFs for non-polar organic compounds in µg/kg fuel

Compound MW Run ID Liebherr

T282BAverage CAT 797B-3

Average CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

pristane 268 6.517 11.036 22.387 14.513 3.313 <21.670 2.447 <12.551 <11.367 <11.067 <18.118 <22.885 <37.287 <16.194 <13.239±7.810 <12.561±4.652 <12.814±9.535

phytane 282 22.709 31.722 43.615 55.391 9.473 24.992 10.965 <10.562 <9.566 4.962 <15.248 <19.260 <31.380 <13.629 31.317±16.262 <29.360±2.765 <25.833±8.024

squalane 422 6.406 11.795 3.867 <1.051 <0.644 7.521 <0.202 <0.716 <0.648 <0.631 <1.034 <1.306 <2.127 <0.924 <5.214±4.245 <4.180±0.234 <2.334±0.544

cycloalkane

octylcyclohexane 196 <1.391 <1.397 <2.687 <4.163 <2.553 <4.900 <0.801 <2.838 <2.570 <2.502 <4.096 <5.174 <8.430 <3.662 <2.848±1.434 <2.750±0.929 <2.990±2.156

decylcyclohexane 224 <1.411 <1.418 <2.727 <4.225 <2.590 <4.972 <0.813 <2.880 <2.608 <2.539 <4.157 <5.251 5.257 2.635 <2.891±1.455 <2.791±0.943 <3.034±1.240

tridecylcyclohexane 266 <1.503 1.742 <2.903 <4.498 <2.758 <5.294 2.190 <3.066 <2.777 <2.704 <4.426 <5.590 <9.109 <3.956 <3.116±1.504 <3.231±0.364 <3.452±2.329 n-heptadecylcyclohexane 322 2.002 2.547 2.320 4.394 0.788 2.350 9.876 6.262 5.178 5.522 6.280 3.475 8.088 7.202 2.400±1.163 3.713±2.159 4.332±1.999

nonadecylcyclohexane 350 1.535 2.078 2.320 3.196 0.525 <2.246 4.150 3.539 3.205 2.761 5.233 <2.372 6.066 3.864 <1.983±0.893 2.419±0.585 <2.663±1.620

alkene

1-octadecene 252 <6.374 <6.402 <12.314 <19.079 <11.698 <22.452 <3.671 <13.004 <11.777 <11.467 <18.772 <23.711 <38.633 <16.779 <13.053±6.571 <12.603±4.258 <13.703±9.879

Total

Total PAHs <121.88 <206.69 <318.92 <403.01 <203.39 <407.44 <177.82 <352.34 <292.26 <288.94 <373.54 <382.10 <677.05 <424.85 <276.89±117.54 <277.84±72.77 <464.38±143.54

Total n-alkanes <891.88 <946.29 <1656.11 <2625.08 <1389.79 <2831.98 <639.90 <1611.72 <1457.46 <1457.45 <2509.62 <2959.30 <4818.02 <2216.26 <1723.52±831.04 <1291.63±440.53 <3125.80±1168.80

Total iso/anteiso-alkanes

<44.308 <44.502 <85.601 <132.625 <81.315 <156.074 <25.519 <90.392 <81.865 <79.710 <130.492 <164.823 <268.550 <116.636 <90.737±45.677 <69.372±29.597 <170.125±68.672

Total hopanes <8.031 <11.665 <11.045 <21.176 <6.746 <15.889 48.639 <26.406 <20.510 <22.011 <25.700 <18.021 <36.562 <23.182 <12.426±5.340 <29.392±13.073 <25.866±7.814

Total steranes 2.358 3.574 <3.145 5.659 1.022 <3.387 11.772 7.805 5.835 6.642 7.152 <4.321 9.032 5.504 <3.191±1.528 8.014±2.633 <6.502±2.047

Total methyl-alkanes 6.183 8.556 9.110 13.115 2.219 6.503 11.132 5.672 5.877 7.042 11.164 8.108 8.358 9.953 <7.614±3.627 7.431±2.540 9.396±1.434

Total branched-alkanes 35.631 54.552 69.869 <70.955 <13.430 <54.184 <13.614 <23.829 <21.581 <16.660 <34.400 <43.450 <70.794 <30.747 <49.770±21.980 <18.921±4.635 <44.848±18.103

Total cycloalkanes <7.842 <9.181 <12.958 <20.476 <9.215 <19.762 <17.831 <18.584 <16.338 <16.028 <24.192 <21.862 <36.951 <21.318 <13.239±5.600 <17.195±1.215 <26.081±7.353

Total alkene <6.374 <6.402 <12.314 <19.079 <11.698 <22.452 <3.671 <13.004 <11.777 <11.467 <18.772 <23.711 <38.633 <16.779 <13.053±6.571 <9.980±4.258 <24.474±9.879

Grand total <1124.48 <1291.42 <2179.08 <3311.17 <1718.82 <3517.67 <949.89 <2149.75 <1913.51 <1905.95 <3135.03 <3625.69 <5963.96 <2865.23 <2190.44±1018.30 <1729.77±532.10 <3897.48±1413.16

Page 54: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-41

Table 3-11. EFs for PM2.5 carbohydrates, organic acids, and water-soluble organic carbon (WSOC) acquired on quartz-fiber filters. (Cells with “<” indicate the compound is below instrument detection limit.)

Emission Factor of carbohydrates, organics and WSOC in mg/kg fuel

Compound MW Run ID Liebherr T282B

Average CAT 797B-3

Average CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Carbohydrates

Glycerol (C3H8O3 ) 92 <0.026 <0.026 0.230 0.009 <0.048 0.305 <0.015 0.097 0.235 0.175 0.693 0.390 0.596 <0.069 <0.108±0.127 <0.130±0.095 <0.437±0.276

Inositol (C6H12O6) 180 <0.026 <0.026 <0.050 <0.078 <0.048 <0.092 <0.015 <0.053 <0.048 <0.047 <0.102 <0.097 <0.158 <0.069 <0.053±0.027 <0.041±0.017 <0.107±0.037

Erythritol (C4H10O4) 122 <0.039 <0.039 <0.076 <0.117 <0.072 <0.138 <0.023 <0.080 <0.072 <0.070 <0.154 <0.146 <0.237 <0.103 <0.080±0.040 <0.061±0.026 <0.160±0.056

Xylitol (C5H12O5 ) 152 <0.026 <0.026 <0.050 <0.078 <0.048 <0.092 <0.015 <0.053 <0.048 <0.047 <0.102 <0.097 <0.158 <0.069 <0.053±0.027 <0.041±0.017 <0.107±0.037

Levoglucosan (C6H10O5 )

162 <0.052 <0.052 <0.101 <0.156 <0.096 <0.184 <0.030 <0.107 <0.097 <0.094 <0.205 <0.194 <0.317 <0.138 <0.107±0.054 <0.082±0.035 <0.213±0.075

Sorbitol (C6H14O6 ) 182 <0.065 <0.066 <0.126 <0.195 <0.120 <0.230 <0.038 <0.133 <0.121 <0.117 <0.256 <0.243 <0.396 <0.172 <0.134±0.067 <0.102±0.044 <0.267±0.094

Mannosan (C6H10O5 ) 162 <0.039 <0.039 <0.076 <0.117 <0.072 <0.138 <0.023 <0.080 <0.072 <0.070 <0.154 <0.146 <0.237 <0.103 <0.080±0.040 <0.061±0.026 <0.160±0.056

Trehalose (C12H22O11 ) 342 <0.052 <0.052 <0.101 <0.156 <0.096 <0.184 <0.030 <0.107 <0.097 <0.094 <0.205 <0.194 <0.317 <0.138 <0.107±0.054 <0.082±0.035 <0.213±0.075

Mannitol (C6H14O6 ) 182 <0.039 <0.039 <0.076 <0.117 <0.072 <0.138 <0.023 <0.080 <0.072 <0.070 <0.154 <0.146 <0.237 <0.103 <0.080±0.040 <0.061±0.026 <0.160±0.056

Arabinose (C5H10O5) 150 <0.039 <0.039 <0.076 <0.117 <0.072 <0.138 <0.023 <0.080 <0.072 <0.070 <0.154 <0.146 <0.237 <0.103 <0.080±0.040 <0.061±0.026 <0.160±0.056

Glucose (C6H12O6 ) 180 <0.026 <0.026 <0.050 <0.078 <0.048 <0.092 <0.015 <0.053 <0.048 <0.047 <0.102 <0.097 <0.158 <0.069 <0.053±0.027 <0.041±0.017 <0.107±0.037

Galactose (C6H12O6 ) 180 <0.052 <0.052 <0.101 <0.156 <0.096 <0.184 <0.030 <0.107 0.232 <0.094 <0.205 <0.194 <0.317 <0.138 <0.107±0.054 <0.116±0.084 <0.213±0.075

Maltitol (C12H24O11) 344 <0.065 <0.066 <0.126 <0.195 <0.120 <0.230 <0.038 <0.133 <0.121 <0.117 <0.256 <0.243 <0.396 <0.172 <0.134±0.067 <0.102±0.044 <0.267±0.094

Organic Acids

Lactic acid (C3H6O3) 90 0.009 0.017 0.106 <0.117 <0.072 0.189 0.016 0.144 0.105 0.001 <0.154 0.225 <0.237 0.005 <0.085±0.067 0.066±0.069 <0.155±0.107

Acetic acid (C2H4O2 ) 60 <0.078 <0.079 <0.151 <0.235 <0.144 0.821 <0.045 <0.160 <0.145 1.054 <0.307 1.009 <0.475 1.034 <0.251±0.285 <0.351±0.472 <0.706±0.370

Formic acid (CH2O ) 46 0.243 0.387 0.390 1.465 0.306 0.702 0.208 0.505 <0.145 0.605 <0.307 0.329 <0.475 0.735 0.582±0.460 <0.366±0.224 <0.461±0.197

Methanesulfonic acid (CH4SO3 )

96 <0.052 <0.052 <0.101 0.356 <0.096 <0.184 <0.030 <0.107 <0.097 <0.094 <0.205 <0.194 <0.317 <0.138 <0.140±0.116 <0.082±0.035 <0.213±0.075

Glutaric acid (C5H8O4) 132 0.077 0.080 0.192 <0.195 <0.120 <0.230 <0.038 <0.133 <0.121 <0.117 <0.256 <0.243 <0.396 <0.172 <0.149±0.065 <0.102±0.044 <0.267±0.094

Succinic acid (C4H6O4 ) 118 <0.052 <0.052 <0.101 <0.156 <0.096 <0.184 <0.030 <0.107 <0.097 <0.094 <0.205 <0.194 <0.317 <0.138 <0.107±0.054 <0.082±0.035 <0.213±0.075

Malonic acid (C3H4O4) 104 <0.078 <0.079 <0.151 <0.235 <0.144 <0.276 <0.045 <0.160 <0.145 <0.141 <0.307 <0.292 <0.475 <0.206 <0.160±0.081 <0.123±0.052 <0.320±0.112

Maleic acid (C4H4O4 ) 116 <0.065 <0.066 <0.126 <0.195 <0.120 <0.230 <0.038 <0.133 <0.121 <0.117 <0.256 <0.243 <0.396 <0.172 <0.134±0.067 <0.102±0.044 <0.267±0.094

Oxalic acid (C2H2O4) 90 <0.052 0.066 0.071 0.149 0.065 0.294 0.062 0.024 0.296 0.152 0.562 0.654 0.251 0.312 <0.116±0.094 0.134±0.121 0.445±0.194

WSOC

Neutral compounds 0.915 0.902 2.710 0.315 1.448 2.408 0.491 1.332 1.144 1.261 4.725 3.863 4.658 1.959 1.450±0.936 1.057±0.385 3.801±1.289

Mono-/di- carboxylic acids

1.077 2.256 <1.890 0.821 0.462 3.733 0.740 0.169 2.934 0.482 1.802 0.176 2.371 1.666 <1.706±1.198 1.081±1.257 1.504±0.936

Polycarboxylic acids (including HULIS)

<1.632 <1.639 0.115 <4.884 <2.990 <5.737 0.374 <3.323 <3.011 0.135 2.715 1.406 3.670 <4.295 <2.833±2.141 <1.711±1.689 <3.021±1.258

Sum of speciated WSOC 1.992 3.159 2.825 1.135 1.910 6.141 1.605 1.502 4.078 1.878 9.241 5.445 10.698 3.624 2.860±1.760 2.266±1.218 7.252±3.279

Total WSOC 18.975 25.210 73.803 64.263 38.011 62.927 14.291 10.065 16.741 16.489 32.560 26.709 24.280 52.837 47.198±22.851 14.396±3.090 34.096±12.968

Page 55: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-42

3.4 Variability in Emissions within a Test Cycle

Figure 3-11 shows an example of variations in emission concentrations for different Liebherr T282B operating parameters (engine speed, ground speed, and elevation) during a 78-minute sampling period. Part of this run (from 12:35 – 13:22 LST on Oct. 17, 2010) is plotted in Figure 3-12 for more detailed examination. NO2 and SO2 were below MDLs most of the time and are not included in these Figures. The CO/CO2 ratio, an indication of combustion completeness, is shown in Figures 3-11 and 3-12. Time series plots for all runs are plotted in Appendix A. Bullets i through vi below correspond to the labeled truck activity in Figure 3-12. The main observations are:

i. When the truck was idling in the parking lot, most emittant concentrations were stable with lower emission concentrations than when the truck was moving.

ii. When the truck started leaving the parking lot, all emittant concentrations sharply increased.

iii. Concentration spikes for all emittants were observed at 12:48 LST, when the truck decelerated and then accelerated towards the top of an uphill road toward the loading pit. After the truck reached the loading pit and waited for loading (idling), emission concentrations were low.

iv. When the truck left with a load, all emittant concentrations increase. High concentration spikes (12:55 – 12:57 LST) were observed when the truck accelerated out of the loading pit. High concentrations were also observed at 13:02 LST when the truck positioned itself for dumping. Note that particle number and BC concentrations were high at this moment, while PM2.5 did not show corresponding peaks, indicating particles are dominantly ultrafine soot particles.

v. After the truck finished dumping and accelerated out of dumping site, a small peak in PM2.5 concentration was observed, but other emittants did not show increases in concentrations until the truck climbed uphill around 13:07 LST.

vi. While the truck waited in line for loading, all concentrations were reduced. Spikes were observed when the truck started to march forward or back up toward the shovel.

Table 3-12 lists the squared correlation coefficients (R2) between emittants for Run 55. Example correlations are displayed in Figure 3-13. Total VOCs and NOx had R2 = 0.97. Both total VOCs and NOx were related to CO2 (R

2 = 0.82 and 0.83, respectively). Particle number concentrations were not as strongly related to concentrations of CO2 (R2 = 0.57), NOx (R2 = 0.53), and total VOCs (R2 = 0.48). PM2.5 was moderately related to CO (R2 = 0.43). Other correlations were weak. The CO/CO2 ratio does not correlate with concentrations of other emittants.

3.5 Sub-activity Emission Factors

Emissions differ according to truck operating conditions. Each test was divided into idle, traveling with load (load-to-dump), and traveling without load (dump-to-load) to analyze the fuel-based EFs for each sub-activity. Figure 3-14 shows an example of sub-activity EFs from Run S5 of truck Liebherr T282B. Data for other runs are documented in Appendix B. EFs for total VOCs and NO were higher in the idling mode for most runs. This observation agrees with Cocker et al.’s (2004) results showing higher NOx EFs for the cold-start/idle mode than other modes. However, since less fuel is used while idling, total emissions are lower than for the non-idling activities that require a larger fuel consumption rate.

Page 56: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-43

Figure 3-11. Time series of emission concentration and truck operation parameters from truck Liebherr T282B for Run S5 for 12:35 – 13:53 LST on 10/17/10. The individual panels are: a) Total VOCs in ppm by PID analyzer; b) CO in ppm by emission analyzer; c) Undiluted CO2 in ppm by CO2 analyzer; d) Diluted CO2 in ppm by CO2 analyzer; e) Background CO2 in ppm by CO2 analyzer; f) CO/CO2 ratio by CO2 analyzer and emission analyzer; g) NOx in ppm by emission analyzer; h) Number concentration in cm-3 by CPC; i) Black carbon (BC) concentration in mg/m3 by micro-aethalometer; j) PM2.5 concnetration in mg/m3 by DustTrak DRX; k) Engine speed in RPM by truck ; l) Ground speed in miles per hr (mph) by GPS; and m) Elevation in meters by GPS.

Ground Speed(mph)

0

10203040

CO/CO2

0.0

0.10.2

0.30.4

Undiluted CO2

(ppm)

02e+44e+46e+48e+41e+5

Diluted CO2

(ppm)

0

1e+42e+4

3e+44e+4

Background CO2

(ppm)

200

400

600

800

CO(ppm)

1e+11e+21e+3

1e+41e+5

NOx

(ppm)

0

4000

8000

12000

(c) CO2 analyzer

(e) CO2 analyzer

(b) Emission analyzer

(g) Emission analyzer

(d) CO2 analyzer

Black CarbonConcentration

(mg/m3)

1e-11e+01e+11e+21e+31e+4

NumberConcentration

(cm-3)

1e+61e+71e+81e+91e+10

PM2.5

Concentration(mg/m3)

1e-21e-11e+01e+11e+21e+3

Total VOCs(ppm)

0200400600800

1000(a) PID analyzer

(i) micro-aethalometer

(j) DustTrak DRX

(h) CPC

(f) CO2 analyzer, Emission analyzer

(l) GPS

EngineSpeed(rpm)

600

9001200

15001800

Time (hh:mm)

12:35 12:45 12:55 13:05 13:15 13:25 13:35 13:45

Elevation(m)

240260280

300320

(k) Truck

(m) GPS

Idle LoadDump

LoadDump

LoadDump

Page 57: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-44

Figure 3-12. Time series of emission concentration and truck operation parameters from truck Liebherr T282Bfor part of Run S5 from 12:35 – 13:22 LST on Oct. 17, 2010. The letters (i–vi) in front of individual activity correspond to the bullet points discussed in the text. The individual panels are: a) Total VOCs in ppm by PID analyzer; b) CO in ppm by emission analyzer; c) Undiluted CO2 in ppm by CO2 analyzer; d) Diluted CO2 in ppm by CO2 analyzer; e) Background CO2 in ppm by CO2 analyzer; f) CO/CO2 ratio by CO2 analyzer and emission analyzer; g) NOx in ppm by emission analyzer; h) Number concentration in cm-3 by CPC; i) Black carbon (BC) concentration in mg/m3 by micro-aethalometer; j) PM2.5 concentration in mg/m3 by DustTrak DRX; k) Engine speed in RPM by truck ; l) Ground speed in miles per hr (mph) by GPS; and m) Elevation in meters by GPS.

Ground Speed(mph)

0

10

20

CO/CO2

0.000.050.100.150.200.25

Undiluted CO2

(ppm)

020000400006000080000

Diluted CO2

(ppm)

0

1e+4

2e+4

3e+4

Background CO2

(ppm)

200

400

600

800

CO(ppm)

010002000300040005000

NOx

(ppm)

0

2000

4000

Black CarbonConcentration

(mg/m3)

0

50

NumberConcentration

(cm-3)

01e+82e+83e+84e+85e+86e+8

PM2.5

Concentration(mg/m3)

0

1e+2

2e+2

Total VOCs(ppm)

0100200300400500600

EngineSpeed(rpm)

600

900

1200

1500

Time (hh:mm)

12:35 12:40 12:45 12:50 12:55 13:00 13:05 13:10 13:15 13:20

Elevation(m)

240

260

280

300

i. Idle ii. Leaving

parking lot iv. Leaving with load

v. Leaving after dumping

Leaving with load

iii. Top ofuphill road

vi. Waitingfor load

(c) CO2 analyzer

(e) CO2 analyzer

(b) Emission analyzer

(g) Emission analyzer

(d) CO2 analyzer

(a) PID analyzer

(i) micro-aethalometer

(h) CPC

(f) CO2 analyzer, Emission analyzer

(l) GPS

(k) Truck

(m) GPS

(j) DustTrak DRX

Page 58: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-45

Table 3-12. Squared correlation (R2) between emittants and truck parameters. (Yellow highlights indicate R2 > 0.4.)

Total VOCs CO2 CO NOx CO/CO2

Number concentration

BC PM2.5

Total VOCs -

CO2 0.82 -

CO 0.30 0.34 -

NOx 0.97 0.83 0.30 -

CO/CO2 0.02 0.03 0.21 0.03 -

Number concentration 0.48 0.57 0.27 0.53 0.02 -

BC 0.14 0.20 0.22 0.16 0.02 0.14 -

PM2.5 0.29 0.37 0.43 0.27 0.00 0.16 0.18 -

3.6 Emission Factor Summary

Average EFs for the three measured criteria air emittants in g/kg fuel were:

– Liebherr T282B: CO: 32.8±14.6; NOx (as NO2): 121.6±58.8; and PM2.5: 0.89±0.42 – CAT 797B-3: CO: 10.7±2.5; NOx (as NO2): 50.3±8.3; and PM2.5: 0.59±0.04 – CAT 797B-4: CO: 14.3±8.9; NOx (as NO2): 70.0±14.3; and PM2.5: 0.80±0.32 – SO2 was below MDL (<4х10-3 g/kg fuel) for all three trucks. – These emissions were lower or in the same range as on-road heavy duty diesel EFs

reported in other studies.

All five trucks met Tier 1 limits for CO, NMHC, and PM2.5, but exceeded the NOx (as NO2) limit by 20%, 27%, 22%, 70%, and 195% for CAT 797B-1, CAT 797B-2, CAT 797B-3, CAT 797B-4, and Liebherr T282B, respectively. Except for truck Liebherr T282B, the Tier 2 limit for CO was attained. All trucks exceeded the Tier 2 limit for NMHC+NOx, while all of them met Tier 2 limits for PM2.5. Except for truck Liebherr T282B, the Tier 4 limit for CO was attained. All trucks except CAT 797B-2 met the Tier 4 limit for NMHC. However, all trucks exceeded Tier 4 limits for NOx and PM2.5.

Truck Liebherr T282B emitted higher CH4, CO, NOx, particle number, PM2.5, and BC than trucks CAT 797B-1, CAT 797B-2, and CAT 797B-3. Liebherr T282B had EFs for CH4 and PM2.5 similar to those from truck CAT 797B-4, and ~24% lower in particle number EF. Truck CAT 797B-3 had the lowest EFs for gases and PM among the three trucks tested in 2010. All trucks had low EFs for CH4, NH3, and H2S.

Truck CAT 797B-3 ran on fuel with an additive. Compared to the tests in 2009 with truck CAT 797B-2, truck CAT 797B-3 had similar EFs for NOx, 60–85% higher for CH4, CO, and BC, ~18 times higher for NH3, but 56% and 27% less for particle number and PM2.5, respectively.

Certification tests reported lower CO and NOx, higher NMHC, and comparable PM2.5 as compared to real-world tests. The Liebherr T282B real-world NOx emissions were 3.3 times of those from certification tests.

Among the measured NMHC from the three trucks in 2010, alkanes and cycloalkanes and alkenes were the most abundant species, accounting for 83–90% of total NMHC emissions, similar to tests in 2009 (88–90%). Among the NMHC species listed as

Page 59: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-46

MSATs by U.S. EPA, benzene and toluene had EFs 3-26 mg/kg fuel, similar to EFs found in 2009 (6–27 mg/kg fuel).

Halocarbon emissions were low. Species with the highest EFs are dichloromethane, tetrachloroethene,1,1,2,2-tetrachloroethane, and dichlorodifluoromethane. These species were also abundant in 2009 tests. The most abundant halocarbon in 2009, 1,3-dichlorobenzene, had a low EF in 2010.

Among the five tested trucks, truck CAT 797B-3 had the lowest EFs for PAMS NMHC, approximately 20–68% of the other trucks. Trucks Liebherr T282B and CAT 797B-4 had the lowest and highest halocarbon EFs, respectively.

Formaldehyde was detectable in emissions from all three trucks tested in 2010 with EFs of 0.5–3.4 mg/kg fuel. Most other carbonyls were below MDLs for trucks Liebherr T282B and CAT 797B-3. Truck CAT 797B-4 had detectable acetaldehyde (4.2±1.9 mg/kg fuel), acetone (3.9±3 mg/kg fuel), crotonaldehyde (1.4±0.8 mg/kg fuel), and valeraldehyde (0.06±0.02 mg/kg fuel).

The EC/TC ratio for the three trucks tested in 2010 ranged from 0.61 to 0.85, with an average of ~0.74. Approximately 88–95% of EC was in the high-temperature EC2 fraction (740 °C in a 98% He/2% O2 atmosphere) for trucks Liebherr T282B and CAT 797B-3, while only 12–58% of EC was EC2 for truck CAT 797B-4. PM from truck CAT 797B-4 showed higher elemental and ionic species, which may have lowered the EC evolution temperature.

Elements from lube oils (Ca, Z, P, and S) were present in the exhaust with EFs from 1.7–7.5 mg/kg fuel. Rare earth elements were mostly below MDLs. Lead (Pb) was detectable in all three trucks, with average EFs of 5.7±7.5, 0.95±0.56, and 9.5±6.5 µg/kg fuel for trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively.

n-alkanes and PAHs were the most abundant species in identified PM2.5 non-polar organic compounds. The sum of the 113 measured organic compounds accounted for 0.9–5.1% of the OC. Most of the OC remains unidentified or un-quantified.

Most carbohydrate and organic acid levels were below detection limits. WSOC accounted for 20–40% of the OC, and was poorly correlated with OC (R2 = 0.13).

Total VOCs were correlated with NOx (R2 = 0.97). Total VOCs and NOx were also correlated with CO2 (R

2 = 0.82 and 0.83, respectively). Particle number concentration had fair correlations with CO2 (R

2 = 0.57), NOx (R2 = 0.53), and total VOCs (R2 = 0.48). CO

and PM2.5 were mildly correlated (R2 = 0.43).

EFs were variable among sub-activities of idling, traveling with load, and traveling without load. EFs of total VOCs and NO during idling were higher when moving for most runs.

Page 60: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-47

a) b)

c)

d)

e) f)

Figure 3-13. Correlations between diluted emittants (without averaging or dilution correction) for truck Liebherr T282B during Run S5 (12:35–12:53 LST) on 10/17/10 for: a) total VOCs vs. CO2, b) total VOCs vs. NOx, c) total VOCs vs. particle number, d) NOx vs. CO2, e) particle number vs. CO2, and f) particle number vs. NOx.

y = 0.001x + 6.335R² = 0.823

0

5

10

15

20

25

30

35

40

45

0 10000 20000 30000 40000

To

tal V

OC

s (

pp

m)

CO2 (ppm)

y = 0.118x + 3.121R² = 0.965

0

5

10

15

20

25

30

35

40

0 100 200 300 400

To

tal V

OC

s (

pp

m)

NOx (ppm)

y = 1.50E-06x + 3.93E+00R² = 0.478

0

5

10

15

20

25

30

35

40

0.E+00 1.E+07 2.E+07

To

tal V

OC

s (

pp

m)

Particle Number (cm-3)

y = 0.009x + 27.797R² = 0.828

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000

NO

x(p

pm

)

CO2 (ppm)

y = 4.17E+02x + 3.02E+06R² = 0.561

0.0E+00

4.0E+06

8.0E+06

1.2E+07

1.6E+07

2.0E+07

0 10000 20000 30000 40000

Pa

rtic

le N

um

be

r (c

m3)

CO2 (ppm)

y = 4.02E+04x + 2.01E+06R² = 5.27E-01

0.0E+00

4.0E+06

8.0E+06

1.2E+07

1.6E+07

2.0E+07

0 100 200 300 400

Pa

rtic

le n

um

be

r (c

m-3

)

NOx (ppm)

Page 61: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

3-48

Figure 3-14. Fuel-based emission factor for idle, load-to-dump and dump-to-load sub-activities for truck Liebherr T282B during Run S5 (12:35–12:53 LST) on 10/17/10.

0

10

20

30

40

Idle Traveling w/ load Traveling w/o load

VO

Cs

Em

iss

ion

(g

/kg

fu

el)

Truck Operation

Total VOCs

0

30

60

90

120

Idle Traveling w/ load Traveling w/o load

CO

Em

iss

ion

(g

/kg

fu

el)

Truck Operation

CO

2900

2950

3000

3050

3100

3150

3200

Idle Traveling w/ load Traveling w/o load

CO

2E

mis

sio

n (

g/k

g f

ue

l)

Truck Operation

CO2

0

30

60

90

120

150

180

Idle Traveling w/ load Traveling w/o loadN

O E

mis

sio

n (

g/k

g f

ue

l)

Truck Operation

NO

0.000

0.010

0.020

0.030

0.040

Idle Traveling w/ load Traveling w/o load

NO

2E

mis

sio

n (

g/k

g f

ue

l)

Truck Operation

NO2

0.0E+00

2.0E+15

4.0E+15

6.0E+15

8.0E+15

Idle Traveling w/ load Traveling w/o load

Nu

mb

er

Em

iss

ion

(#

/kg

fu

el)

Truck Operation

Particle number

0

0.9

1.8

2.7

Idle Traveling w/ load Traveling w/o load

BC

Em

iss

ion

(g

/kg

fu

el)

Truck Operation

BC

0

0.6

1.2

Idle Traveling w/ load Traveling w/o load

PM

2.5

Em

iss

ion

(g

/kg

fu

el)

Truck Operation

PM2.5

Page 62: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-1

4 Source Profiles NMHC concentrations are reported in ppbC and normalized to the sum of 55

Photochemical Assessment Measurement Station (PAMS) compounds as recommended by Watson et al. (2001), while PM2.5 components are normalized to PM2.5 mass. Carbonyl compounds are normalized to the sum of 14 carbonyls. Organic components of PM2.5 are normalized to PM2.5 OC. These profiles can be used to develop speciated emission inventories (Chow et al., 2011) and source apportionment receptor modeling (Watson, 1984; Watson et al., 1991; 2001; 2002; 2008a; Watson and Chow, 2004; 2005; 2007).

4.1 NMHC Source Profiles

Table 4-1 presents the NMHC (C2-C11) profiles. Identified NMHC constituted ~95% of the total NMHC. The ten most abundant species are: ethene, propylene, n-decane, isobutane, acetylene, isopentane, benzene, 1-butene, toluene, and isobutylene. Identified NMHCs are grouped into four categories: alkanes and cycloalkanes, alkenes, alkynes (only acetylene was detected), and aromatics in Figure 4-1 for the five tested trucks. Alkenes and alkanes are the two most abundant groups, accounting for 59±17% and 35±21% of the sum of PAMS, respectively. Alkenes are most abundant for trucks CAT 797B-1, CAT 797B-2, CAT 797B-3, and Liebherr T282B, while alkanes and cycloalkanes are most abundant for truck CAT 797B-4. Source profiles for species with abundances >1% for at least one of the five trucks are shown in Figures 4-2 and 4-3. Abundances are similar for trucks Liebherr T282B and CAT 797B-3, both showing higher abundances of lower MW alkanes, high MW alkanes, alkenes, acetylene, and aromatics and lower abundances for middle MW alkanes. Abundances for middle MW alkanes are larger for truck CAT 797B-4. The two trucks tested in 2009 (CAT 797B-1 and CAT 797B-2) have profiles similar to trucks Liebherr T282B and CAT 797B-3.

Table 4-2 presents halocarbon abundances normalized to the sum of 55 PAMS compounds. All halocarbons have low abundances. Tetrachloroethene is the most abundant halocarbon for truck CAT 797B-4 (1.07±0.87%). All three trucks emitted detectable amounts of dichloromethane (0.1–2.4%) and 1,1,2,2-Tetrachloroethane (0.09–0.2%). Table 4-3 presents carbonyl abundances. Formaldehyde, acetaldehyde, and acetone are the most abundant carbonyls species.

4.2 PM2.5 Source Profiles

PM2.5 source profiles for the 14 tests at the three facilities in 2010 are summarized in Table 4-4. Also listed are the average abundances for each truck, and the ratio of the three trucks using truck CAT 797B-3 (Facility A) as a reference. Sources profiles of Cs, Ba, 14 rare earth elements, and Pb are listed in Table 4-5. Figure 4-4 illustrates average source profiles for species with abundances >1%. Figure 4-5 shows the fractions of PM2.5 compositions grouped into OC, EC, elements, soluble ions, and unidentified species for all five trucks. Key observations are:

Carbon was the most abundant species. Average TC accounted for 68.2±6.3%, 69.4±5.4%, and 77.2±12.3% of the total PM2.5 for trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively. In the 2009 tests TC accounted for 85–88% of PM2.5 for trucks CAT 797B-1 and CAT 797B-2, 8–20% higher than the 2010 tests.

Page 63: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-2

Table 4-1. Non-methane hydrocarbons (NMHC) source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds. The most abundant species are highlighted in green, the species listed as mobile source air toxics (MSATs) by EPA are highlighted in yellow. Species that belong to both categories are highlighted in purple. The listed uncertainty of truck average is the larger of standard deviation and uncertainty of average of multiple runs.

Group Compound

Run ID

Liebherr T282B CAT797B-3 CAT797B-3 Ratio S:A:C S1 S2 A3 A4 C2 C3 C4

Alk

anes

and

Cyl

coal

kane

s

Ethane 0.0267±0.0024 0.0470±0.0043 0.0153±0.0017 0.0128±0.0009 0.0295±0.0048 0.0410±0.0030 0.0326±0.0035 0.0368±0.0144 0.0141±0.0018 0.0344±0.0059 2.6:1.0:2.4

Propane 0.0037±0.0008 0.0048±0.0011 0.0045±0.0018 0.0013±0.0008 0.0181±0.0113 0.0404±0.0125 0.0306±0.0136 0.0043±0.0008 0.0029±0.0023 0.0297±0.0112 1.5:1.0:10.4

n-Butane 0.0023±0.0003 0.0031±0.0004 0.0074±0.0011 0.0070±0.0006 0.0116±0.0039 0.0246±0.0039 0.0196±0.0045 0.0027±0.0006 0.0072±0.0007 0.0186±0.0066 0.4:1.0:2.6

Isobutane 0.0011±0.0001 0.0020±0.0002 0.0023±0.0061 0.0014±0.0032 0.0464±0.0067 0.1513±0.0109 0.1191±0.0123 0.0016±0.0007 0.0018±0.0034 0.1056±0.0538 0.9:1.0:58.1

Cyclopentane 0.0001±0.0000 0.0002±0.0001 0.0003±0.0003 0.0003±0.0002 0.0028±0.0004 0.0082±0.0006 0.0063±0.0007 0.0002±0.0000 0.0003±0.0002 0.0058±0.0027 0.5:1.0:18.8

Isopentane 0.0013±0.0001 0.0017±0.0002 0.0037±0.0055 0.0031±0.0027 0.0439±0.0063 0.1349±0.0097 0.0996±0.0103 0.0015±0.0003 0.0034±0.0030 0.0928±0.0459 0.4:1.0:27.3

n-Pentane 0.0010±0.0001 0.0009±0.0001 0.0033±0.0003 0.0026±0.0002 0.0017±0.0007 0.0014±0.0003 0.0029±0.0007 0.0010±0.0001 0.0029±0.0005 0.0020±0.0008 0.3:1.0:0.7

Cyclohexane 0.0015±0.0002 0.0009±0.0001 0.0013±0.0012 0.0016±0.0007 0.0128±0.0050 0.0287±0.0055 0.0259±0.0072 0.0012±0.0004 0.0014±0.0007 0.0225±0.0085 0.9:1.0:15.7

Methylcyclopentane 0.0016±0.0002 0.0011±0.0001 0.0014±0.0010 0.0015±0.0005 0.0085±0.0023 0.0254±0.0034 0.0195±0.0038 0.0014±0.0004 0.0015±0.0006 0.0178±0.0086 1.0:1.0:12.2

2,2-Dimethylbutane 0.0004±0.0001 0.0005±0.0001 0.0007±0.0003 0.0007±0.0002 0.0028±0.0015 0.0068±0.0018 0.0050±0.0019 0.0005±0.0001 0.0007±0.0002 0.0049±0.0020 0.7:1.0:7.0

2,3-Dimethylbutane 0.0004±0.0000 0.0006±0.0001 0.0012±0.0007 0.0008±0.0004 0.0066±0.0018 0.0178±0.0024 0.0137±0.0026 0.0005±0.0001 0.0010±0.0004 0.0127±0.0057 0.5:1.0:12.8

n-Hexane 0.0025±0.0003 0.0018±0.0003 0.0035±0.0003 0.0031±0.0002 0.0037±0.0014 0.0017±0.0003 0.0020±0.0005 0.0022±0.0005 0.0033±0.0003 0.0025±0.0011 0.7:1.0:0.7

2-Methylpentane 0.0050±0.0011 0.0045±0.0010 0.0043±0.0006 0.0009±0.0001 0.0013±0.0008 0.0008±0.0003 0.0008±0.0003 0.0047±0.0007 0.0026±0.0024 0.0010±0.0004 1.8:1.0:0.4

3-Methylpentane 0.0010±0.0001 0.0008±0.0001 0.0014±0.0009 0.0015±0.0004 0.0084±0.0012 0.0212±0.0015 0.0164±0.0017 0.0009±0.0002 0.0014±0.0005 0.0153±0.0065 0.7:1.0:10.9

2-Methylhexane 0.0017±0.0002 0.0013±0.0002 0.0042±0.0003 0.0047±0.0002 0.0057±0.0018 0.0024±0.0003 0.0027±0.0006 0.0015±0.0003 0.0044±0.0003 0.0036±0.0018 0.3:1.0:0.8

Methylcyclohexane 0.0075±0.0009 0.0059±0.0007 0.0067±0.0009 0.0067±0.0006 0.0118±0.0037 0.0203±0.0029 0.0175±0.0036 0.0067±0.0011 0.0067±0.0005 0.0165±0.0043 1.0:1.0:2.5

1,3-Dimethylcyclopentane 0.0013±0.0002 0.0009±0.0001 0.0011±0.0003 0.0011±0.0002 0.0035±0.0012 0.0083±0.0014 0.0064±0.0015 0.0011±0.0003 0.0011±0.0002 0.0061±0.0024 0.9:1.0:5.3

3-Methylhexane 0.0022±0.0003 0.0015±0.0002 0.0042±0.0004 0.0045±0.0003 0.0061±0.0024 0.0033±0.0006 0.0032±0.0008 0.0018±0.0005 0.0044±0.0002 0.0042±0.0017 0.4:1.0:1.0

n-Heptane 0.0063±0.0010 0.0046±0.0007 0.0093±0.0010 0.0094±0.0007 0.0129±0.0056 0.0092±0.0019 0.0065±0.0020 0.0055±0.0012 0.0094±0.0006 0.0095±0.0032 0.6:1.0:1.0

2,3-Dimethylpentane 0.0021±0.0002 0.0028±0.0003 0.0050±0.0005 0.0052±0.0003 0.0069±0.0019 0.0099±0.0012 0.0074±0.0013 0.0025±0.0005 0.0051±0.0003 0.0081±0.0016 0.5:1.0:1.6

2,4-Dimethylpentane 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 0.0000±0.0001 0.0028±0.0004 0.0041±0.0003 0.0032±0.0003 0.0000±0.0000 0.0000±0.0001 0.0034±0.0007 -

2-Methylheptane 0.0040±0.0006 0.0038±0.0006 0.0046±0.0004 0.0050±0.0003 0.0047±0.0020 0.0027±0.0005 0.0030±0.0009 0.0039±0.0004 0.0048±0.0003 0.0034±0.0011 0.8:1.0:0.7

3-Methylheptane 0.0021±0.0004 0.0021±0.0004 0.0032±0.0003 0.0036±0.0003 0.0032±0.0016 0.0014±0.0003 0.0014±0.0005 0.0021±0.0003 0.0034±0.0003 0.0020±0.0010 0.6:1.0:0.6

4-Methylheptane 0.0011±0.0002 0.0010±0.0002 0.0016±0.0002 0.0016±0.0001 0.0016±0.0009 0.0009±0.0002 0.0009±0.0003 0.0010±0.0001 0.0016±0.0001 0.0011±0.0005 0.6:1.0:0.7

n-Octane 0.0083±0.0011 0.0100±0.0013 0.0164±0.0013 0.0167±0.0009 0.0153±0.0057 0.0132±0.0022 0.0109±0.0027 0.0092±0.0011 0.0166±0.0008 0.0131±0.0033 0.6:1.0:0.8

2,2,4-Trimethylpentane 0.0024±0.0005 0.0027±0.0005 0.0030±0.0005 0.0032±0.0003 0.0047±0.0024 0.0077±0.0020 0.0062±0.0023 0.0026±0.0004 0.0031±0.0003 0.0062±0.0019 0.8:1.0:2.0

2,3,4-Trimethylpentane 0.0004±0.0001 0.0003±0.0001 0.0012±0.0001 0.0009±0.0001 0.0016±0.0006 0.0019±0.0004 0.0015±0.0004 0.0004±0.0001 0.0011±0.0002 0.0017±0.0004 0.3:1.0:1.6

n-Nonane 0.0047±0.0008 0.0129±0.0023 0.0233±0.0027 0.0242±0.0019 0.0226±0.0127 0.0210±0.0049 0.0153±0.0053 0.0088±0.0058 0.0237±0.0016 0.0196±0.0073 0.4:1.0:0.8

n-Decane 0.0179±0.0038 0.0229±0.0048 0.0818±0.0116 0.0567±0.0056 0.0627±0.0376 0.0733±0.0211 0.0530±0.0220 0.0204±0.0035 0.0693±0.0178 0.0630±0.0242 0.3:1.0:0.9

n-Undecane 0.0011±0.0003 0.0020±0.0005 0.0090±0.0015 0.0109±0.0012 0.0049±0.0070 0.0075±0.0025 0.0065±0.0032 0.0015±0.0006 0.0099±0.0013 0.0063±0.0040 0.2:1.0:0.6

Page 64: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-3

Table 4-1. Continued

Group Compound

Run ID

Liebherr T282B CAT797B-3 CAT797B-3 Ratio S:A:C S1 S2 A3 A4 C2 C3 C4

Alk

enes

Ethene 0.4145±0.0800 0.4258±0.0824 0.2982±0.0369 0.2874±0.0252 0.2130±0.1117 0.0811±0.0239 0.1770±0.0683 0.4201±0.0574 0.2928±0.0223 0.1570±0.0682 1.4:1.0:0.5

Propylene 0.2395±0.0216 0.2126±0.0195 0.1966±0.0074 0.2189±0.0062 0.1519±0.0253 0.0685±0.0093 0.1168±0.0204 0.2260±0.0190 0.2078±0.0158 0.1124±0.0419 1.1:1.0:0.5

1,2-Butadiene 0.0008±0.0001 0.0007±0.0001 0.0008±0.0001 0.0004±0.0000 0.0006±0.0002 0.0004±0.0001 0.0004±0.0001 0.0007±0.0001 0.0006±0.0003 0.0005±0.0001 1.3:1.0:0.8

1,3-Butadiene 0.0000±0.0000 0.0000±0.0000 0.0064±0.0005 0.0000±0.0000 0.0107±0.0021 0.0111±0.0008 0.0000±0.0001 0.0000±0.0000 0.0032±0.0045 0.0072±0.0063 0.0:1.0:2.3

1-Butene 0.0603±0.0054 0.0537±0.0049 0.0443±0.0017 0.0516±0.0014 0.0337±0.0055 0.0150±0.0021 0.0254±0.0047 0.0570±0.0047 0.0480±0.0052 0.0247±0.0094 1.2:1.0:0.5

cis-2-Butene 0.0056±0.0006 0.0051±0.0005 0.0027±0.0001 0.0054±0.0002 0.0041±0.0008 0.0022±0.0002 0.0026±0.0005 0.0054±0.0004 0.0040±0.0020 0.0030±0.0010 1.3:1.0:0.7

Isobutylene 0.0298±0.0059 0.0293±0.0058 0.0524±0.0067 0.0300±0.0027 0.0606±0.0327 0.0312±0.0084 0.0095±0.0042 0.0296±0.0041 0.0412±0.0158 0.0338±0.0257 0.7:1.0:0.8

trans-2-Butene 0.0092±0.0015 0.0076±0.0013 0.0057±0.0006 0.0087±0.0006 0.0058±0.0026 0.0032±0.0007 0.0042±0.0015 0.0084±0.0011 0.0072±0.0021 0.0044±0.0015 1.2:1.0:0.6

Isoprene 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0002 0.0007±0.0001 0.0000±0.0001 0.0000±0.0000 0.0000±0.0000 0.0002±0.0004 -

2-Methyl-1-Butene 0.0075±0.0016 0.0082±0.0018 0.0151±0.0021 0.0095±0.0010 0.0110±0.0065 0.0000±0.0006 0.0051±0.0023 0.0078±0.0012 0.0123±0.0039 0.0054±0.0055 0.6:1.0:0.4

2-Methyl-2-Butene 0.0009±0.0002 0.0008±0.0002 0.0014±0.0002 0.0014±0.0001 0.0011±0.0006 0.0007±0.0002 0.0007±0.0003 0.0009±0.0001 0.0014±0.0001 0.0009±0.0004 0.6:1.0:0.6

cis-2-Pentene 0.0015±0.0002 0.0014±0.0002 0.0014±0.0001 0.0017±0.0001 0.0012±0.0004 0.0005±0.0001 0.0008±0.0002 0.0015±0.0001 0.0016±0.0002 0.0008±0.0004 0.9:1.0:0.5

1-Pentene 0.0197±0.0020 0.0180±0.0019 0.0144±0.0007 0.0167±0.0006 0.0097±0.0021 0.0044±0.0007 0.0071±0.0016 0.0189±0.0014 0.0155±0.0016 0.0071±0.0027 1.2:1.0:0.5

trans-2-Pentene 0.0033±0.0004 0.0029±0.0003 0.0029±0.0002 0.0034±0.0002 0.0022±0.0006 0.0011±0.0002 0.0015±0.0004 0.0031±0.0003 0.0031±0.0004 0.0016±0.0006 1.0:1.0:0.5

Cyclopentene 0.0044±0.0008 0.0042±0.0007 0.0040±0.0004 0.0050±0.0004 0.0029±0.0013 0.0014±0.0004 0.0019±0.0007 0.0043±0.0005 0.0045±0.0007 0.0021±0.0008 1.0:1.0:0.5

Cyclohexene 0.0033±0.0006 0.0034±0.0006 0.0038±0.0004 0.0049±0.0004 0.0025±0.0012 0.0014±0.0004 0.0018±0.0007 0.0033±0.0004 0.0043±0.0008 0.0019±0.0007 0.8:1.0:0.4

c-2-Hexene 0.0009±0.0001 0.0008±0.0001 0.0008±0.0001 0.0009±0.0001 0.0006±0.0003 0.0003±0.0001 0.0004±0.0002 0.0009±0.0001 0.0008±0.0001 0.0005±0.0002 1.1:1.0:0.6

2-Methyl-1-Pentene 0.0241±0.0033 0.0217±0.0030 0.0187±0.0015 0.0230±0.0013 0.0136±0.0047 0.0067±0.0013 0.0098±0.0029 0.0229±0.0023 0.0208±0.0031 0.0100±0.0034 1.1:1.0:0.5

t-2-Hexene 0.0019±0.0003 0.0018±0.0002 0.0015±0.0001 0.0018±0.0001 0.0012±0.0004 0.0007±0.0001 0.0009±0.0002 0.0019±0.0002 0.0017±0.0002 0.0009±0.0002 1.1:1.0:0.5

1-Heptene 0.0149±0.0022 0.0140±0.0020 0.0108±0.0012 0.0120±0.0009 0.0132±0.0048 0.0202±0.0036 0.0171±0.0045 0.0145±0.0015 0.0114±0.0008 0.0169±0.0038 1.3:1.0:1.5

2,3-Dimethyl-2-Pentene 0.0000±0.0000 0.0000±0.0001 0.0000±0.0001 0.0000±0.0001 0.0000±0.0003 0.0000±0.0001 0.0000±0.0002 0.0000±0.0000 0.0000±0.0001 0.0000±0.0002 -

Alpha-Pinene 0.0004±0.0001 0.0005±0.0001 0.0015±0.0002 0.0037±0.0003 0.0025±0.0012 0.0015±0.0004 0.0016±0.0006 0.0005±0.0001 0.0026±0.0016 0.0019±0.0007 0.2:1.0:0.7

Alkyne Acetylene 0.0685±0.0062 0.0527±0.0048 0.0533±0.0020 0.0441±0.0014 0.0520±0.0097 0.0206±0.0026 0.0362±0.0050 0.0606±0.0112 0.0487±0.0065 0.0362±0.0157 1.2:1.0:0.7

Page 65: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-4

Table 4-1. Continued

Group Compound

Run ID

Liebherr T282B CAT797B-3 CAT797B-3 Ratio S:A:C S1 S2 A3 A4 C2 C3 C4

Aro

mat

ics

Benzene 0.0286±0.0039 0.0316±0.0044 0.0589±0.0048 0.0572±0.0033 0.0492±0.0170 0.0302±0.0055 0.0293±0.0081 0.0301±0.0029 0.0581±0.0029 0.0362±0.0113 0.5:1.0:0.6

Toluene 0.0106±0.0016 0.0158±0.0024 0.0407±0.0042 0.0418±0.0028 0.0636±0.0248 0.0468±0.0091 0.0308±0.0090 0.0132±0.0037 0.0413±0.0025 0.0471±0.0164 0.3:1.0:1.1

Styrene 0.0000±0.0001 0.0001±0.0001 0.0005±0.0001 0.0001±0.0001 0.0004±0.0007 0.0016±0.0001 0.0001±0.0002 0.0001±0.0001 0.0003±0.0003 0.0007±0.0008 0.2:1.0:2.4

o-Xylene 0.0017±0.0003 0.0023±0.0004 0.0082±0.0010 0.0093±0.0008 0.0077±0.0039 0.0078±0.0019 0.0062±0.0022 0.0020±0.0004 0.0087±0.0008 0.0072±0.0025 0.2:1.0:0.8

Ethylbenzene 0.0007±0.0001 0.0013±0.0002 0.0044±0.0005 0.0049±0.0003 0.0045±0.0019 0.0049±0.0010 0.0034±0.0010 0.0010±0.0004 0.0047±0.0003 0.0042±0.0012 0.2:1.0:0.9

m/p-Xylene 0.0026±0.0004 0.0041±0.0006 0.0145±0.0015 0.0163±0.0011 0.0146±0.0063 0.0150±0.0029 0.0112±0.0033 0.0034±0.0010 0.0154±0.0013 0.0136±0.0038 0.2:1.0:0.9

Indan 0.0000±0.0001 0.0001±0.0001 0.0007±0.0001 0.0012±0.0001 0.0005±0.0013 0.0005±0.0002 0.0004±0.0002 0.0001±0.0001 0.0009±0.0004 0.0005±0.0007 0.1:1.0:0.5

1,2,4-Trimethylbenzene 0.0005±0.0001 0.0008±0.0002 0.0043±0.0006 0.0068±0.0007 0.0042±0.0065 0.0045±0.0013 0.0033±0.0014 0.0006±0.0002 0.0055±0.0018 0.0040±0.0034 0.1:1.0:0.7

1,2,3-Trimethylbenzene 0.0001±0.0001 0.0002±0.0001 0.0013±0.0003 0.0024±0.0004 0.0012±0.0030 0.0013±0.0006 0.0010±0.0007 0.0002±0.0001 0.0018±0.0008 0.0012±0.0016 0.1:1.0:0.6

1,3,5-Trimethylbenzene 0.0001±0.0001 0.0002±0.0001 0.0012±0.0002 0.0018±0.0002 0.0012±0.0015 0.0014±0.0004 0.0010±0.0004 0.0002±0.0001 0.0015±0.0004 0.0012±0.0008 0.1:1.0:0.8

Isopropylbenzene 0.0008±0.0001 0.0012±0.0002 0.0039±0.0004 0.0041±0.0003 0.0034±0.0013 0.0044±0.0008 0.0029±0.0008 0.0010±0.0003 0.0040±0.0002 0.0035±0.0008 0.3:1.0:0.9

m-Ethyltoluene 0.0002±0.0001 0.0003±0.0001 0.0023±0.0002 0.0033±0.0002 0.0021±0.0026 0.0022±0.0005 0.0016±0.0005 0.0003±0.0001 0.0028±0.0007 0.0020±0.0014 0.1:1.0:0.7

n-Propylbenzene 0.0001±0.0001 0.0001±0.0001 0.0009±0.0001 0.0014±0.0001 0.0010±0.0012 0.0010±0.0002 0.0007±0.0002 0.0001±0.0001 0.0012±0.0003 0.0009±0.0006 0.1:1.0:0.7

o-Ethyltoluene 0.0001±0.0001 0.0002±0.0001 0.0013±0.0002 0.0022±0.0002 0.0012±0.0021 0.0013±0.0004 0.0009±0.0004 0.0001±0.0001 0.0017±0.0006 0.0011±0.0011 0.1:1.0:0.6

p-Ethyltoluene 0.0001±0.0001 0.0002±0.0001 0.0012±0.0001 0.0017±0.0001 0.0011±0.0015 0.0012±0.0003 0.0008±0.0003 0.0001±0.0001 0.0014±0.0004 0.0010±0.0008 0.1:1.0:0.7

m-Diethylbenzene 0.0000±0.0001 0.0000±0.0001 0.0003±0.0001 0.0005±0.0001 0.0002±0.0009 0.0003±0.0002 0.0002±0.0002 0.0000±0.0001 0.0004±0.0002 0.0002±0.0005 0.1:1.0:0.5

p-Diethylbenzene 0.0001±0.0001 0.0001±0.0001 0.0004±0.0001 0.0007±0.0001 0.0003±0.0010 0.0004±0.0002 0.0003±0.0003 0.0001±0.0001 0.0006±0.0002 0.0004±0.0005 0.1:1.0:0.6

Total identified NMHC 1.0693±0.0839 1.0686±0.0858 1.1068±0.0418 1.0788±0.0277 1.1195±0.1322 1.0886±0.0429 1.0546±0.0804 1.0689±0.0600 1.0928±0.0251 1.0876±0.0803 1.0:1.0:1.0

Page 66: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-5

Figure 4-1. Concentration of NMHC groups normalized to the sum of 55 photochemical assessment monitoring station (PAMS) compounds. Error bars indicate the larger of standard deviation and uncertainty of average of multiple runs on the same truck.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Alkanes andCylcoalkanes

Alkenes Alkyne Aromatics

Co

nce

ntr

atio

n N

orm

aliz

ed t

o S

um

of

PA

MS

NMHC Group

CAT 797B-1

CAT 797B-2

CAT 797B-3

CAT 797B-4

Liebherr T282B

Page 67: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-6

Figure 4-2. Averaged NMHC source profiles from trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4 for species with abundance >1% of the sum of 55 PAMS compounds for at least one of the trucks. (The height of each bar indicates the averaged fractional abundance for the indicated NMHC [normalized to the total of 55 PAMS compounds], while the dot shows the larger of standard deviation and uncertainty of average of multiple runs.)

Eth

ane

Pro

pa

ne

n-B

uta

ne

Iso

bu

tan

e

Iso

pen

tan

e

n-H

exan

e

Me

thyl

cyc

lop

enta

ne

Cyc

loh

exa

ne n

-He

pta

ne

Met

hyl

cycl

oh

exan

e

n-O

cta

ne

n-N

on

an

en

-Dec

ane

n-U

nd

eca

ne

Eth

en

e

Pro

pyl

en

e

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pen

ten

e

iso

bu

tyle

ne

2-m

eth

yl-1

-bu

ten

e

1-h

epte

ne

Ac

etyl

ene

Be

nze

ne

To

luen

e

m/p

-Xyl

ene

0.001

0.010

0.100

1.000

NM

HC

Ab

un

da

nce

No

rali

zed

to

to

tal

PA

MS

NMHC Species

Libherr T282B

Alkanes Alkenes AromaticsAlkyne

Eth

ane

Pro

pan

e n-B

uta

ne

Iso

bu

tan

e

Iso

pen

tan

e

n-P

enta

ne

3-M

eth

ylp

enta

ne

n-H

exa

ne

Met

hyl

cycl

op

enta

ne

Cyc

loh

exan

e

n-H

ep

tan

e

Met

hyl

cycl

oh

exan

e

n-O

cta

ne

n-N

on

an

e n-D

eca

ne

n-U

nd

ecan

e

Eth

ene

Pro

pyl

ene

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pe

nte

ne

iso

bu

tyle

ne

2-m

eth

yl-1

-bu

ten

e

1-h

epte

ne

Ace

tyle

ne

Ben

zen

e

To

luen

e

m/p

-Xyl

ene

m-E

thyl

tolu

ene

0.001

0.010

0.100

1.000

NM

HC

Ab

un

dan

ce

No

raliz

ed

to

to

tal

PA

MS

NMHC Species

CAT 797B-3

Alkanes Alkenes AromaticsAlkyne

Eth

ane

Pro

pan

e

n-B

uta

ne

Iso

bu

tan

e

Iso

pen

tan

e

n-P

enta

ne

2,3-

Dim

eth

ylb

uta

ne

3-M

eth

ylp

en

tan

e

n-H

exan

e

Met

hyl

cycl

op

enta

ne

Cyc

loh

exan

e

n-H

epta

ne

Met

hyl

cycl

oh

exan

e

n-O

cta

ne

n-N

on

an

e n-D

ecan

e

n-U

nd

ecan

e

Eth

ene

Pro

pyl

ene

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pe

nte

ne

iso

bu

tyle

ne

2-m

eth

yl-1

-bu

ten

e

1-h

epte

ne

Ace

tyle

ne

Ben

zen

e

To

luen

e

m/p

-Xyl

ene

m-E

thyl

tolu

en

e

0.001

0.010

0.100

1.000

NM

HC

Ab

un

da

nce

No

raliz

ed

to

to

tal P

AM

S

NMHC Species

CAT 797B-4

Alkanes Alkenes AromaticsAlkyne

Page 68: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-7

Figure 4-3. Averaged NMHC source profiles from trucks CAT 797B-1 and CAT 797B-2 for species with abundance >1% of the sum of 55 PAMS compounds for at least one of the trucks. (The height of each bar indicates the averaged fractional abundance for the indicated NMHC [normalized to the total of 55 PAMS compounds], while the dot shows the larger of standard deviation and uncertainty of average of multiple runs.)

Eth

ane

Pro

pan

e

n-B

uta

ne

Iso

bu

tan

e

Iso

pen

tan

e

n-P

enta

ne

2,3-

Dim

eth

ylb

uta

ne

3-M

eth

ylp

enta

ne

n-H

exa

ne

Met

hyl

cycl

op

enta

ne

Cyc

loh

exan

e

n-H

epta

ne

Met

hyl

cycl

oh

exan

e

n-O

cta

ne

n-N

on

ane

n-D

eca

ne

n-U

nd

ecan

e

Eth

ene

Pro

pyl

ene

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pen

ten

e

iso

bu

tyle

ne

2-m

eth

yl-1

-bu

ten

e

1-h

ep

ten

e

Ace

tyle

ne

Ben

zen

e

To

luen

e

m/p

-Xyl

ene

m-E

thyl

tolu

ene

0.001

0.010

0.100

1.000

NM

HC

Ab

un

da

nce

No

rali

zed

to

to

tal P

AM

S

NMHC Species

CAT 797B-1

Alkanes Alkenes AromaticsAlkyne

Eth

ane

Pro

pan

e

n-B

uta

ne

Iso

bu

tan

e

Iso

pe

nta

ne n

-Pen

tan

e

2,3-

Dim

eth

ylb

uta

ne

3-M

eth

ylp

enta

ne

n-H

exan

e

Met

hyl

cycl

op

enta

ne

n-H

epta

ne

Met

hyl

cycl

oh

exan

e

n-O

cta

ne

n-N

on

an

e

n-D

ecan

e

n-U

nd

ecan

e

Eth

ene

Pro

pyl

ene

1-B

ute

ne

1-P

ente

ne

2-M

eth

yl-1

-Pe

nte

ne

iso

bu

tyle

ne

2-m

eth

yl-1

-bu

ten

e

1-h

epte

ne

Ace

tyle

ne

Ben

zen

e

To

luen

e

m/p

-Xyl

ene

m-E

thyl

tolu

en

e

0.001

0.010

0.100

1.000

NM

HC

Ab

un

da

nce

No

rali

zed

to

to

tal

PA

MS

NMHC Species

CAT 797B-2

Alkanes Alkenes AromaticsAlkyne

Page 69: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-8

Table 4-2. Halocarbon source profiles normalized by the sum of 55 photochemical assessment monitoring station (PAMS) compounds.

Compound

Run ID Liebherr T282B Average

CAT 797B-3 Average

CAT 797B-4 Average S1 S2 A3 A4 C2 C3 C4

Dichloromethane 0.00084±0.00010 0.00127±0.00015 0.02541±0.00155 0.02270±0.00096 0.00818±0.00691 0.00722±0.00136 0.00476±0.00190 0.00106±0.00030 0.02405±0.00191 0.00672±0.00365

Chlorobenzene 0.00026±0.00023 0.00002±0.00006 0.00021±0.00013 0.00009±0.00007 0.00000±0.00028 0.00018±0.00023 0.00014±0.00025 0.00014±0.00017 0.00015±0.00009 0.00010±0.00022

Chloroform 0.00003±0.00002 0.00004±0.00002 0.00008±0.00003 0.00007±0.00002 0.00007±0.00009 0.00004±0.00003 0.00004±0.00004 0.00004±0.00001 0.00008±0.00002 0.00005±0.00005 Dichlorodifluoromethane (F-12) 0.00021±0.00004 0.00038±0.00007 0.00056±0.00007 0.00073±0.00006 0.00053±0.00033 0.00043±0.00010 0.00038±0.00014 0.00030±0.00012 0.00064±0.00012 0.00045±0.00019

TrichloroEthene 0.00003±0.00002 0.00001±0.00002 0.00010±0.00005 0.00006±0.00002 0.00006±0.00013 0.00005±0.00005 0.00012±0.00017 0.00002±0.00002 0.00008±0.00003 0.00008±0.00011

1,3-Dichlorobenzene 0.00064±0.00064 0.00024±0.00024 0.00102±0.00071 0.00087±0.00042 0.00076±0.00220 0.00084±0.00121 0.00062±0.00127 0.00044±0.00034 0.00094±0.00041 0.00074±0.00141

o-Dichlorobenzene 0.00055±0.00063 0.00000±0.00006 0.00031±0.00024 0.00015±0.00008 0.00035±0.00115 0.00026±0.00043 0.00018±0.00042 0.00027±0.00039 0.00023±0.00013 0.00026±0.00065

p-Dichlorobenzene 0.00076±0.00064 0.00012±0.00010 0.00089±0.00052 0.00041±0.00017 0.00043±0.00104 0.00042±0.00052 0.00040±0.00069 0.00044±0.00045 0.00065±0.00034 0.00042±0.00068

Tetrachloromethane 0.00002±0.00001 0.00004±0.00001 0.00005±0.00001 0.00009±0.00001 0.00005±0.00006 0.00004±0.00002 0.00004±0.00003 0.00003±0.00001 0.00007±0.00002 0.00005±0.00003

Tetrachloroethene 0.00012±0.00004 0.00010±0.00003 0.00043±0.00037 0.00032±0.00014 0.01844±0.01667 0.00885±0.00400 0.00480±0.00310 0.00011±0.00003 0.00037±0.00020 0.01070±0.00871

1,1,2,2-Tetrachloroethane 0.00061±0.00014 0.00117±0.00027 0.00218±0.00033 0.00245±0.00026 0.00165±0.00115 0.00204±0.00064 0.00164±0.00075 0.00089±0.00039 0.00232±0.00021 0.00178±0.00076 1,2-dichlorotetrafluoroethane (F-114) 0.00002±0.00001 0.00003±0.00002 0.00004±0.00002 0.00006±0.00002 0.00003±0.00010 0.00003±0.00003 0.00002±0.00005 0.00002±0.00001 0.00005±0.00002 0.00003±0.00006 1,1,2-Trichloro-1,2,2- Trifluoroethane 0.00017±0.00002 0.00015±0.00002 0.00027±0.00002 0.00039±0.00002 0.00019±0.00014 0.00014±0.00004 0.00015±0.00006 0.00016±0.00002 0.00033±0.00008 0.00016±0.00008

Dibromochloromethane 0.00011±0.00001 0.00010±0.00001 0.00008±0.00001 0.00008±0.00001 0.00012±0.00005 0.00020±0.00002 0.00016±0.00003 0.00010±0.00001 0.00008±0.00001 0.00016±0.00004

Page 70: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-9

Table 4-3. Carbonyl compounds source profiles normalized by the sum of 14 carbonyls.

Compound

Run ID Liebherr T282B

CAT 797B-3

CAT 797B-4 S1 S2 S4 S5 A1 A2 A3 A4 C1 C2 C3 C4

Formaldehyde 0.8265

±0.0551 0.7379

±0.0472 0.5147

±0.0521 0.6362

±0.0649 0.9604

±0.0676 0.5300

±0.0307 0.4942

±0.0285 0.4248

±0.0250 0.2118

±0.0124 0.2164

±0.0122 0.2918

±0.0162 0.2778

±0.0162 0.6788

±0.1342 0.6024

±0.2427 0.2495

±0.0413

acetaldehyde 0.1178

±0.0078 0.0319

±0.0032 0.0000

±0.0233 0.0000

±0.0230 0.0000

±0.0033 0.1876

±0.0109 0.2540

±0.0147 0.2325

±0.0137 0.2791

±0.0163 0.3708

±0.0209 0.2722

±0.0151 0.3784

±0.0221 0.0374

±0.0556 0.1685

±0.1157 0.3251

±0.0573

Acrolein 0.0000

±0.0041 0.0000

±0.0030 0.0000

±0.0233 0.0000

±0.0230 0.0000

±0.0033 0.0000

±0.0009 0.0000

±0.0009 0.0282

±0.0017 0.0000

±0.0005 0.0000

±0.0010 0.0000

±0.0007 0.0000

±0.0007 0.0000

±0.0083 0.0071

±0.0141 0.0000

±0.0004

Glyoxal 0.0557

±0.0048 0.0477

±0.0035 0.0000

±0.0235 0.0000

±0.0232 0.0396

±0.0039 0.0203

±0.0012 0.0137

±0.0010 0.0068

±0.0012 0.0103

±0.0006 0.0114

±0.0011 0.0190

±0.0011 0.0053

±0.0007 0.0259

±0.0300 0.0201

±0.0141 0.0115

±0.0057

acetone 0.0000

±0.0041 0.0000

±0.0030 0.4853

±0.0490 0.3063

±0.0358 0.0000

±0.0034 0.0913

±0.0053 0.1243

±0.0072 0.1285

±0.0075 0.3312

±0.0193 0.2438

±0.0137 0.2333

±0.0129 0.1503

±0.0088 0.1979

±0.2399 0.0860

±0.0597 0.2396

±0.0740

Propionaldehyde 0.0000

±0.0041 0.0000

±0.0030 0.0000

±0.0235 0.0000

±0.0232 0.0000

±0.0034 0.0000

±0.0009 0.0000

±0.0009 0.0621

±0.0172 0.0634

±0.0175 0.0000

±0.0010 0.0000

±0.0007 0.0598

±0.0165 0.0000

±0.0084 0.0155

±0.0311 0.0308

±0.0356

Crotonaldehyde 0.0000

±0.0041 0.0000

±0.0030 0.0000

±0.0233 0.0000

±0.0230 0.0000

±0.0033 0.0525

±0.0030 0.0563

±0.0033 0.0766

±0.0045 0.1014

±0.0059 0.1353

±0.0076 0.0922

±0.0051 0.1025

±0.0060 0.0000

±0.0083 0.0464

±0.0327 0.1078

±0.0189

Methacrolein 0.0000

±0.0041 0.0000

±0.0030 0.0000

±0.0233 0.0000

±0.0230 0.0000

±0.0033 0.0000

±0.0009 0.0000

±0.0009 0.0000

±0.0012 0.0000

±0.0005 0.0000

±0.0010 0.0000

±0.0007 0.0000

±0.0007 0.0000

±0.0083 0.0000

±0.0009 0.0000

±0.0004

n-butyraldehyde 0.0000

±0.0041 0.0000

±0.0030 0.0000

±0.0232 0.0000

±0.0229 0.0000

±0.0033 0.0000

±0.0009 0.0158

±0.0010 0.0000

±0.0012 0.0000

±0.0005 0.0000

±0.0010 0.0000

±0.0007 0.0000

±0.0007 0.0000

±0.0082 0.0040

±0.0079 0.0000

±0.0004

2-Butanone (MEK) 0.0000

±0.0041 0.0000

±0.0030 0.0000

±0.0232 0.0000

±0.0229 0.0000

±0.0033 0.0000

±0.0009 0.0000

±0.0009 0.0000

±0.0012 0.0000

±0.0005 0.0000

±0.0010 0.0000

±0.0007 0.0000

±0.0007 0.0000

±0.0082 0.0000

±0.0009 0.0000

±0.0004

Valeraldehyde 0.0000

±0.0041 0.0603

±0.0039 0.0000

±0.0232 0.0000

±0.0230 0.0000

±0.0033 0.0092

±0.0010 0.0109

±0.0010 0.0101

±0.0012 0.0028

±0.0005 0.0043

±0.0010 0.0041

±0.0007 0.0098

±0.0008 0.0151

±0.0301 0.0075

±0.0051 0.0053

±0.0031

Hexaldehyde 0.0000

±0.0040 0.0000

±0.0029 0.0000

±0.0229 0.0576

±0.0232 0.0000

±0.0033 0.0000

±0.0009 0.0000

±0.0009 0.0000

±0.0012 0.0000

±0.0005 0.0000

±0.0010 0.0000

±0.0007 0.0000

±0.0007 0.0144

±0.0288 0.0000

±0.0009 0.0000

±0.0004

benzaldehyde 0.0000

±0.0041 0.1223

±0.0122 0.0000

±0.0231 0.0000

±0.0229 0.0000

±0.0033 0.0514

±0.0050 0.0309

±0.0030 0.0303

±0.0029 0.0000

±0.0005 0.0181

±0.0017 0.0291

±0.0028 0.0161

±0.0015 0.0306

±0.0611 0.0281

±0.0212 0.0158

±0.0120

m-Tolualdehyde 0.0000

±0.0042 0.0000

±0.0030 0.0000

±0.0237 0.0000

±0.0234 0.0000

±0.0034 0.0578

±0.0034 0.0000

±0.0009 0.0000

±0.0012 0.0000

±0.0005 0.0000

±0.0010 0.0584

±0.0032 0.0000

±0.0007 0.0000

±0.0084 0.0144

±0.0289 0.0146

±0.0292

Page 71: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-10

Table 4-4. Summary of the PM2.5 source profiles for the 14 tests conducted at Facilities S (Liebherr T282B), A (CAT 797B-3), and C (CAT797B-4). Data are expressed as a percentage of the Teflon-membrane filter mass concentration.

Chemical Species

Run ID Liebherr T282B

Average

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Cl- 0.00 ±

0.13 0.00 ±

0.09 0.00 ±

0.14 0.00 ±

0.14 0.00 ±

0.15 0.00 ±

0.27 0.00 ±

0.06 0.00 ±

0.23 0.00 ±

0.17 0.00 ±

0.20 0.01 ±

0.19 0.00 ±

0.27 0.00 ±

0.61 0.00 ±

0.19 0.00 ± 0.07

0.00 ± 0.09

0.00 ± 0.18 -

NO2-

0.18 ± 0.18

0.34 ± 0.13

0.30 ± 0.20

1.02 ± 0.20

0.19 ± 0.20

0.33 ± 0.38

0.15 ± 0.08

0.00 ± 0.32

0.22 ± 0.24

0.43 ± 0.28

0.28 ± 0.27

0.37 ± 0.38

1.30 ± 0.86

1.06 ± 0.28

0.39 ± 0.31

0.20 ± 0.18

0.75 ± 0.50 2.0:1.0:3.8

NO3-

0.26 ± 0.11

0.24 ± 0.08

0.34 ± 0.12

0.45 ± 0.12

0.28 ± 0.13

0.32 ± 0.23

0.29 ± 0.05

0.37 ± 0.20

0.41 ± 0.15

0.57 ± 0.18

1.17 ± 0.19

1.05 ± 0.25

1.72 ± 0.55

1.20 ± 0.19

0.32 ± 0.08

0.41 ± 0.12

1.29 ± 0.30 0.8:1.0:3.1

PO4≡

0.57 ± 0.12

0.51 ± 0.09

0.36 ± 0.12

0.54 ± 0.12

0.41 ± 0.13

0.54 ± 0.24

0.62 ± 0.07

0.95 ± 0.21

1.03 ± 0.17

1.23 ± 0.19

2.29 ± 0.24

2.52 ± 0.30

3.71 ± 0.61

2.93 ± 0.28

0.49 ± 0.08

0.96 ± 0.25

2.86 ± 0.62 0.5:1.0:3.0

SO4=

0.16 ± 0.11

0.13 ± 0.08

0.16 ± 0.12

0.17 ± 0.12

0.15 ± 0.13

0.18 ± 0.23

0.11 ± 0.05

0.13 ± 0.20

0.26 ± 0.15

0.22 ± 0.17

0.45 ± 0.17

0.49 ± 0.24

0.97 ± 0.53

0.67 ± 0.18

0.16 ± 0.06

0.18 ± 0.08

0.65 ± 0.24 0.9:1.0:3.6

NH4+

0.18 ± 0.11

0.20 ± 0.09

0.28 ± 0.13

0.29 ± 0.12

0.25 ± 0.13

0.41 ± 0.24

0.11 ± 0.05

0.30 ± 0.20

0.35 ± 0.16

0.48 ± 0.18

0.25 ± 0.17

0.23 ± 0.24

0.43 ± 0.53

0.24 ± 0.17

0.27 ± 0.08

0.31 ± 0.15

0.29 ± 0.16 0.9:1.0:0.9

Na+ 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.00 ±

0.02 0.04 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.04 0.00 ±

0.01 0.00 ± 0.01

0.01 ± 0.02

0.00 ± 0.01 0.0:1.0:0.0

Mg++ 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.01 ±

0.02 0.01 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.01 ± 0.01 -

K+ 0.00 ±

0.03 0.00 ±

0.02 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.04 0.00 ±

0.07 0.00 ±

0.01 0.00 ±

0.06 0.00 ±

0.04 0.00 ±

0.05 0.00 ±

0.05 0.00 ±

0.07 0.00 ±

0.15 0.01 ±

0.05 0.00 ± 0.02

0.00 ± 0.02

0.00 ± 0.05 -

Ca++ 0.33 ±

0.06 0.26 ±

0.05 0.20 ±

0.06 0.30 ±

0.06 0.24 ±

0.06 0.19 ±

0.12 0.40 ±

0.04 0.48 ±

0.11 0.74 ±

0.09 0.74 ±

0.10 1.79 ±

0.16 2.04 ±

0.19 3.00 ±

0.36 2.58 ±

0.21 0.25 ± 0.06

0.59 ± 0.18

2.35 ± 0.54 0.4:1.0:4.0

OC1 10.07 ± 2.94

8.58 ± 2.49

4.81 ± 1.53

10.23 ± 3.00

5.19 ± 1.64

5.30 ± 1.89

10.13 ± 2.86

6.36 ± 2.10

5.96 ± 1.89

4.31 ± 1.50

11.73 ± 3.50

5.92 ± 2.06

11.98 ± 4.30

4.85 ± 1.64

7.36 ± 2.55

6.69 ± 2.46

8.62 ± 3.76 1.1:1.0:1.3

OC2 9.48 ±

1.81 7.90 ±

1.48 6.73 ±

1.40 8.65 ±

1.69 6.21 ±

1.33 6.88 ±

1.78 6.90 ±

1.24 4.71 ±

1.35 5.29 ±

1.27 5.23 ±

1.33 10.99 ± 2.21

11.99 ± 2.56

14.60 ± 3.91

10.28 ± 2.10

7.64 ± 1.26

5.53 ± 0.95

11.97 ± 1.89 1.4:1.0:2.2

OC3 4.44 ±

1.44 4.34 ±

1.19 2.46 ±

1.34 3.87 ±

1.45 3.23 ±

1.46 0.00 ±

2.22 2.46 ±

0.70 1.52 ±

2.04 0.92 ±

1.50 0.24 ±

1.68 1.75 ±

1.76 0.00 ±

2.28 0.00 ±

4.99 2.01 ±

1.78 3.06 ± 1.67

1.29 ± 0.94

0.94 ± 1.51 2.4:1.0:0.7

OC4 1.97 ±

0.65 1.82 ±

0.55 0.86 ±

0.49 1.74 ±

0.62 1.70 ±

0.64 0.19 ±

0.76 0.80 ±

0.27 0.65 ±

0.70 0.61 ±

0.54 0.43 ±

0.59 2.06 ±

0.82 0.82 ±

0.84 0.00 ±

1.67 2.22 ±

0.85 1.38 ± 0.70

0.62 ± 0.27

1.28 ± 1.06 2.2:1.0:2.0

OP 0.00 ±

0.16 0.00 ±

0.12 0.00 ±

0.18 0.00 ±

0.17 0.00 ±

0.18 0.00 ±

0.34 0.00 ±

0.07 0.00 ±

0.29 0.00 ±

0.22 0.00 ±

0.25 0.00 ±

0.25 0.00 ±

0.35 0.00 ±

0.78 0.00 ±

0.25 0.00 ± 0.08

0.00 ± 0.11

0.00 ± 0.23 -

EC1 4.56 ±

0.71 3.92 ±

0.60 2.53 ±

0.47 5.03 ±

0.78 6.07 ±

0.92 2.81 ±

0.69 5.15 ±

0.74 5.83 ±

0.98 5.48 ±

0.87 5.44 ±

0.89 32.68 ± 4.62

34.53 ± 4.91

30.74 ± 4.67

48.59 ± 6.83

4.15 ± 1.35

5.48 ± 0.44

36.64 ± 8.12 0.8:1.0:6.7

EC2 36.19

± 40.55

± 51.37

± 49.44

± 45.75

± 45.28

± 39.83

± 48.40

± 58.88

± 51.77

± 12.38 ± 3.92

14.63 ± 4.69

42.26 ±

6.60 ± 2.22

44.76 ± 5.62

49.72 ± 7.91

18.97 ± 15.89 0.9:1.0:0.4

EC3 0.12 ±

0.05 0.04 ±

0.04 0.00 ±

0.06 0.00 ±

0.05 0.00 ±

0.06 0.00 ±

0.11 0.00 ±

0.02 0.00 ±

0.09 0.10 ±

0.07 0.00 ±

0.08 0.00 ±

0.08 0.00 ±

0.11 0.00 ±

0.24 0.00 ±

0.08 0.03 ± 0.05

0.03 ± 0.05

0.00 ± 0.07 1.1:1.0:0.0

CO3=

0.00 ± 0.15

0.00 ± 0.12

0.00 ± 0.17

0.00 ± 0.17

0.00 ± 0.18

0.00 ± 0.33

0.00 ± 0.07

0.00 ± 0.28

0.00 ± 0.21

0.00 ± 0.24

0.00 ± 0.24

0.00 ± 0.33

0.00 ± 0.75

0.00 ± 0.24

0.00 ± 0.08

0.00 ± 0.11

0.00 ± 0.22 -

OC 25.96 ± 2.68

22.65 ± 2.24

14.86 ± 2.05

24.49 ± 2.63

16.33 ± 2.18

11.08 ± 3.16

20.29 ± 1.85

13.24 ± 2.85

12.77 ± 2.24

10.21 ± 2.39

26.53 ± 3.23

18.32 ± 3.47

22.03 ± 7.12

19.37 ± 2.80

19.23 ± 5.98

14.13 ± 4.32

21.56 ± 3.66 1.4:1.0:1.5

EC 40.87 ± 3.23

44.51 ± 3.48

53.90 ± 4.24

54.46 ± 4.27

51.81 ± 4.08

48.08 ± 3.96

44.98 ± 3.49

54.23 ± 4.37

64.45 ± 5.07

57.20 ± 4.54

45.05 ± 3.62

49.15 ± 4.04

72.98 ± 6.62

55.18 ± 4.39

48.94 ± 5.46

55.22 ± 8.06

55.59 ± 12.32 0.9:1.0:1.0

TC 66.83 ± 5.62

67.16 ± 5.48

68.76 ± 5.83

78.95 ± 6.55

68.14 ± 5.81

59.16 ± 6.22

65.27 ± 5.19

67.47 ± 6.41

77.23 ± 6.64

67.41 ± 6.12

71.58 ± 6.40

67.47 ± 6.77

95.01 ±

74.54 ± 6.62

68.17 ± 6.33

69.35 ± 5.36

77.15 ± 12.25 1.0:1.0:1.1

Page 72: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-11

Table 4-4. Continued

Chemical Species Run ID Liebherr

T282B Average

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Na 0.13 ±

0.32 0.00 ±

0.24 0.08 ±

0.35 0.00 ±

0.34 0.71 ±

0.39 0.02 ±

0.69 0.21 ±

0.15 0.00 ±

0.58 0.30 ±

0.44 0.00 ±

0.50 0.31 ±

0.51 0.50 ±

0.71 0.00 ±

1.54 0.98 ±

0.52 0.16 ± 0.28

0.13 ± 0.22

0.45 ± 0.46

1.2:1.0:3.5

Mg 0.01 ±

0.11 0.00 ±

0.08 0.14 ±

0.12 0.00 ±

0.11 0.10 ±

0.12 0.00 ±

0.22 0.00 ±

0.05 0.00 ±

0.19 0.00 ±

0.14 0.00 ±

0.16 0.00 ±

0.16 0.02 ±

0.23 0.00 ±

0.51 0.03 ±

0.16 0.04 ± 0.06

0.00 ± 0.07

0.01 ± 0.15

-

Al 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.05 0.00 ±

0.01 0.00 ±

0.04 0.00 ±

0.03 0.00 ±

0.04 0.00 ±

0.04 0.00 ±

0.05 0.00 ±

0.12 0.00 ±

0.04 0.00 ± 0.01

0.00 ± 0.02

0.00 ± 0.04

-

Si 0.00 ±

0.05 0.00 ±

0.04 0.00 ±

0.05 0.00 ±

0.05 0.00 ±

0.05 0.00 ±

0.10 0.00 ±

0.02 0.00 ±

0.09 0.00 ±

0.06 0.00 ±

0.07 0.00 ±

0.07 0.00 ±

0.10 0.00 ±

0.23 0.00 ±

0.07 0.00 ± 0.02

0.00 ± 0.03

0.00 ± 0.07

-

P 0.33 ±

0.02 0.31 ±

0.02 0.20 ±

0.01 0.24 ±

0.02 0.20 ±

0.02 0.20 ±

0.02 0.37 ±

0.03 0.41 ±

0.03 0.49 ±

0.04 0.56 ±

0.04 0.88 ±

0.06 0.95 ±

0.07 0.96 ±

0.08 1.16 ±

0.08 0.25 ± 0.06

0.46 ± 0.08

0.99 ± 0.12

0.5:1.0:2.2

S 0.16 ±

0.01 0.09 ±

0.01 0.07 ±

0.01 0.08 ±

0.01 0.07 ±

0.01 0.06 ±

0.01 0.07 ±

0.01 0.07 ±

0.01 0.09 ±

0.01 0.10 ±

0.01 0.24 ±

0.02 0.21 ±

0.02 0.22 ±

0.02 0.30 ±

0.02 0.09 ± 0.04

0.08 ± 0.02

0.24 ± 0.04

1.1:1.0:3.0

Cl 0.01 ±

0.01 0.01 ±

0.01 0.01 ±

0.02 0.01 ±

0.02 0.01 ±

0.02 0.01 ±

0.03 0.01 ±

0.01 0.03 ±

0.03 0.04 ±

0.02 0.05 ±

0.02 0.08 ±

0.02 0.09 ±

0.03 0.09 ±

0.07 0.10 ±

0.02 0.01 ± 0.01

0.03 ± 0.02

0.09 ± 0.02

0.3:1.0:3.0

K 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.01 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.01 ±

0.02 0.00 ±

0.04 0.03 ±

0.01 0.00 ± 0.01

0.01 ± 0.01

0.01 ± 0.01

-

Ca 0.52 ±

0.04 0.44 ±

0.04 0.32 ±

0.04 0.42 ±

0.04 0.36 ±

0.04 0.36 ±

0.06 0.61 ±

0.05 0.76 ±

0.07 0.83 ±

0.07 1.11 ±

0.09 2.15 ±

0.16 2.44 ±

0.19 2.47 ±

0.23 2.85 ±

0.21 0.40 ± 0.07

0.83 ± 0.21

2.48 ± 0.29

0.5:1.0:3.0

Sc 0.00 ±

0.06 0.02 ±

0.05 0.00 ±

0.07 0.00 ±

0.07 0.00 ±

0.07 0.03 ±

0.14 0.02 ±

0.03 0.00 ±

0.12 0.00 ±

0.09 0.01 ±

0.10 0.00 ±

0.10 0.00 ±

0.14 0.01 ±

0.31 0.04 ±

0.10 0.01 ± 0.03

0.01 ± 0.05

0.01 ± 0.09

1.0:1.0:1.0

Ti 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.03 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

V 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Cr 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Mn 0.01 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.01 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.01 ±

0.05 0.00 ±

0.02 0.01 ± 0.01

0.00 ± 0.01

0.00 ± 0.02

-

Fe 0.01 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.04 ±

0.03 0.00 ±

0.01 0.01 ±

0.02 0.01 ±

0.02 0.02 ±

0.02 0.03 ±

0.02 0.01 ±

0.03 0.01 ±

0.06 0.03 ±

0.02 0.01 ± 0.02

0.01 ± 0.01

0.02 ± 0.02

1.0:1.0:2.0

Co 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Ni 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.05 0.00 ±

0.02 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.02

-

Cu 0.02 ±

0.01 0.03 ±

0.01 0.01 ±

0.01 0.04 ±

0.01 0.06 ±

0.02 0.05 ±

0.03 0.01 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.01 ±

0.02 0.01 ±

0.03 0.00 ±

0.06 0.01 ±

0.02 0.04 ± 0.02

0.00 ± 0.01

0.01 ± 0.02

3.0:1.0:1.0

Zn 0.37 ±

0.03 0.34 ±

0.02 0.22 ±

0.02 0.26 ±

0.02 0.23 ±

0.02 0.28 ±

0.02 0.34 ±

0.02 0.43 ±

0.03 0.46 ±

0.03 0.58 ±

0.04 0.86 ±

0.06 0.93 ±

0.07 1.10 ±

0.09 1.16 ±

0.08 0.28 ± 0.06

0.45 ± 0.10

1.01 ± 0.14

0.6:1.0:2.2

Ga 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.01 ±

0.04 0.00 ±

0.01 0.00 ±

0.03 0.00 ±

0.02 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.04 0.00 ±

0.08 0.00 ±

0.03 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.02

-

As 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Se 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.01 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.01 ±

0.02 0.01 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.01 ± 0.01

-

Br 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Rb 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Sr 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.01 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.01 ±

0.01 0.00 ± 0.00

0.00 ± 0.01

0.00 ± 0.01

-

Y 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.01 ±

0.02 0.01 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.01 ± 0.01

-

Zr 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.00 ±

0.03 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Nb 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Mo 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.02 0.00 ±

0.04 0.00 ±

0.01 0.00 ± 0.01

0.00 ± 0.00

0.00 ± 0.01

-

Page 73: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-12

Table 4-4. Continued

Chemical Species Run ID Liebherr

T282B Average

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Pd 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.04 0.00 ±

0.01 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.01

-

Ag 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.02 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.01 ±

0.04 0.00 ±

0.01 0.00 ± 0.01

0.00 ± 0.00

0.00 ± 0.01

-

Cd 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.02 0.00 ±

0.00 0.00 ±

0.02 0.01 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.05 0.00 ±

0.02 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.02

-

In 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.05 0.00 ±

0.02 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.02

-

Sn 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.00 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.02 ±

0.05 0.00 ±

0.02 0.00 ± 0.01

0.00 ± 0.01

0.01 ± 0.02

-

Sb 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.04 0.00 ±

0.01 0.00 ±

0.03 0.00 ±

0.02 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.04 0.00 ±

0.09 0.00 ±

0.03 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.03

-

Cs 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.04 0.00 ±

0.04 0.00 ±

0.04 0.00 ±

0.07 0.00 ±

0.02 0.00 ±

0.06 0.00 ±

0.05 0.00 ±

0.05 0.00 ±

0.05 0.00 ±

0.07 0.00 ±

0.17 0.00 ±

0.05 0.00 ± 0.02

0.00 ± 0.02

0.00 ± 0.05

-

Ba 0.00 ±

0.04 0.00 ±

0.03 0.01 ±

0.04 0.01 ±

0.04 0.00 ±

0.05 0.00 ±

0.08 0.00 ±

0.02 0.05 ±

0.07 0.00 ±

0.05 0.00 ±

0.06 0.01 ±

0.06 0.00 ±

0.09 0.00 ±

0.19 0.04 ±

0.06 0.00 ± 0.02

0.01 ± 0.03

0.01 ± 0.06

0.0:1.0:1.0

La 0.00 ±

0.05 0.00 ±

0.04 0.00 ±

0.05 0.00 ±

0.05 0.00 ±

0.06 0.00 ±

0.11 0.00 ±

0.02 0.00 ±

0.09 0.00 ±

0.07 0.00 ±

0.08 0.05 ±

0.08 0.00 ±

0.11 0.00 ±

0.25 0.00 ±

0.08 0.00 ± 0.03

0.00 ± 0.04

0.01 ± 0.07

-

Ce 0.02 ±

0.05 0.01 ±

0.03 0.02 ±

0.05 0.00 ±

0.05 0.02 ±

0.05 0.02 ±

0.10 0.00 ±

0.02 0.00 ±

0.09 0.00 ±

0.06 0.05 ±

0.07 0.01 ±

0.07 0.00 ±

0.10 0.00 ±

0.23 0.04 ±

0.07 0.02 ± 0.02

0.01 ± 0.03

0.01 ± 0.07

1.0:1.0:1.0

Sm 0.00 ±

0.08 0.01 ±

0.06 0.00 ±

0.09 0.00 ±

0.09 0.00 ±

0.10 0.00 ±

0.18 0.00 ±

0.04 0.02 ±

0.15 0.03 ±

0.11 0.00 ±

0.13 0.00 ±

0.13 0.00 ±

0.18 0.00 ±

0.40 0.02 ±

0.13 0.00 ± 0.04

0.01 ± 0.06

0.01 ± 0.12

0.0:1.0:0.0

Eu 0.00 ±

0.12 0.02 ±

0.09 0.00 ±

0.13 0.00 ±

0.13 0.06 ±

0.14 0.00 ±

0.26 0.00 ±

0.05 0.01 ±

0.22 0.00 ±

0.16 0.00 ±

0.19 0.00 ±

0.19 0.00 ±

0.26 0.00 ±

0.59 0.05 ±

0.19 0.01 ± 0.06

0.00 ± 0.08

0.01 ± 0.17

-

Tb 0.01 ±

0.09 0.00 ±

0.07 0.00 ±

0.10 0.00 ±

0.10 0.00 ±

0.11 0.00 ±

0.19 0.00 ±

0.04 0.00 ±

0.17 0.00 ±

0.12 0.00 ±

0.14 0.00 ±

0.14 0.00 ±

0.20 0.00 ±

0.44 0.00 ±

0.14 0.00 ± 0.05

0.00 ± 0.06

0.00 ± 0.13

-

Hf 0.00 ±

0.03 0.00 ±

0.02 0.01 ±

0.03 0.00 ±

0.03 0.00 ±

0.03 0.00 ±

0.05 0.00 ±

0.01 0.00 ±

0.05 0.00 ±

0.03 0.00 ±

0.04 0.00 ±

0.04 0.00 ±

0.05 0.00 ±

0.12 0.00 ±

0.04 0.00 ± 0.01

0.00 ± 0.02

0.00 ± 0.04

-

Ta 0.01 ±

0.01 0.01 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.03 0.00 ±

0.01 0.00 ±

0.03 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.02 0.00 ±

0.03 0.00 ±

0.07 0.01 ±

0.02 0.00 ± 0.01

0.00 ± 0.01

0.00 ± 0.02

-

Wo 0.00 ±

0.04 0.00 ±

0.03 0.02 ±

0.04 0.00 ±

0.04 0.00 ±

0.05 0.02 ±

0.08 0.00 ±

0.02 0.00 ±

0.07 0.00 ±

0.05 0.00 ±

0.06 0.00 ±

0.06 0.00 ±

0.09 0.00 ±

0.19 0.00 ±

0.06 0.01 ± 0.02

0.00 ± 0.03

0.00 ± 0.06

-

Ir 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.03 0.01 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Au 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.01 0.00 ±

0.03 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Hg 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.01 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Tl 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Pb 0.01 ±

0.00 0.00 ±

0.00 0.01 ±

0.00 0.00 ±

0.00 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.02 0.00 ±

0.01 0.00 ± 0.01

0.00 ± 0.00

0.00 ± 0.01

-

U 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.00 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.01 0.00 ±

0.03 0.00 ±

0.01 0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.01

-

Sum of speciesa 69.17 ± 5.63

69.48 ± 5.48

70.87 ± 5.84

82.19 ± 6.56

70.18 ± 5.83

61.78 ± 6.27

67.55 ± 5.19

70.57 ± 6.44

80.89 ± 6.65

72.19 ± 6.14

79.27 ± 6.43

75.67 ± 6.82

106.93 ± 12.28

85.07 ± 6.65

70.61 ± 6.57

72.80 ± 5.73

86.74 ± 14.01

1.0:1.0:1.2

aIncluding TC, Na+, Mg++, K, Cl, Ca, PO4≡, and SO4

= Excluding OC and EC fractions, OC, EC, Na, Mg, P, S, CO3

=, K+, Cl- , and Ca++

Page 74: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-13

Table 4-5. Summary of the source profiles of Cs, Ba, 14 rare earth elements, and Pb (measured by ICP/MS) in PM2.5 for the eight tests conducted at Facilities S, A, and C. Data are expressed as a percentage of the Teflon-membrane filter mass concentration. Elemen

ts

Run ID Liebherr T282B

Average

CAT 797B-3 Average

CAT 797B-4 Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Cs 0.000000

± 0.000030

0.000000±

0.000023

0.000000±

0.000033

0.000000±

0.000033

0.000000±

0.000035

0.000000±

0.000063

0.000000±

0.000014

0.000000±

0.000054

0.000000±

0.000041

0.000000±

0.000047

0.000000±

0.000047

0.000000±

0.000064

0.000000±

0.000127

0.000000±

0.000047

0.000000±

0.000016

0.000000±

0.000021

0.000000±

0.000039

Ba 0.000720

± 0.001794

0.000074±

0.000182

0.000160±

0.000496

0.000000±

0.000152

0.001265±

0.003510

0.000000±

0.000505

0.000028±

0.000085

0.002857±

0.007172

0.001135±

0.002503

0.000469±

0.001270

0.000095±

0.000291

0.000414±

0.001067

0.000261±

0.001063

0.002631±

0.006267

0.000370±

0.000669

0.001122±

0.001926

0.000850±

0.001613

La 0.000000

± 0.000103

0.000000±

0.000060

0.000000±

0.000130

0.000000±

0.000144

0.000000±

0.000141

0.000000±

0.000254

0.000000±

0.000048

0.000000±

0.000201

0.000000±

0.000134

0.000000±

0.000170

0.000000±

0.000100

0.000000±

0.000224

0.000000±

0.000407

0.000000±

0.000165

0.000000±

0.000062

0.000000±

0.000075

0.000000±

0.000126

Ce 0.000000

± 0.000216

0.000000±

0.000122

0.000000±

0.000270

0.000000±

0.000294

0.000000±

0.000289

0.000000±

0.000575

0.000000±

0.000096

0.000000±

0.000411

0.000000±

0.000279

0.000000±

0.000383

0.000000±

0.000216

0.000000±

0.000484

0.000000±

0.000839

0.000000±

0.000343

0.000000±

0.000133

0.000000±

0.000159

0.000000±

0.000262

Pr 0.000000

± 0.000081

0.000000±

0.000152

0.000000±

0.000038

0.000000±

0.000082

0.000000±

0.000054

0.000000±

0.000131

0.000000±

0.000030

0.000000±

0.000118

0.000000±

0.000095

0.000000±

0.000105

0.000000±

0.000100

0.000000±

0.000158

0.000000±

0.000137

0.000000±

0.000095

0.000000±

0.000040

0.000000±

0.000047

0.000000±

0.000063

Nd 0.000000

± 0.000067

0.000000±

0.000051

0.000000±

0.000076

0.000000±

0.000092

0.000000±

0.000088

0.000000±

0.000655

0.000000±

0.000030

0.000000±

0.000109

0.000000±

0.000100

0.000000±

0.000146

0.000000±

0.000107

0.000000±

0.000143

0.000000±

0.000419

0.000000±

0.000107

0.000000±

0.000113

0.000000±

0.000052

0.000000±

0.000117

Sm 0.000002

± 0.000070

0.000000±

0.000023

0.000002±

0.000101

0.000000±

0.000035

0.000000±

0.000036

0.000004±

0.000134

0.000001±

0.000036

0.000003±

0.000125

0.000002±

0.000116

0.000003±

0.000121

0.000003±

0.000135

0.000004±

0.000151

0.000000±

0.000130

0.000000±

0.000048

0.000001±

0.000032

0.000002±

0.000053

0.000002±

0.000061

Eu 0.000000

± 0.000030

0.000000±

0.000023

0.000000±

0.000033

0.000000±

0.000033

0.000000±

0.000035

0.000000±

0.000063

0.000000±

0.000014

0.000000±

0.000054

0.000000±

0.000041

0.000000±

0.000047

0.000000±

0.000047

0.000000±

0.000064

0.000000±

0.000127

0.000000±

0.000047

0.000000±

0.000016

0.000000±

0.000021

0.000000±

0.000039

Gd 0.000000

± 0.000030

0.000000±

0.000023

0.000000±

0.000033

0.000000±

0.000033

0.000000±

0.000035

0.000000±

0.000063

0.000000±

0.000014

0.000000±

0.000054

0.000000±

0.000041

0.000000±

0.000047

0.000000±

0.000047

0.000000±

0.000064

0.000000±

0.000127

0.000000±

0.000047

0.000000±

0.000016

0.000000±

0.000021

0.000000±

0.000039

Tb 0.000000

± 0.000030

0.000000±

0.000023

0.000000±

0.000033

0.000000±

0.000033

0.000000±

0.000035

0.000000±

0.000063

0.000000±

0.000014

0.000000±

0.000054

0.000000±

0.000041

0.000000±

0.000047

0.000000±

0.000047

0.000000±

0.000064

0.000000±

0.000127

0.000000±

0.000047

0.000000±

0.000016

0.000000±

0.000021

0.000000±

0.000039

Dy 0.000003

± 0.000074

0.000000±

0.000024

0.000000±

0.000036

0.000003±

0.000080

0.000000±

0.000038

0.000005±

0.000236

0.000001±

0.000050

0.000005±

0.000191

0.000003±

0.000111

0.000004±

0.000121

0.000000±

0.000048

0.000006±

0.000177

0.000000±

0.000134

0.000004±

0.000129

0.000002±

0.000044

0.000003±

0.000064

0.000003±

0.000065

Ho 0.000000

± 0.000092

0.000000±

0.000025

0.000000±

0.000124

0.000000±

0.000041

0.000000±

0.000099

0.000000±

0.000080

0.000000±

0.000064

0.000000±

0.000231

0.000000±

0.000194

0.000000±

0.000212

0.000000±

0.000049

0.000000±

0.000074

0.000000±

0.000144

0.000000±

0.000128

0.000000±

0.000034

0.000000±

0.000094

0.000000±

0.000053

Er 0.000005

± 0.000093

0.000000±

0.000023

0.000000±

0.000034

0.000000±

0.000034

0.000000±

0.000036

0.000000±

0.000065

0.000002±

0.000045

0.000009±

0.000214

0.000007±

0.000191

0.000000±

0.000048

0.000000±

0.000047

0.000011±

0.000219

0.000025±

0.000674

0.000000±

0.000048

0.000001±

0.000022

0.000005±

0.000074

0.000009±

0.000178

Tm 0.000000

± 0.000031

0.000000±

0.000023

0.000000±

0.000034

0.000000±

0.000034

0.000000±

0.000036

0.000000±

0.000065

0.000000±

0.000014

0.000000±

0.000056

0.000000±

0.000042

0.000000±

0.000048

0.000000±

0.000047

0.000000±

0.000065

0.000000±

0.000129

0.000000±

0.000048

0.000000±

0.000016

0.000000±

0.000022

0.000000±

0.000040

Yb 0.000000

± 0.000030

0.000000±

0.000023

0.000000±

0.000033

0.000000±

0.000033

0.000000±

0.000035

0.000000±

0.000063

0.000000±

0.000014

0.000000±

0.000054

0.000000±

0.000041

0.000000±

0.000047

0.000000±

0.000047

0.000000±

0.000064

0.000000±

0.000127

0.000000±

0.000047

0.000000±

0.000016

0.000000±

0.000021

0.000000±

0.000039

Lu 0.000000

± 0.000030

0.000000±

0.000023

0.000000±

0.000033

0.000000±

0.000033

0.000000±

0.000035

0.000000±

0.000063

0.000000±

0.000014

0.000000±

0.000054

0.000000±

0.000041

0.000000±

0.000047

0.000000±

0.000047

0.000000±

0.000064

0.000000±

0.000127

0.000000±

0.000047

0.000000±

0.000016

0.000000±

0.000021

0.000000±

0.000039

Pb 0.000425

± 0.001007

0.000111±

0.000196

0.002723±

0.007170

0.000539±

0.001615

0.000101±

0.000285

0.000677±

0.002053

0.000185±

0.000426

0.000286±

0.000707

0.000223±

0.000495

0.000029±

0.000097

0.000936±

0.001247

0.000521±

0.001197

0.001061±

0.001996

0.002541±

0.005974

0.000763±

0.001284

0.000181±

0.000242

0.001265±

0.001633

Page 75: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-14

a) b)

c) d)

e)

Figure 4-4. Averaged PM2.5 source profiles for the five trucks. (The height of each bar indicates the average fractional abundance for the indicated chemical [normalized to PM2.5 mass concentration], while the dot shows the larger of the standard deviation or uncertainty of average of multiple runs.

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+

Mg++

Ca++

OCEC

Al

SiP

S

Cl

K

Ca

Sc

Ti

Fe

Cu

Zn

Ga

Sr

ZrNb

Mo

Ag

Sn

Sb Ba

La

Ce

SmEu

Ir

Au PbUr

0.001

0.01

0.1

1

10

100

Ch

emic

al A

bu

nd

ance

(%

)

Chemical Species

CAT 797B-1

NO2-

NO3-

PO4≡

SO4=

NH4+

Na+

Mg++

K+

Ca++

OCEC

Si

P

SCl

K

Ca

Sc

Ti

Fe Cu

Zn

Ga

SrZr Nb

Mo

Ag

Sn

Sb

Ba

La Sm

Eu

Au

Ur

0.001

0.01

0.1

1

10

100

Ch

emic

al A

bu

nd

ance

(%

)

Chemical Species

CAT 797B-2

NO2-

NO3-PO4

SO4=

NH4+

OC

Ca++

EC

P

S

Cl

K

Ca

Mn

Fe

Cu

Zn

Eu

Na+

Mg++

Na

Mg

KSc

Mn Se YSn

Ba

La

CeSm

Eu

Wo

0.001

0.01

0.1

1

10

100

Ch

emic

al A

bu

nd

anc

e (%

)

Chemical Species

CAT 797B-3(with Additive)

NO2-

NO3-PO4

SO4=

NH4+

Mg++

OC

Ca++

EC

P

S

Cl

K

Ca

Mn

Fe

Cu

Zn

Sn

EuNa+

Na

Mg

ScSe Y

Ba

La

Ce

Sm

Wo

0.001

0.01

0.1

1

10

100

Ch

emic

al A

bu

nd

ance

(%

)

Chemical Species

CAT 797B-4

NO2-

NO3-

PO4≡

SO4=

NH4+

OC

Ca++

EC

Na

Mg

P

S

Cl

Ca

ScMn

FeCu

Zn

SeSn

Ba

Ce

Sm

Eu

WoNa+

Mg++

K

MnSe

Y

Sn

BaLa

Sm

0.001

0.01

0.1

1

10

100

Ch

em

ical

Ab

un

dan

ce (

%)

Chemical Species

Liebherr T282B

Page 76: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-15

Figure 4-5. Grouped PM2.5 chemical compositions of the five trucks.

OC21%

EC67%

Elements1%

Soluble ions2%

Unidentified9%

CAT 797B-1

OC36%

EC49%

Elements2%

Soluble ions4%

Unidentified9%

CAT 797B-2

OC14%

EC55%

Elements1%

Soluble ions3%

Unidentified27%

CAT 797B-3

OC21%

EC56%

Elements2%

Soluble ions8%

Unidentified13%

CAT 797B-4

OC19%

EC49%

Elements1%

Soluble ions2%

Unidentified29%

Liebherr T282B

Page 77: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-16

EC accounted for 48.9±5.5%, 55.2±8.1%, and 55.6±12.3% of PM2.5 mass while OC constituted 19.2±6.0%, 14.1±4.3%, and 21.6±3.7% of PM2.5 mass for trucks Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively. Truck CAT 797B-1 emissions contained of 67.0±7.0% EC, which is 11–18% higher than the EC abundance from the 2010 tests. On the other hand, truck CAT 797B-2 emissions consisted of 48.6±13.4% EC and 35.9±16.4% OC, which are respectively ~22% higher and ~7% lower than truck CAT 797B-3.

EC/TC ratios ranged from 0.61–0.85, which are consistent with tests in 2009 (0.40‒0.85), which are typical for diesel trucks found from previous studies (Watson et al., 2001; 2008b).

Soluble ions contributed <8% of PM2.5 mass for all five trucks. The most abundant anions were PO4

≡ (1.1±1.0%), NO3- (0.7±0.5%), and SO4

= (0.3±0.2%), while the most abundant cation was Ca++ (0.7±0.8%).

Trace element abundances were low for all five trucks (typically <0.1%) with elevated abundances for lubrication oil constituents (highlighted in red in Figure 4-4 ): Ca (0.9±0.8%), Zn (0.5±0.3%), P (0.4±0.3%), and S (0.1±0.1%). Among the three trucks tested in 2010, the Liebherr T282B has the lowest abundances in P, Ca, and Zn, ~50% of CAT 797B-3 and ~25% of CAT 797B-4.

CAT 797B-4 emissions contained higher ionic (i.e., NO2-, NO3

-, PO4≡, SO4

=, and Ca++) and elemental (i.e., Na, P, S, Cl, Ca, and Zn) abundances, 2–9 times those from the other two trucks tested in 2010. This is likely related to the more abundant EC1 (evolved at 580 °C) and less abundant EC2 (evolved at 740 °C) for this truck due to the catalytic effects of ions and elements in carbon evolution during IMPROVE_A_TOR analysis.

Tests in 2010 had a higher unidentified fraction (13-29%) than that found in the 2009 tests (~9%). For trucks at Facilities S and A, the amount of increase in unidentified compositions (~20%) is similar to the amount of decrease in TC.

Abundances of rare earth elements were low (<0.002%).

Carbon fraction abundances are shown in Figure 4-6 for all five trucks, along with diesel exhaust carbon fraction from an earlier study by Watson et al. (1994). For CAT 797B-1, CAT 797B-3, and Liebherr T282B, the high-temperature EC2 fraction (740 °C in a 98% He/2% O2 atmosphere) was the most abundant carbon fraction, accounting for 45–63% of PM2.5 and 90–95% of EC. Similar to the study by Watson et al. (1994); EC2 from the truck CAT 797B-2 accounts for 29% and 60% of PM2.5 and EC, respectively. This truck also has high abundances in the low temperature OC1 fraction (evolved at 140 °C in 100% helium atmosphere), accounting for 23% of PM2.5 mass. Truck CAT 797B-4 has higher EC1 than EC2 (37% and 19% of PM2.5, respectively). The differences in engine, fuel, and operation pattern most likely have contributed to these differences.

Stable lead isotopes abundances are shown in Figure 4-7, along with their natural abundances. Compared to the natural Pb isotope abundances, 208Pb from all trucks were <2% lower, 207Pb were <6% lower, 206Pb were <7% higher, and 204Pb differed from -20% to 33%. Figure 4-8 shows Pb isotope ratios. CAT 797B-1 has the highest 206Pb /207Pb and 208Pb /207Pb ratios, while the other four trucks are clustered together.

Table 4-6 lists abundances (percentage of PM2.5 multiplied by 1000) for 113 non-polar organic compounds. The sum of non-polar compounds accounted for 0.06–0.09% of PM2.5 for the three trucks tested in 2010, which are significantly lower than the tests in 2009 (0.2–0.3%). Alkanes and PAHs are the most abundant category, accounting for 0.03–0.05% and 0.02–0.04%

Page 78: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-17

Figure 4-6. Abundance of carbon fractions (percentage of PM2.5), where OC1–OC4 are carbon evolved at 140, 280, 480, and 580 °C in a 100% helium [He] atmosphere, and EC1–EC3 are carbon evolved at 580, 740, and 840 °C in a 98% He/2% oxygen atmosphere following the IMPROVE_A_TOR protocol (Chow et al., 2007a). Pyrolysis correction is used to obtain OC4 and EC1.

Figure 4-7. Abundance of stable lead isotopes in the engine exhaust vs. natural abundance.

0

10

20

30

40

50

60

70

OC1 OC2 OC3 OC4 EC1 EC2 EC3

Ab

un

dan

ce t

o P

M2.

5%

Carbon Fractions

CAT 797B-1

CAT 797B-2

CAT 797B-3

CAT 797B-4

Liebherr T282B

Watson 1994

0%

10%

20%

30%

40%

50%

60%

204Pb 206Pb 207Pb 208Pb

Ab

un

da

nc

e r

ela

ted

to

su

m o

f Is

oto

pe

s

Isotopes of Lead

S-2009

S-2010

A-2009

A-2010

C-2010

Natural

Page 79: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-18

a)

b)

Figure 4-8. Lead isotope ratios of a) 204Pb/207Pb vs 206Pb/207Pb and b) 208Pb/207Pb vs 206Pb/207Pb .

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1.1 1.15 1.2 1.25 1.3 1.35

204 P

b/2

07P

b

206Pb/207Pb

CAT 797B-1

CAT 797B-2

CAT 797B-3

CAT 797B-4

Liebherr T282B

2.36

2.38

2.40

2.42

2.44

2.46

2.48

2.50

2.52

2.54

2.56

1.1 1.15 1.2 1.25 1.3 1.35

208 P

b/2

07P

b

206Pb/207Pb

CAT 797B-1

CAT 797B-2

CAT 797B-3

CAT 797B-4

Liebherr T282B

Page 80: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-19

Table 4-6. Source profiles of non-polar organic compounds from PM2.5 quartz-fiber filter samples analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Due to the low concentration in organic compounds data are expressed as a (percentage x 1000) of the Teflon-membrane filter mass concentration.

Compound MW Run ID Liebherr

T282BAverage

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

PAHs

acenaphthylene 152

0.00 ± 2.47

0.00 ± 1.84

0.00 ± 2.72

0.00 ± 2.65

0.00 ± 2.82

0.00 ± 5.26

0.00 ± 1.11

0.00 ± 4.51

0.00 ± 3.35

0.00 ± 3.86

0.00 ± 2.86

0.00 ± 5.30

0.00 ± 11.93

0.00 ± 3.81

0.00 ± 1.29

0.00 ± 1.73

0.00 ± 3.48

-

acenaphthene 154

0.00 ± 0.73

0.00 ± 0.55

0.00 ± 0.80

0.00 ± 0.78

0.00 ± 0.84

0.00 ± 1.56

0.00 ± 0.33

0.00 ± 1.34

0.00 ± 0.99

0.00 ± 1.14

0.00 ± 0.85

0.00 ± 1.57

0.00 ± 3.53

0.00 ± 1.13

0.00 ± 0.38

0.00 ± 0.51

0.00 ± 1.03

-

fluorene 166

0.00 ± 0.21

0.31 ± 0.03

0.00 ± 0.23

0.00 ± 0.23

0.00 ± 0.24

0.00 ± 0.45

0.00 ± 0.09

0.00 ± 0.38

0.00 ± 0.29

0.00 ± 0.33

0.00 ± 0.24

0.00 ± 0.45

0.00 ± 1.02

0.00 ± 0.32

0.05 ± 0.12

0.00 ± 0.15

0.00 ± 0.30

-

phenanthrene 178

2.20 ± 0.16

5.43 ± 0.39

4.88 ± 0.35

3.14 ± 0.22

2.08 ± 0.31

4.87 ± 0.35

3.76 ± 0.27

7.99 ± 0.57

6.64 ± 0.47

8.20 ± 0.59

2.05 ± 0.13

3.79 ± 0.28

5.19 ± 0.41

4.24 ± 0.30

3.77 ± 1.48

6.65 ± 2.04

3.82 ± 1.31

0.6:1.0:0.6

anthracene 178

0.00 ± 2.03

0.00 ± 1.52

0.00 ± 2.24

0.00 ± 2.18

0.00 ± 2.32

0.00 ± 4.33

0.00 ± 0.91

0.00 ± 3.71

0.00 ± 2.76

0.00 ± 3.18

0.00 ± 2.36

0.00 ± 4.36

0.00 ± 9.82

3.39 ± 0.27

0.00 ± 1.06

0.00 ± 1.42

0.85 ± 2.75

-

fluoranthene 202

0.68 ± 0.05

0.84 ± 0.06

0.00 ± 0.64

0.76 ± 0.06

0.27 ± 0.04

0.00 ± 1.24

1.01 ± 0.07

1.12 ± 0.08

0.96 ± 0.07

1.06 ± 0.08

1.58 ± 0.10

1.59 ± 0.12

0.00 ± 2.81

1.29 ± 0.09

0.42 ± 0.38

1.04 ± 0.07

1.12 ± 0.76

0.4:1.0:1.1

pyrene 202

1.49 ± 0.11

1.74 ± 0.12

1.11 ± 0.08

1.71 ± 0.12

0.52 ± 0.08

1.81 ± 0.13

1.75 ± 0.12

1.67 ± 0.12

1.59 ± 0.11

1.90 ± 0.14

2.68 ± 0.17

2.74 ± 0.20

3.89 ± 0.30

2.10 ± 0.15

1.40 ± 0.50

1.73 ± 0.13

2.85 ± 0.75

0.8:1.0:1.7

benzo[a]anthracene 228

0.00 ± 0.27

0.22 ± 0.03

0.00 ± 0.30

0.00 ± 0.29

0.00 ± 0.31

0.00 ± 0.58

0.27 ± 0.02

0.00 ± 0.50

0.00 ± 0.37

0.00 ± 0.43

0.00 ± 0.32

0.00 ± 0.58

0.00 ± 1.32

0.66 ± 0.07

0.04 ± 0.14

0.07 ± 0.19

0.16 ± 0.37

0.6:1.0:2.4

chrysene 228

0.00 ± 0.49

0.41 ± 0.04

0.00 ± 0.54

0.00 ± 0.52

0.00 ± 0.56

0.00 ± 1.04

0.55 ± 0.04

0.00 ± 0.89

0.00 ± 0.66

0.00 ± 0.76

0.00 ± 0.57

0.00 ± 1.05

0.00 ± 2.36

0.00 ± 0.75

0.07 ± 0.25

0.14 ± 0.34

0.00 ± 0.69

0.5:1.0:0.0

benzo[b]fluoranthene 252

0.00 ± 0.28

0.00 ± 0.21

0.00 ± 0.31

0.00 ± 0.30

0.00 ± 0.32

0.00 ± 0.59

0.38 ± 0.03

0.55 ± 0.10

0.00 ± 0.38

0.00 ± 0.44

0.00 ± 0.32

0.00 ± 0.60

0.00 ± 1.35

0.00 ± 0.43

0.00 ± 0.15

0.23 ± 0.28

0.00 ± 0.39

0.0:1.0:0.0

benzo[j+k]fluoranthene 252

0.00 ± 0.56

0.00 ± 0.42

0.00 ± 0.62

0.00 ± 0.60

0.00 ± 0.64

0.00 ± 1.20

0.40 ± 0.03

0.00 ± 1.03

0.00 ± 0.76

0.00 ± 0.88

0.00 ± 0.65

0.00 ± 1.21

0.00 ± 2.72

0.00 ± 0.87

0.00 ± 0.29

0.10 ± 0.39

0.00 ± 0.79

0.0:1.0:0.0

benzo[a]fluoranthene 252

0.00 ± 0.28

0.00 ± 0.21

0.00 ± 0.31

0.00 ± 0.30

0.00 ± 0.32

0.00 ± 0.59

0.18 ± 0.02

0.00 ± 0.51

0.00 ± 0.38

0.00 ± 0.44

0.00 ± 0.32

0.00 ± 0.60

0.00 ± 1.35

0.00 ± 0.43

0.00 ± 0.15

0.04 ± 0.19

0.00 ± 0.39

0.0:1.0:0.0

benzo[e]pyrene 252

0.00 ± 0.25

0.00 ± 0.19

0.00 ± 0.28

0.00 ± 0.27

0.00 ± 0.29

0.00 ± 0.54

0.00 ± 0.11

0.52 ± 0.06

0.00 ± 0.34

0.00 ± 0.40

0.00 ± 0.29

0.00 ± 0.54

0.00 ± 1.23

0.00 ± 0.39

0.00 ± 0.13

0.13 ± 0.26

0.00 ± 0.36

0.0:1.0:0.0

benzo[a]pyrene 252

0.00 ± 0.55

0.00 ± 0.41

0.00 ± 0.60

0.00 ± 0.59

0.00 ± 0.63

0.00 ± 1.17

0.00 ± 0.25

0.00 ± 1.00

0.00 ± 0.74

0.00 ± 0.86

0.00 ± 0.64

0.00 ± 1.18

0.00 ± 2.65

0.00 ± 0.85

0.00 ± 0.29

0.00 ± 0.38

0.00 ± 0.77

-

perylene 252

0.00 ± 1.14

0.00 ± 0.85

0.00 ± 1.26

0.00 ± 1.22

0.00 ± 1.31

0.00 ± 2.43

0.00 ± 0.51

0.00 ± 2.09

0.00 ± 1.55

0.00 ± 1.79

0.00 ± 1.33

0.00 ± 2.45

0.00 ± 5.52

0.00 ± 1.76

0.00 ± 0.60

0.00 ± 0.80

0.00 ± 1.61

-

indeno[1,2,3-cd]pyrene 276

0.00 ± 0.20

0.00 ± 0.15

0.00 ± 0.22

0.00 ± 0.22

0.00 ± 0.23

0.00 ± 0.43

0.00 ± 0.09

0.00 ± 0.37

0.30 ± 0.13

0.39 ± 0.15

0.00 ± 0.23

0.00 ± 0.43

0.00 ± 0.97

0.37 ± 0.15

0.00 ± 0.10

0.17 ± 0.20

0.09 ± 0.28

0.0:1.0:0.5

dibenzo[a,h]anthracene 278

0.00 ± 0.12

0.00 ± 0.09

0.21 ± 0.08

0.00 ± 0.13

0.00 ± 0.14

0.00 ± 0.26

0.16 ± 0.04

0.32 ± 0.14

0.00 ± 0.16

0.35 ± 0.12

0.00 ± 0.14

0.00 ± 0.26

0.00 ± 0.58

0.39 ± 0.12

0.03 ± 0.09

0.21 ± 0.16

0.10 ± 0.19

0.2:1.0:0.5

benzo[ghi]perylene 276

0.00 ± 0.35

0.00 ± 0.26

0.00 ± 0.38

0.00 ± 0.37

0.00 ± 0.39

0.00 ± 0.73

0.00 ± 0.16

0.00 ± 0.63

0.00 ± 0.47

0.00 ± 0.54

0.00 ± 0.40

0.00 ± 0.74

0.00 ± 1.67

0.00 ± 0.53

0.00 ± 0.18

0.00 ± 0.24

0.00 ± 0.49

-

coronene 300

0.00 ± 0.20

0.00 ± 0.15

0.00 ± 0.22

0.00 ± 0.21

0.00 ± 0.23

0.00 ± 0.43

0.00 ± 0.09

0.00 ± 0.37

0.00 ± 0.27

0.52 ± 0.14

0.00 ± 0.23

0.00 ± 0.43

0.00 ± 0.97

0.68 ± 0.14

0.00 ± 0.10

0.13 ± 0.26

0.17 ± 0.34

0.0:1.0:1.3

dibenzo[a,e]pyrene 302

0.05 ± 0.17

0.06 ± 0.13

0.16 ± 0.19

0.00 ± 0.06

0.00 ± 0.06

0.08 ± 0.36

0.03 ± 0.08

0.00 ± 0.10

0.05 ± 0.23

0.08 ± 0.26

0.00 ± 0.06

0.00 ± 0.12

1.02 ± 0.81

0.91 ± 0.27

0.06 ± 0.08

0.04 ± 0.09

0.48 ± 0.56

1.5:1.0:11.8

9-fluorenone 180

1.03 ± 0.08

2.10 ± 0.15

1.53 ± 0.11

1.45 ± 0.10

0.73 ± 0.11

2.12 ± 0.16

1.37 ± 0.10

2.34 ± 0.17

1.99 ± 0.14

2.91 ± 0.21

0.88 ± 0.06

1.35 ± 0.10

0.00 ± 2.31

1.41 ± 0.10

1.49 ± 0.56

2.15 ± 0.65

0.91 ± 0.65

0.7:1.0:0.4

dibenzothiophene 184 0.38 ± 0.03

0.62 ± 0.05

0.56 ± 0.05

0.56 ± 0.05

0.23 ± 0.04

0.00 ± 0.80

0.21 ± 0.02

0.00 ± 0.68

0.00 ± 0.51

0.00 ± 0.59

0.00 ± 0.43

0.00 ± 0.80

0.00 ± 1.81

0.00 ± 0.58

0.39 ± 0.24

0.05 ± 0.26

0.00 ± 0.53

7.6:1.0:0.0

1 methyl phenanthrene 192 1.75 ± 0.13

3.30 ± 0.23

2.33 ± 0.17

2.27 ± 0.16

1.13 ± 0.17

3.13 ± 0.23

0.98 ± 0.07

1.70 ± 0.13

1.24 ± 0.09

1.41 ± 0.11

0.61 ± 0.05

0.78 ± 0.07

0.00 ± 1.55

0.80 ± 0.07

2.32 ± 0.82

1.33 ± 0.30

0.55 ± 0.39

1.7:1.0:0.4

Page 81: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-20

Table 4-6. Continued

Compound MW Run ID Liebherr

T282BAverage

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

2 methyl phenanthrene 192 0.90 ± 0.07

1.72 ± 0.12

1.28 ± 0.09

1.12 ± 0.08

0.58 ± 0.09

1.55 ± 0.12

0.63 ± 0.05

1.12 ± 0.09

0.90 ± 0.07

0.94 ± 0.08

0.00 ± 0.46

0.00 ± 0.86

0.00 ± 1.93

0.00 ± 0.62

1.19 ± 0.42

0.90 ± 0.20

0.00 ± 0.56

1.3:1.0:0.0

3,6 dimethyl phenanthrene 206

1.63 ± 0.12

4.83 ± 0.34

7.71 ± 0.55

2.35 ± 0.17

2.88 ± 0.43

3.06 ± 0.23

5.20 ± 0.37

12.08 ± 0.87

6.38 ± 0.46

6.96 ± 0.50

0.00 ± 0.25

0.00 ± 0.46

1.14 ± 0.15

1.19 ± 0.09

3.74 ± 2.21

7.66 ± 3.04

0.58 ± 0.68

0.5:1.0:0.1

methylfluoranthene 216

0.41 ± 0.04

0.93 ± 0.07

1.42 ± 0.11

0.57 ± 0.05

0.46 ± 0.08

0.60 ± 0.07

1.45 ± 0.10

1.79 ± 0.14

1.03 ± 0.08

1.16 ± 0.09

0.00 ± 0.25

0.00 ± 0.46

0.00 ± 1.04

0.71 ± 0.07

0.73 ± 0.38

1.36 ± 0.34

0.18 ± 0.35

0.5:1.0:0.1

retene 219

0.32 ± 0.06

0.77 ± 0.07

1.13 ± 0.10

0.64 ± 0.07

0.63 ± 0.11

0.84 ± 0.13

3.25 ± 0.23

9.31 ± 0.68

4.26 ± 0.31

4.67 ± 0.34

0.00 ± 0.32

0.00 ± 0.59

1.60 ± 0.28

1.66 ± 0.14

0.72 ± 0.27

5.37 ± 2.69

0.81 ± 0.94

0.1:1.0:0.2

benzo(ghi)fluoranthene 226 0.30 ± 0.02

0.44 ± 0.03

0.54 ± 0.04

0.51 ± 0.04

0.25 ± 0.04

0.00 ± 0.45

1.43 ± 0.10

1.36 ± 0.10

0.90 ± 0.07

1.01 ± 0.07

0.68 ± 0.05

0.58 ± 0.05

1.30 ± 0.12

1.10 ± 0.08

0.34 ± 0.20

1.17 ± 0.26

0.91 ± 0.34

0.3:1.0:0.8

benzo(c)phenanthrene 228 0.00 ± 0.20

0.27 ± 0.02

0.33 ± 0.03

0.22 ± 0.02

0.12 ± 0.03

0.00 ± 0.43

0.70 ± 0.05

0.72 ± 0.06

0.54 ± 0.05

0.67 ± 0.06

0.00 ± 0.24

0.00 ± 0.44

0.00 ± 0.98

0.51 ± 0.05

0.16 ± 0.14

0.65 ± 0.08

0.13 ± 0.28

0.2:1.0:0.2

benzo(b)naphtho[1,2-d]thiophene 234

0.00 ± 0.20

0.00 ± 0.15

0.00 ± 0.22

0.00 ± 0.22

0.00 ± 0.23

0.00 ± 0.43

0.11 ± 0.21

0.00 ± 0.37

0.00 ± 0.28

0.00 ± 0.32

0.00 ± 0.24

0.00 ± 0.44

0.00 ± 0.98

0.00 ± 0.31

0.00 ± 0.11

0.03 ± 0.15

0.00 ± 0.29

0.0:1.0:0.0

cyclopenta[cd]pyrene 226

0.00 ± 5.62

0.00 ± 4.19

0.00 ± 6.18

0.00 ± 6.02

0.00 ± 6.42

0.00 ± 11.96

4.51 ± 0.32

10.73 ± 0.78

0.00 ± 7.62

0.00 ± 8.78

10.50 ± 0.67

0.00 ± 12.05

43.62 ± 3.38

22.15 ± 1.59

0.00 ± 2.92

3.81 ± 5.08

19.07 ± 18.70

0.0:1.0:5.0

benz[a]anthracene-7,12-dione 258

0.00 ± 0.22

0.00 ± 0.17

0.00 ± 0.25

0.00 ± 0.24

0.00 ± 0.26

0.00 ± 0.48

0.25 ± 0.09

0.00 ± 0.41

0.00 ± 0.30

0.00 ± 0.35

0.00 ± 0.26

0.00 ± 0.48

0.00 ± 1.08

0.00 ± 0.34

0.00 ± 0.12

0.06 ± 0.16

0.00 ± 0.31

0.0:1.0:0.0

methylchrysene 242

0.00 ± 0.25

0.00 ± 0.18

0.00 ± 0.27

0.00 ± 0.26

0.00 ± 0.28

0.00 ± 0.53

0.00 ± 0.11

0.00 ± 0.45

0.00 ± 0.34

0.00 ± 0.39

0.00 ± 0.29

0.00 ± 0.53

0.00 ± 1.19

0.00 ± 0.38

0.00 ± 0.13

0.00 ± 0.17

0.00 ± 0.35

-

benzo(b)chrysene 278 0.00 ± 0.20

0.00 ± 0.15

0.00 ± 0.22

0.00 ± 0.22

0.00 ± 0.23

0.00 ± 0.43

0.00 ± 0.09

0.00 ± 0.37

0.00 ± 0.28

0.00 ± 0.32

0.00 ± 0.24

0.00 ± 0.44

0.00 ± 0.98

0.39 ± 0.12

0.00 ± 0.11

0.00 ± 0.14

0.10 ± 0.28

-

picene 278

0.00 ± 0.26

0.00 ± 0.19

0.00 ± 0.28

0.00 ± 0.28

0.00 ± 0.29

0.00 ± 0.55

0.00 ± 0.12

0.00 ± 0.47

0.00 ± 0.35

0.44 ± 0.12

0.00 ± 0.30

0.00 ± 0.55

0.00 ± 1.24

0.51 ± 0.12

0.00 ± 0.13

0.11 ± 0.22

0.13 ± 0.35

0.0:1.0:1.2

anthanthrene 276 0.00 ± 0.62

0.00 ± 0.46

0.00 ± 0.69

0.00 ± 0.67

0.00 ± 0.71

0.00 ± 1.33

0.00 ± 0.28

0.00 ± 1.14

0.00 ± 0.85

0.00 ± 0.97

0.00 ± 0.72

0.00 ± 1.34

0.00 ± 3.01

0.00 ± 0.96

0.00 ± 0.32

0.00 ± 0.44

0.00 ± 0.88

-

Alkane/Alkene

n-alkane n-pentadecane (n-C15) 212

0.00 ± 2.04

0.00 ± 1.52

0.00 ± 2.24

0.00 ± 2.18

0.00 ± 2.33

0.00 ± 4.34

0.00 ± 0.92

0.00 ± 3.72

0.00 ± 2.76

0.00 ± 3.18

0.00 ± 2.36

0.00 ± 4.37

0.00 ± 9.84

0.00 ± 3.14

0.00 ± 1.06

0.00 ± 1.42

0.00 ± 2.87

-

n-hexadecane (n-C16) 226

0.00 ± 2.40

0.00 ± 1.79

0.00 ± 2.64

0.00 ± 2.57

0.00 ± 2.74

0.00 ± 5.11

0.00 ± 1.08

0.00 ± 4.38

0.00 ± 3.26

0.00 ± 3.75

0.00 ± 2.78

0.00 ± 5.15

0.00 ± 11.59

2.57 ± 0.20

0.00 ± 1.25

0.00 ± 1.68

0.64 ± 3.25

-

n-heptadecane (n-C17) 240

0.00 ± 2.91

0.00 ± 2.17

0.00 ± 3.20

0.00 ± 3.11

0.00 ± 3.32

0.00 ± 6.19

1.28 ± 0.09

0.00 ± 5.31

0.00 ± 3.94

0.00 ± 4.55

0.00 ± 3.37

0.00 ± 6.24

0.00 ± 14.04

0.00 ± 4.49

0.00 ± 1.51

0.32 ± 2.01

0.00 ± 4.09

0.0:1.0:0.0

n-octadecane (n-C18) 254

1.75 ± 0.13

2.45 ± 0.18

2.26 ± 0.17

1.78 ± 0.13

0.00 ± 2.76

0.00 ± 5.13

3.09 ± 0.22

0.00 ± 4.40

0.00 ± 3.27

2.64 ± 0.20

0.00 ± 2.80

0.00 ± 5.17

0.00 ± 11.65

0.00 ± 3.72

1.37 ± 1.10

1.43 ± 1.67

0.00 ± 3.39

1.0:1.0:0.0

n-nonadecane (n-C19) 268

5.26 ± 0.38

5.81 ± 0.41

4.76 ± 0.34

4.99 ± 0.36

1.57 ± 0.24

0.00 ± 6.59

8.14 ± 0.58

7.56 ± 0.54

4.24 ± 0.30

7.53 ± 0.54

5.12 ± 0.33

0.00 ± 6.64

0.00 ± 14.96

0.00 ± 4.78

3.73 ± 2.36

6.87 ± 1.77

1.28 ± 4.27

0.5:1.0:0.2

n-icosane (n-C20) 282

5.49 ± 0.39

5.63 ± 0.40

4.14 ± 0.30

4.56 ± 0.33

1.23 ± 0.19

3.92 ± 0.29

7.39 ± 0.52

4.58 ± 0.34

3.89 ± 0.28

5.50 ± 0.40

4.11 ± 0.26

3.65 ± 0.28

6.15 ± 0.51

6.16 ± 0.44

4.16 ± 1.60

5.34 ± 1.52

5.02 ± 1.33

0.8:1.0:0.9

n-heneicosane (n-C21) 296

6.04 ± 0.43

5.73 ± 0.41

4.36 ± 0.31

6.07 ± 0.43

1.63 ± 0.25

5.51 ± 0.40

6.70 ± 0.47

4.04 ± 0.30

3.47 ± 0.25

4.69 ± 0.34

4.83 ± 0.31

3.69 ± 0.27

8.31 ± 0.66

6.72 ± 0.48

4.89 ± 1.71

4.73 ± 1.41

5.89 ± 2.04

1.0:1.0:1.2

n-docosane (n-C22) 310

4.97 ± 0.36

4.41 ± 0.31

3.31 ± 0.24

4.91 ± 0.35

1.17 ± 0.18

4.83 ± 0.35

3.64 ± 0.26

2.73 ± 0.21

2.58 ± 0.19

2.53 ± 0.19

2.70 ± 0.18

2.19 ± 0.17

5.31 ± 0.44

4.89 ± 0.35

3.93 ± 1.49

2.87 ± 0.52

3.77 ± 1.56

1.4:1.0:1.3

n-tricosane (n-C23) 324

4.27 ± 0.30

4.11 ± 0.29

3.18 ± 0.23

5.16 ± 0.37

1.18 ± 0.18

4.74 ± 0.35

3.31 ± 0.23

3.20 ± 0.23

2.33 ± 0.17

2.59 ± 0.19

4.02 ± 0.26

3.59 ± 0.27

8.62 ± 0.68

6.38 ± 0.46

3.77 ± 1.43

2.86 ± 0.47

5.65 ± 2.33

1.3:1.0:2.0

n-tetracosane (n-C24) 338

4.47 ± 0.32

3.79 ± 0.27

7.78 ± 0.55

5.00 ± 0.36

1.34 ± 0.20

8.00 ± 0.58

3.84 ± 0.27

2.91 ± 0.21

2.96 ± 0.21

3.60 ± 0.26

4.05 ± 0.26

3.76 ± 0.28

11.51 ± 0.90

7.50 ± 0.54

5.06 ± 2.52

3.33 ± 0.46

6.71 ± 3.63

1.5:1.0:2.0

n-pentacosane (n-C25) 352

3.84 ± 0.28

5.76 ± 0.41

4.25 ± 0.31

6.66 ± 0.47

1.50 ± 0.23

5.78 ± 0.43

6.30 ± 0.45

4.15 ± 0.31

1.80 ± 0.14

4.47 ± 0.33

3.68 ± 0.24

6.43 ± 0.47

13.80 ± 1.09

5.92 ± 0.43

4.63 ± 1.86

4.18 ± 1.85

7.46 ± 4.39

1.1:1.0:1.8

n-hexacosane (n-C26) 366

3.57 ± 0.26

3.23 ± 0.23

4.22 ± 0.30

1.32 ± 0.10

0.36 ± 0.07

2.72 ± 0.21

0.00 ± 0.23

0.00 ± 0.93

0.00 ± 0.69

1.93 ± 0.15

2.46 ± 0.16

5.25 ± 0.39

6.79 ± 0.56

3.14 ± 0.23

2.57 ± 1.46

0.48 ± 0.96

4.41 ± 1.98

5.3:1.0:9.2

n-heptacosane (n-C27) 380

3.87 ± 0.54

0.00 ± 0.38

0.00 ± 0.57

2.37 ± 0.52

0.00 ± 0.59

0.00 ± 1.10

0.00 ± 0.23

0.00 ± 0.94

0.00 ± 0.70

2.30 ± 0.74

5.78 ± 0.65

4.03 ± 1.04

12.20 ± 2.43

0.00 ± 0.79

1.04 ± 1.68

0.57 ± 1.15

5.50 ± 5.08

1.8:1.0:9.6

Page 82: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-21

Table 4-6. Continued

Compound MW Run ID Liebherr

T282BAverage

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4 n-octacosane (n-C28) 394

0.00 ± 0.59

0.00 ± 0.44

0.00 ± 0.65

0.00 ± 0.63

0.00 ± 0.68

0.00 ± 1.26

0.00 ± 0.27

0.00 ± 1.08

0.00 ± 0.80

0.00 ± 0.92

0.00 ± 0.69

0.00 ± 1.27

0.00 ± 2.86

0.00 ± 0.91

0.00 ± 0.31

0.00 ± 0.41

0.00 ± 0.83

-

n-nonacosane (n-C29) 408

0.00 ± 0.61

0.00 ± 0.45

0.00 ± 0.67

0.00 ± 0.65

0.00 ± 0.69

0.00 ± 1.29

0.00 ± 0.27

0.00 ± 1.11

0.00 ± 0.82

0.00 ± 0.95

0.00 ± 0.70

0.00 ± 1.30

0.00 ± 2.94

0.00 ± 0.94

0.00 ± 0.32

0.00 ± 0.43

0.00 ± 0.85

-

n-triacontane (n-C30) 422

0.00 ± 0.82

0.00 ± 0.61

0.00 ± 0.90

0.00 ± 0.88

0.00 ± 0.94

0.00 ± 1.74

0.00 ± 0.37

0.00 ± 1.49

0.00 ± 1.11

0.00 ± 1.28

0.00 ± 0.95

0.00 ± 1.75

0.00 ± 3.95

0.00 ± 1.26

0.00 ± 0.43

0.00 ± 0.57

0.00 ± 1.15

-

n-hentriacotane (n-C31) 436

0.00 ± 1.04

0.00 ± 0.78

0.00 ± 1.15

0.00 ± 1.12

0.00 ± 1.19

0.00 ± 2.22

0.00 ± 0.47

0.00 ± 1.90

0.00 ± 1.41

0.00 ± 1.63

0.00 ± 1.21

0.00 ± 2.23

0.00 ± 5.03

0.00 ± 1.61

0.00 ± 0.54

0.00 ± 0.73

0.00 ± 1.47

-

n-dotriacontane (n-C32) 450

0.00 ± 1.34

0.00 ± 1.00

0.00 ± 1.47

0.00 ± 1.43

0.00 ± 1.53

0.00 ± 2.84

0.00 ± 0.60

0.00 ± 2.44

0.00 ± 1.81

0.00 ± 2.09

0.00 ± 1.55

0.00 ± 2.86

0.00 ± 6.45

0.00 ± 2.06

0.00 ± 0.69

0.00 ± 0.93

0.00 ± 1.88

-

n-tritriactotane (n-C33) 464

0.00 ± 1.44

0.00 ± 1.07

0.00 ± 1.58

0.00 ± 1.54

0.00 ± 1.65

0.00 ± 3.06

0.00 ± 0.65

0.00 ± 2.63

0.00 ± 1.95

0.00 ± 2.25

0.00 ± 1.67

0.00 ± 3.09

0.00 ± 6.95

0.00 ± 2.22

0.00 ± 0.75

0.00 ± 1.01

0.00 ± 2.02

-

n-tetratriactoane (n-C34) 478

0.00 ± 1.23

0.00 ± 0.92

0.00 ± 1.35

0.00 ± 1.32

0.00 ± 1.41

0.00 ± 2.62

0.00 ± 0.55

0.00 ± 2.25

0.00 ± 1.67

0.00 ± 1.93

0.00 ± 1.43

0.00 ± 2.64

0.00 ± 5.95

0.00 ± 1.90

0.00 ± 0.64

0.00 ± 0.86

0.00 ± 1.73

-

n-pentatriacontane (n-C35) 492

0.00 ± 1.60

0.00 ± 1.19

0.00 ± 1.76

0.00 ± 1.72

0.00 ± 1.83

0.00 ± 3.41

0.00 ± 0.72

0.00 ± 2.93

0.00 ± 2.17

0.00 ± 2.51

0.00 ± 1.86

0.00 ± 3.44

0.00 ± 7.74

0.00 ± 2.47

0.00 ± 0.83

0.00 ± 1.12

0.00 ± 2.25

-

n-hexatriacontane (n-C36) 506

0.00 ± 4.59

0.00 ± 3.42

0.00 ± 5.05

0.00 ± 4.91

0.00 ± 5.25

0.00 ± 9.77

0.00 ± 2.06

0.00 ± 8.38

0.00 ± 6.23

0.00 ± 7.17

0.00 ± 5.32

0.00 ± 9.84

0.00 ± 22.16

0.00 ± 7.08

0.00 ± 2.39

0.00 ± 3.21

0.00 ± 6.45

-

n-heptatriacontane (n-C37) 521

0.00 ± 28.14

0.00 ± 20.96

0.00 ± 30.92

0.00 ± 30.11

0.00 ± 32.14

0.00 ± 59.84

0.00 ± 12.63

0.00 ± 51.35

0.00 ± 38.14

0.00 ± 43.96

0.00 ± 32.59

0.00 ± 60.29

0.00 ± 135.79

0.00 ± 43.39

0.00 ± 14.63

0.00 ± 19.66

0.00 ± 39.54

-

n-octatriacontane (n-C38) 535

0.00 ± 42.93

0.00 ± 31.98

0.00 ± 47.17

0.00 ± 45.93

0.00 ± 49.03

0.00 ± 91.29

0.00 ± 19.27

0.00 ± 78.34

0.00 ± 58.19

0.00 ± 67.06

0.00 ± 49.72

0.00 ± 91.97

0.00 ± 207.15

0.00 ± 66.19

0.00 ± 22.32

0.00 ± 29.99

0.00 ± 60.32

-

n-nonatriacontane (n-C39) 549

0.00 ± 37.22

0.00 ± 27.72

0.00 ± 40.89

0.00 ± 39.82

0.00 ± 42.50

0.00 ± 79.14

0.00 ± 16.70

0.00 ± 67.91

0.00 ± 50.44

0.00 ± 58.13

0.00 ± 43.10

0.00 ± 79.73

0.00 ± 179.58

0.00 ± 57.38

0.00 ± 19.35

0.00 ± 26.00

0.00 ± 52.29

-

n-tetracontane (n-C40) 563

0.00 ± 38.78

0.00 ± 28.89

0.00 ± 42.61

0.00 ± 41.49

0.00 ± 44.29

0.00 ± 82.47

0.00 ± 17.41

0.00 ± 70.77

0.00 ± 52.57

0.00 ± 60.58

0.00 ± 44.92

0.00 ± 83.08

0.00 ± 187.14

0.00 ± 59.79

0.00 ± 20.17

0.00 ± 27.09

0.00 ± 54.50

-

iso/anteiso-alkane iso-nonacosane (iso-C29) 408

0.00 ± 0.61

0.00 ± 0.45

0.00 ± 0.67

0.00 ± 0.65

0.00 ± 0.69

0.00 ± 1.29

0.00 ± 0.27

0.00 ± 1.11

0.00 ± 0.82

0.00 ± 0.95

0.00 ± 0.70

0.00 ± 1.30

0.00 ± 2.94

0.00 ± 0.94

0.00 ± 0.32

0.00 ± 0.43

0.00 ± 0.85

-

anteiso-nonacosane (anteiso-C29) 408

0.00 ± 0.61

0.00 ± 0.45

0.00 ± 0.67

0.00 ± 0.65

0.00 ± 0.69

0.00 ± 1.29

0.00 ± 0.27

0.00 ± 1.11

0.00 ± 0.82

0.00 ± 0.95

0.00 ± 0.70

0.00 ± 1.30

0.00 ± 2.94

0.00 ± 0.94

0.00 ± 0.32

0.00 ± 0.43

0.00 ± 0.85

-

iso-triacontane (iso-C30) 422

0.00 ± 0.82

0.00 ± 0.61

0.00 ± 0.90

0.00 ± 0.88

0.00 ± 0.94

0.00 ± 1.74

0.00 ± 0.37

0.00 ± 1.49

0.00 ± 1.11

0.00 ± 1.28

0.00 ± 0.95

0.00 ± 1.75

0.00 ± 3.95

0.00 ± 1.26

0.00 ± 0.43

0.00 ± 0.57

0.00 ± 1.15

-

anteiso-triacontane (anteiso-C30) 422

0.00 ± 0.82

0.00 ± 0.61

0.00 ± 0.90

0.00 ± 0.88

0.00 ± 0.94

0.00 ± 1.74

0.00 ± 0.37

0.00 ± 1.49

0.00 ± 1.11

0.00 ± 1.28

0.00 ± 0.95

0.00 ± 1.75

0.00 ± 3.95

0.00 ± 1.26

0.00 ± 0.43

0.00 ± 0.57

0.00 ± 1.15

-

iso-hentriacotane (iso-C31) 436

0.00 ± 1.04

0.00 ± 0.78

0.00 ± 1.15

0.00 ± 1.12

0.00 ± 1.19

0.00 ± 2.22

0.00 ± 0.47

0.00 ± 1.90

0.00 ± 1.41

0.00 ± 1.63

0.00 ± 1.21

0.00 ± 2.23

0.00 ± 5.03

0.00 ± 1.61

0.00 ± 0.54

0.00 ± 0.73

0.00 ± 1.47

-

anteiso-hentriacotane (anteiso-C31) 436

0.00 ± 1.04

0.00 ± 0.78

0.00 ± 1.15

0.00 ± 1.12

0.00 ± 1.19

0.00 ± 2.22

0.00 ± 0.47

0.00 ± 1.90

0.00 ± 1.41

0.00 ± 1.63

0.00 ± 1.21

0.00 ± 2.23

0.00 ± 5.03

0.00 ± 1.61

0.00 ± 0.54

0.00 ± 0.73

0.00 ± 1.47

-

iso-dotriacontane (iso-C32) 450

0.00 ± 1.34

0.00 ± 1.00

0.00 ± 1.47

0.00 ± 1.43

0.00 ± 1.53

0.00 ± 2.84

0.00 ± 0.60

0.00 ± 2.44

0.00 ± 1.81

0.00 ± 2.09

0.00 ± 1.55

0.00 ± 2.86

0.00 ± 6.45

0.00 ± 2.06

0.00 ± 0.69

0.00 ± 0.93

0.00 ± 1.88

-

anteiso-dotriacontane (anteiso-C32) 450

0.00 ± 1.34

0.00 ± 1.00

0.00 ± 1.47

0.00 ± 1.43

0.00 ± 1.53

0.00 ± 2.84

0.00 ± 0.60

0.00 ± 2.44

0.00 ± 1.81

0.00 ± 2.09

0.00 ± 1.55

0.00 ± 2.86

0.00 ± 6.45

0.00 ± 2.06

0.00 ± 0.69

0.00 ± 0.93

0.00 ± 1.88

-

iso-tritriactotane (iso-C33) 464

0.00 ± 1.44

0.00 ± 1.07

0.00 ± 1.58

0.00 ± 1.54

0.00 ± 1.65

0.00 ± 3.06

0.00 ± 0.65

0.00 ± 2.63

0.00 ± 1.95

0.00 ± 2.25

0.00 ± 1.67

0.00 ± 3.09

0.00 ± 6.95

0.00 ± 2.22

0.00 ± 0.75

0.00 ± 1.01

0.00 ± 2.02

-

anteiso-tritriactotane (anteiso-C33) 464

0.00 ± 1.44

0.00 ± 1.07

0.00 ± 1.58

0.00 ± 1.54

0.00 ± 1.65

0.00 ± 3.06

0.00 ± 0.65

0.00 ± 2.63

0.00 ± 1.95

0.00 ± 2.25

0.00 ± 1.67

0.00 ± 3.09

0.00 ± 6.95

0.00 ± 2.22

0.00 ± 0.75

0.00 ± 1.01

0.00 ± 2.02

-

hopane 22,29,30-trisnorneophopane (Ts) 370

0.12 ± 0.05

0.16 ± 0.04

0.06 ± 0.05

0.10 ± 0.05

0.03 ± 0.05

0.02 ± 0.10

0.91 ± 0.07

0.54 ± 0.09

0.36 ± 0.07

0.49 ± 0.08

0.11 ± 0.05

0.06 ± 0.10

0.28 ± 0.22

0.26 ± 0.07

0.08 ± 0.05

0.57 ± 0.24

0.18 ± 0.11

0.1:1.0:0.3

22,29,30-trisnorphopane (Tm) 370

0.09 ± 0.06

0.16 ± 0.05

0.09 ± 0.07

0.08 ± 0.06

0.03 ± 0.07

0.10 ± 0.13

0.32 ± 0.03

0.26 ± 0.11

0.15 ± 0.08

0.20 ± 0.09

0.12 ± 0.07

0.10 ± 0.13

0.31 ± 0.29

0.19 ± 0.09

0.09 ± 0.04

0.23 ± 0.07

0.18 ± 0.09

0.4:1.0:0.8

αβ-norhopane (C29αβ-hopane) 398

0.35 ± 0.05

0.42 ± 0.05

0.26 ± 0.05

0.30 ± 0.05

0.09 ± 0.05

0.27 ± 0.10

2.04 ± 0.15

1.41 ± 0.13

0.92 ± 0.09

1.18 ± 0.11

0.37 ± 0.06

0.30 ± 0.10

0.99 ± 0.23

0.58 ± 0.08

0.28 ± 0.11

1.39 ± 0.48

0.56 ± 0.31

0.2:1.0:0.4

Page 83: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-22

Table 4-6. Continued

Compound MW Run ID Liebherr

T282BAverage

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4 22,29,30-norhopane (29Ts) 398

0.08 ± 0.05

0.05 ± 0.04

0.03 ± 0.06

0.08 ± 0.06

0.02 ± 0.06

0.07 ± 0.11

0.36 ± 0.03

0.26 ± 0.10

0.17 ± 0.07

0.20 ± 0.08

0.12 ± 0.06

0.07 ± 0.11

0.23 ± 0.26

0.15 ± 0.08

0.06 ± 0.03

0.25 ± 0.08

0.14 ± 0.07

0.2:1.0:0.6

αα- + βα-norhopane (C29αα- + βα -hopane) 398

0.06 ± 0.06

0.07 ± 0.04

0.00 ± 0.05

0.08 ± 0.06

0.00 ± 0.05

0.00 ± 0.09

0.34 ± 0.03

0.23 ± 0.10

0.13 ± 0.08

0.17 ± 0.09

0.10 ± 0.07

0.00 ± 0.09

0.23 ± 0.27

0.10 ± 0.09

0.04 ± 0.04

0.22 ± 0.09

0.11 ± 0.09

0.2:1.0:0.5

αβ-hopane (C30αβ -hopane) 412

0.27 ± 0.05

0.31 ± 0.04

0.17 ± 0.05

0.25 ± 0.05

0.06 ± 0.05

0.20 ± 0.10

1.43 ± 0.10

0.78 ± 0.10

0.49 ± 0.07

0.67 ± 0.09

0.37 ± 0.06

0.27 ± 0.10

0.99 ± 0.23

0.49 ± 0.08

0.21 ± 0.09

0.84 ± 0.41

0.53 ± 0.32

0.3:1.0:0.6

αα-hopane (30αα-hopane) 412

0.00 ± 0.04

0.00 ± 0.03

0.00 ± 0.04

0.00 ± 0.04

0.00 ± 0.04

0.00 ± 0.08

0.07 ± 0.02

0.00 ± 0.07

0.00 ± 0.05

0.00 ± 0.06

0.00 ± 0.04

0.00 ± 0.08

0.00 ± 0.17

0.00 ± 0.06

0.00 ± 0.02

0.02 ± 0.04

0.00 ± 0.05

0.0:1.0:0.0

βα-hopane (C30βα -hopane) 412

0.03 ± 0.05

0.05 ± 0.04

0.00 ± 0.03

0.03 ± 0.06

0.00 ± 0.03

0.00 ± 0.06

0.13 ± 0.02

0.06 ± 0.09

0.04 ± 0.07

0.05 ± 0.08

0.05 ± 0.06

0.00 ± 0.06

0.15 ± 0.25

0.07 ± 0.08

0.02 ± 0.02

0.07 ± 0.04

0.07 ± 0.07

0.3:1.0:1.0

αβS-homohopane (C31αβS-hopane) 426

0.11 ± 0.04

0.13 ± 0.03

0.07 ± 0.05

0.08 ± 0.05

0.03 ± 0.05

0.10 ± 0.09

0.89 ± 0.07

0.37 ± 0.08

0.21 ± 0.06

0.27 ± 0.07

0.17 ± 0.05

0.14 ± 0.09

0.38 ± 0.21

0.19 ± 0.07

0.09 ± 0.04

0.44 ± 0.31

0.22 ± 0.11

0.2:1.0:0.5

αβR-homohopane (C31αβR-hopane) 426

0.19 ± 0.02

0.20 ± 0.02

0.10 ± 0.02

0.14 ± 0.02

0.05 ± 0.02

0.17 ± 0.04

0.89 ± 0.06

0.55 ± 0.05

0.30 ± 0.03

0.39 ± 0.04

0.27 ± 0.03

0.17 ± 0.04

0.53 ± 0.10

0.22 ± 0.03

0.14 ± 0.06

0.53 ± 0.26

0.30 ± 0.16

0.3:1.0:0.6

αβS-bishomohopane (C32αβS-hopane) 440

0.00 ± 0.09

0.08 ± 0.03

0.00 ± 0.09

0.10 ± 0.04

0.00 ± 0.10

0.00 ± 0.18

0.46 ± 0.04

0.20 ± 0.07

0.00 ± 0.12

0.00 ± 0.13

0.00 ± 0.10

0.00 ± 0.18

0.00 ± 0.41

0.19 ± 0.06

0.03 ± 0.05

0.17 ± 0.22

0.05 ± 0.12

0.2:1.0:0.3

αβR-bishomohopane (C32αβR-hopane) 440

0.08 ± 0.03

0.07 ± 0.02

0.05 ± 0.03

0.07 ± 0.03

0.02 ± 0.04

0.00 ± 0.10

0.36 ± 0.03

0.14 ± 0.06

0.09 ± 0.04

0.10 ± 0.05

0.12 ± 0.04

0.00 ± 0.10

0.31 ± 0.15

0.10 ± 0.05

0.05 ± 0.03

0.17 ± 0.13

0.13 ± 0.13

0.3:1.0:0.8

22S-trishomohopane (C33) 454

0.00 ± 0.09

0.00 ± 0.06

0.00 ± 0.09

0.00 ± 0.09

0.00 ± 0.10

0.00 ± 0.18

0.21 ± 0.03

0.00 ± 0.16

0.00 ± 0.12

0.00 ± 0.13

0.00 ± 0.10

0.00 ± 0.18

0.00 ± 0.41

0.00 ± 0.13

0.00 ± 0.04

0.05 ± 0.10

0.00 ± 0.12

0.0:1.0:0.0

22R-trishomohopane (C33) 454

0.00 ± 0.05

0.00 ± 0.03

0.05 ± 0.07

0.05 ± 0.07

0.00 ± 0.05

0.00 ± 0.10

0.18 ± 0.03

0.00 ± 0.09

0.00 ± 0.06

0.00 ± 0.07

0.00 ± 0.05

0.00 ± 0.10

0.23 ± 0.30

0.00 ± 0.07

0.02 ± 0.03

0.04 ± 0.09

0.06 ± 0.11

0.4:1.0:1.3

22S-tretrahomohopane (C34) 468

0.00 ± 0.09

0.00 ± 0.06

0.00 ± 0.09

0.00 ± 0.09

0.00 ± 0.10

0.00 ± 0.18

0.12 ± 0.13

0.00 ± 0.16

0.00 ± 0.12

0.00 ± 0.13

0.00 ± 0.10

0.00 ± 0.18

0.00 ± 0.41

0.00 ± 0.13

0.00 ± 0.04

0.03 ± 0.07

0.00 ± 0.12

0.0:1.0:0.0

22R-tetrashomohopane (C34) 468

0.00 ± 0.05

0.04 ± 0.19

0.00 ± 0.05

0.00 ± 0.05

0.00 ± 0.05

0.00 ± 0.10

0.09 ± 0.11

0.00 ± 0.09

0.00 ± 0.06

0.00 ± 0.07

0.00 ± 0.05

0.00 ± 0.10

0.00 ± 0.23

0.00 ± 0.07

0.01 ± 0.04

0.02 ± 0.05

0.00 ± 0.07

0.3:1.0:0.0

22S-pentashomohopane (C35) 482

0.00 ± 0.09

0.00 ± 0.06

0.00 ± 0.09

0.00 ± 0.09

0.00 ± 0.10

0.00 ± 0.18

0.09 ± 0.01

0.00 ± 0.16

0.00 ± 0.12

0.00 ± 0.13

0.00 ± 0.10

0.00 ± 0.18

0.00 ± 0.41

0.00 ± 0.13

0.00 ± 0.04

0.02 ± 0.06

0.00 ± 0.12

0.0:1.0:0.0

22R-pentashomohopane (C35) 482

0.00 ± 0.05

0.06 ± 0.08

0.00 ± 0.05

0.00 ± 0.05

0.00 ± 0.05

0.00 ± 0.10

0.09 ± 0.05

0.00 ± 0.09

0.00 ± 0.06

0.00 ± 0.07

0.00 ± 0.05

0.00 ± 0.10

0.00 ± 0.23

0.00 ± 0.07

0.01 ± 0.03

0.02 ± 0.04

0.00 ± 0.07

0.5:1.0:0.0

sterane

ααα 20S-Cholestane 372

0.08 ± 0.03

0.13 ± 0.03

0.07 ± 0.04

0.07 ± 0.04

0.02 ± 0.04

0.07 ± 0.07

0.24 ± 0.02

0.20 ± 0.06

0.13 ± 0.05

0.22 ± 0.05

0.07 ± 0.04

0.07 ± 0.07

0.15 ± 0.16

0.10 ± 0.05

0.07 ± 0.04

0.20 ± 0.05

0.10 ± 0.05

0.4:1.0:0.5

αββ 20R-Cholestane 372

0.06 ± 0.03

0.06 ± 0.02

0.05 ± 0.03

0.07 ± 0.03

0.01 ± 0.04

0.07 ± 0.07

0.40 ± 0.03

0.26 ± 0.06

0.19 ± 0.04

0.25 ± 0.05

0.10 ± 0.04

0.07 ± 0.07

0.15 ± 0.15

0.10 ± 0.05

0.05 ± 0.02

0.28 ± 0.09

0.10 ± 0.04

0.2:1.0:0.4

αββ 20s-Cholestane 372

0.05 ± 0.04

0.06 ± 0.03

0.03 ± 0.04

0.05 ± 0.04

0.01 ± 0.04

0.00 ± 0.04

0.27 ± 0.03

0.17 ± 0.07

0.13 ± 0.05

0.17 ± 0.06

0.07 ± 0.04

0.00 ± 0.04

0.15 ± 0.17

0.05 ± 0.06

0.03 ± 0.02

0.19 ± 0.06

0.07 ± 0.06

0.2:1.0:0.4

ααα 20R-Cholestane 372

0.04 ± 0.06

0.05 ± 0.04

0.05 ± 0.06

0.03 ± 0.06

0.01 ± 0.06

0.02 ± 0.12

0.17 ± 0.03

0.16 ± 0.10

0.12 ± 0.08

0.12 ± 0.09

0.04 ± 0.06

0.02 ± 0.12

0.20 ± 0.27

0.09 ± 0.09

0.03 ± 0.03

0.14 ± 0.04

0.09 ± 0.08

0.2:1.0:0.6

ααα 20S 24S-Methylcholestane 386

0.06 ± 0.04

0.04 ± 0.03

0.05 ± 0.05

0.03 ± 0.05

0.02 ± 0.05

0.02 ± 0.09

0.28 ± 0.03

0.25 ± 0.08

0.10 ± 0.06

0.14 ± 0.07

0.06 ± 0.05

0.06 ± 0.09

0.13 ± 0.21

0.06 ± 0.07

0.04 ± 0.02

0.19 ± 0.09

0.08 ± 0.06

0.2:1.0:0.4

αββ 20R 24S-Methylcholestane 386

0.03 ± 0.04

0.04 ± 0.03

0.02 ± 0.05

0.03 ± 0.05

0.01 ± 0.05

0.03 ± 0.09

0.13 ± 0.02

0.12 ± 0.08

0.06 ± 0.06

0.07 ± 0.07

0.05 ± 0.05

0.03 ± 0.09

0.08 ± 0.21

0.05 ± 0.07

0.03 ± 0.02

0.10 ± 0.03

0.05 ± 0.06

0.3:1.0:0.5

αββ 20S 24S-Methylcholestane 386

0.03 ± 0.04

0.05 ± 0.03

0.03 ± 0.05

0.03 ± 0.05

0.01 ± 0.05

0.03 ± 0.09

0.14 ± 0.02

0.12 ± 0.08

0.09 ± 0.06

0.12 ± 0.07

0.05 ± 0.05

0.03 ± 0.09

0.15 ± 0.21

0.05 ± 0.07

0.03 ± 0.02

0.12 ± 0.03

0.07 ± 0.06

0.3:1.0:0.6

ααα 20R 24R-Methylcholestane 386

0.03 ± 0.03

0.02 ± 0.03

0.00 ± 0.01

0.02 ± 0.04

0.01 ± 0.04

0.03 ± 0.07

0.06 ± 0.02

0.06 ± 0.06

0.02 ± 0.05

0.02 ± 0.05

0.02 ± 0.04

0.03 ± 0.07

0.08 ± 0.17

0.05 ± 0.05

0.02 ± 0.02

0.04 ± 0.02

0.05 ± 0.05

0.5:1.0:1.1

ααα 20S 24R/S-Ethylcholestane 386

0.03 ± 0.02

0.04 ± 0.01

0.02 ± 0.02

0.02 ± 0.02

0.01 ± 0.02

0.03 ± 0.03

0.06 ± 0.01

0.06 ± 0.03

0.02 ± 0.02

0.02 ± 0.02

0.02 ± 0.02

0.03 ± 0.03

0.08 ± 0.07

0.02 ± 0.02

0.02 ± 0.01

0.04 ± 0.02

0.04 ± 0.02

0.6:1.0:1.0

αββ 20R 24R-Ethylcholestane 400

0.06 ± 0.01

0.05 ± 0.01

0.03 ± 0.01

0.07 ± 0.01

0.01 ± 0.01

0.03 ± 0.02

0.16 ± 0.01

0.12 ± 0.02

0.06 ± 0.01

0.10 ± 0.02

0.07 ± 0.01

0.07 ± 0.02

0.15 ± 0.04

0.05 ± 0.01

0.04 ± 0.02

0.11 ± 0.04

0.09 ± 0.05

0.4:1.0:0.8

αββ 20S 24R-Ethylcholestane 400

0.03 ± 0.04

0.05 ± 0.03

0.03 ± 0.04

0.02 ± 0.04

0.01 ± 0.04

0.03 ± 0.08

0.12 ± 0.02

0.06 ± 0.07

0.04 ± 0.05

0.07 ± 0.06

0.05 ± 0.04

0.03 ± 0.08

0.15 ± 0.18

0.05 ± 0.06

0.03 ± 0.02

0.07 ± 0.03

0.07 ± 0.05

0.4:1.0:1.0

ααα 20R 24R- 400 0.05 ± 0.05 ± 0.00 ± 0.05 ± 0.01 ± 0.07 ± 0.13 ± 0.09 ± 0.04 ± 0.05 ± 0.05 ± 0.10 ± 0.23 ± 0.10 ± 0.04 ± 0.08 ± 0.12 ± 0.5:1.0:1.5

Page 84: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-23

Table 4-6. Continued

Compound MW Run ID Liebherr

T282BAverage

CAT 797B-3 Average

CAT 797B-4 Average

Ratio S:A:C

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4 Ethylcholestane 0.05 0.04 0.03 0.05 0.06 0.10 0.02 0.09 0.07 0.08 0.06 0.10 0.23 0.07 0.03 0.04 0.08

methyl-alkane

2-methylnonadecane 282

0.72 ± 0.06

0.77 ± 0.06

0.52 ± 0.06

0.59 ± 0.06

0.17 ± 0.05

0.46 ± 0.09

0.95 ± 0.07

0.60 ± 0.08

0.49 ± 0.06

0.71 ± 0.08

0.58 ± 0.06

0.53 ± 0.09

0.81 ± 0.19

0.67 ± 0.08

0.54 ± 0.22

0.68 ± 0.20

0.65 ± 0.13

0.8:1.0:0.9

3-methylnonadecane 282

0.74 ± 0.06

0.73 ± 0.06

0.71 ± 0.06

0.52 ± 0.05

0.16 ± 0.04

0.47 ± 0.08

1.11 ± 0.08

0.61 ± 0.07

0.54 ± 0.06

0.74 ± 0.07

0.46 ± 0.05

0.58 ± 0.08

0.76 ± 0.17

0.71 ± 0.07

0.56 ± 0.23

0.75 ± 0.25

0.63 ± 0.13

0.7:1.0:0.8

branched-alkane

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

0.00 ± 0.00

-

pristane 268

1.54 ± 0.12

1.94 ± 0.14

3.02 ± 0.22

1.23 ± 0.10

0.49 ± 0.09

0.00 ± 3.10

0.45 ± 0.04

0.00 ± 2.66

0.00 ± 1.97

0.00 ± 2.28

0.00 ± 1.69

0.00 ± 3.12

0.00 ± 7.03

0.00 ± 2.25

1.37 ± 1.07

0.11 ± 1.00

0.00 ± 2.05

12.1:1.0:0.0

phytane 282

5.38 ± 0.38

5.57 ± 0.40

5.88 ± 0.42

4.69 ± 0.34

1.40 ± 0.21

3.57 ± 0.27

2.02 ± 0.14

0.00 ± 2.24

0.00 ± 1.66

1.02 ± 0.09

0.00 ± 1.42

0.00 ± 2.63

0.00 ± 5.92

0.00 ± 1.89

4.41 ± 1.69

0.76 ± 0.97

0.00 ± 1.72

5.8:1.0:0.0

squalane 422

1.52 ± 0.15

2.07 ± 0.16

0.52 ± 0.11

0.00 ± 0.09

0.00 ± 0.09

1.08 ± 0.22

0.00 ± 0.04

0.00 ± 0.15

0.00 ± 0.11

0.00 ± 0.13

0.00 ± 0.10

0.00 ± 0.18

0.00 ± 0.40

0.00 ± 0.13

0.86 ± 0.84

0.00 ± 0.06

0.00 ± 0.12

-

cycloalkane

octylcyclohexane 196

0.00 ± 0.33

0.00 ± 0.25

0.00 ± 0.36

0.00 ± 0.35

0.00 ± 0.38

0.00 ± 0.70

0.00 ± 0.15

0.00 ± 0.60

0.00 ± 0.45

0.00 ± 0.51

0.00 ± 0.38

0.00 ± 0.71

0.00 ± 1.59

0.00 ± 0.51

0.00 ± 0.17

0.00 ± 0.23

0.00 ± 0.46

-

decylcyclohexane 224

0.00 ± 0.33

0.00 ± 0.25

0.00 ± 0.37

0.00 ± 0.36

0.00 ± 0.38

0.00 ± 0.71

0.00 ± 0.15

0.00 ± 0.61

0.00 ± 0.45

0.00 ± 0.52

0.00 ± 0.39

0.00 ± 0.72

0.99 ± 0.47

0.37 ± 0.15

0.00 ± 0.17

0.00 ± 0.23

0.34 ± 0.47

-

tridecylcyclohexane 266

0.00 ± 0.36

0.31 ± 0.03

0.00 ± 0.39

0.00 ± 0.38

0.00 ± 0.41

0.00 ± 0.76

0.40 ± 0.03

0.00 ± 0.65

0.00 ± 0.48

0.00 ± 0.56

0.00 ± 0.41

0.00 ± 0.76

0.00 ± 1.72

0.00 ± 0.55

0.05 ± 0.18

0.10 ± 0.25

0.00 ± 0.50

0.5:1.0:0.0

n-heptadecylcyclohexane 322

0.47 ± 0.05

0.45 ± 0.04

0.31 ± 0.05

0.37 ± 0.05

0.12 ± 0.05

0.34 ± 0.09

1.82 ± 0.13

1.33 ± 0.12

0.90 ± 0.09

1.14 ± 0.10

0.58 ± 0.06

0.47 ± 0.10

1.53 ± 0.23

1.00 ± 0.10

0.34 ± 0.13

1.30 ± 0.39

0.90 ± 0.48

0.3:1.0:0.7

nonadecylcyclohexane 350

0.36 ± 0.15

0.36 ± 0.12

0.31 ± 0.17

0.27 ± 0.16

0.08 ± 0.17

0.00 ± 0.32

0.77 ± 0.09

0.75 ± 0.28

0.56 ± 0.21

0.57 ± 0.24

0.49 ± 0.18

0.00 ± 0.32

1.14 ± 0.73

0.54 ± 0.24

0.23 ± 0.16

0.66 ± 0.11

0.54 ± 0.47

0.4:1.0:0.8

alkene

1-octadecene 252

0.00 ± 1.51

0.00 ± 1.12

0.00 ± 1.66

0.00 ± 1.62

0.00 ± 1.72

0.00 ± 3.21

0.00 ± 0.68

0.00 ± 2.75

0.00 ± 2.05

0.00 ± 2.36

0.00 ± 1.75

0.00 ± 3.23

0.00 ± 7.28

0.00 ± 2.33

0.00 ± 0.78

0.00 ± 1.05

0.00 ± 2.12

-

Total Total PAHs

11.13 ± 6.78

23.97 ± 5.06

23.19 ± 7.50

15.30 ± 7.25

9.89 ± 7.75

18.06 ± 14.49

28.56 ± 1.78

53.32 ± 7.03

26.78 ± 9.22

32.67 ± 10.61

18.98 ± 4.49

10.83 ± 14.58

57.75 ± 19.16

44.45 ± 5.18

16.92 ± 4.62

35.33 ± 7.38

33.01 ± 19.57

0.5:1.0:0.9

Total n-alkanes

43.54 ± 74.67

40.92 ± 55.62

38.26 ± 82.04

42.82 ± 79.89

9.98 ± 85.31

35.50 ± 158.99

43.69 ± 33.50

29.17 ± 136.32

21.28 ± 101.26

37.78 ± 116.62

36.73 ± 86.52

32.58 ± 160.17

72.70 ± 360.77

43.30 ± 115.22

35.17 ± 39.22

32.98 ± 52.31

46.33 ± 105.41

1.1:1.0:1.4

Total iso/anteiso-alkanes

0.00 ± 3.46

0.00 ± 2.58

0.00 ± 3.80

0.00 ± 3.70

0.00 ± 3.95

0.00 ± 7.36

0.00 ± 1.55

0.00 ± 6.32

0.00 ± 4.69

0.00 ± 5.41

0.00 ± 4.01

0.00 ± 7.41

0.00 ± 16.70

0.00 ± 5.34

0.00 ± 1.80

0.00 ± 2.42

0.00 ± 4.86

-

Total hopanes

1.39 ± 0.24

1.80 ± 0.26

0.90 ± 0.26

1.38 ± 0.25

0.33 ± 0.27

0.93 ± 0.50

8.98 ± 0.29

4.81 ± 0.44

2.86 ± 0.34

3.72 ± 0.39

1.80 ± 0.28

1.11 ± 0.51

4.63 ± 1.19

2.55 ± 0.36

1.12 ± 0.21

5.09 ± 0.86

2.52 ± 0.61

0.2:1.0:0.5

Total steranes

0.56 ± 0.13

0.63 ± 0.10

0.39 ± 0.13

0.48 ± 0.14

0.15 ± 0.15

0.45 ± 0.27

2.17 ± 0.08

1.65 ± 0.24

1.01 ± 0.18

1.37 ± 0.21

0.67 ± 0.15

0.55 ± 0.27

1.70 ± 0.63

0.76 ± 0.20

0.44 ± 0.08

1.55 ± 0.17

0.92 ± 0.20

0.3:1.0:0.6

Total methyl-alkanes

1.46 ± 0.09

1.50 ± 0.08

1.23 ± 0.08

1.11 ± 0.08

0.33 ± 0.07

0.93 ± 0.12

2.05 ± 0.11

1.20 ± 0.11

1.02 ± 0.09

1.45 ± 0.11

1.04 ± 0.07

1.11 ± 0.12

1.58 ± 0.26

1.38 ± 0.10

1.09 ± 0.31

1.43 ± 0.32

1.28 ± 0.18

0.8:1.0:0.9

Total branched-alkanes

8.44 ± 0.43

9.58 ± 0.45

9.41 ± 0.49

5.92 ± 0.36

1.88 ± 0.25

4.65 ± 3.12

2.48 ± 0.15

0.00 ± 3.48

0.00 ± 2.58

1.02 ± 2.28

0.00 ± 2.21

0.00 ± 4.08

0.00 ± 9.20

0.00 ± 2.94

6.65 ± 2.17

0.87 ± 1.40

0.00 ± 2.68

7.6:1.0:0.0

Total cycloalkanes

0.84 ± 0.61

1.12 ± 0.37

0.63 ± 0.67

0.64 ± 0.65

0.19 ± 0.70

0.34 ± 1.30

2.99 ± 0.26

2.08 ± 1.12

1.46 ± 0.83

1.70 ± 0.96

1.07 ± 0.71

0.47 ± 1.31

3.66 ± 2.51

1.90 ± 0.80

0.63 ± 0.36

2.06 ± 0.58

1.78 ± 1.06

0.3:1.0:0.9

Total alkene

0.00 ± 1.51

0.00 ± 1.12

0.00 ± 1.66

0.00 ± 1.62

0.00 ± 1.72

0.00 ± 3.21

0.00 ± 0.68

0.00 ± 2.75

0.00 ± 2.05

0.00 ± 2.36

0.00 ± 1.75

0.00 ± 3.23

0.00 ± 7.28

0.00 ± 2.33

0.00 ± 0.78

0.00 ± 1.05

0.00 ± 2.12

-

Grand total

67.36 ± 75.07

79.52 ± 55.92

74.00 ± 82.49

67.65 ± 80.32

22.75 ± 85.77

60.85 ± 159.89

90.92 ± 33.60

92.23 ± 136.73

54.42 ± 101.84

79.70 ± 117.28

60.29 ± 86.78

46.65 ± 161.10

142.01 ± 361.86

94.34 ± 115.52

62.02 ± 39.60

79.32 ± 52.93

85.83 ± 107.38

0.8:1.0:1.1

Page 85: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-24

of PM2.5, respectively. Particle-associated PAHs are mostly two- to four-ring semivolatile PAHs (e.g. phenanthrene, fluoranthene, pyrene, 9-fluorenone, 1 methyl phenanthrene, 3,6 dimethyl phenanthrene, and retene), consistent with the 2009 tests and the findings of Fujita et al. (2007). Hopanes and steranes are a result of the decomposition of sterols and other biomass from oil (Rogge et al., 1993). These compounds are present in lube oil but not in the fuel, and are used as markers for vehicle emissions (Fraser et al., 1998; Rogge et al., 1993; Simoneit, 1985; Zielinska et al., 2004). The rightmost column of Table 4-6 shows that CAT 797B-3 has the most abundant hopanes and steranes, 2–7 times higher than the Liebherr T282B and 1–3 times higher than CAT 797B-4 for most species. Figure 4-9 shows the relative abundances of hopanes and steranes. There are larger amounts of low molecular weight (MW) hopanes (e.g., αβ-norhopane) than high MW hopanes, in agreement with Ning et al. (2008). The abundance distribution of steranes spreads more evenly across different species. Although the absolute abundances ratio between Liebherr T282B, CAT 797B-3, and CAT 797B-4 are ~1:4:2 for hopanes and steranes, the relative abundances of major species are similar for all three trucks. Schauer (2003) and Chow et al. (2007c) found that hopanes and steranes, along with higher EC content, could be used to distinguish diesel engine emissions from other carbonaceous combustion sources, such as gasoline vehicle, wood smoke, and cooking.

Table 4-7 lists source profiles for carbohydrates, organic acids, WSOC classes, and total WSOC. Most carbohydrates are below detection limits, with glycerol being the most abundant species, accounting for 0.013±0.020%, 0.024±0.018%, and 0.058±0.046% of PM2.5 for Liebherr T282B, CAT 797B-3, and CAT 797B-4, respectively. Organic acid abundances are low. Lactic acid, acetic acid, formic acid, and oxalic acid are detected in all three trucks. WSOC classes are below or near detection limits. Total WSOC accounts for 6.5±2.3%, 2.8±0.5%, and 4.6±1.9% of PM2.5 and 40.2±27.2%, 21.3±8.9%, and 22.5±11.1% of the OC for the three trucks.

NH3, SO2, and H2S abundances determined from backup filters are listed in Table 4-8. Both SO2 and H2S were below MDLs for all tests. NH3 was near the MDL for Liebherr T282B and was <1% of PM2.5 for CAT 797B-3 and CAT 797B-4.

Page 86: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-25

Table 4-7. Source profile of carbohydrates, organic acids and WSOC. Data are expressed as a percentage of the Teflon filter mass concentration.

Compound MW Run ID

Liebherr T282B

CAT 797B-3

CAT 797B-4

S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4 Average Average Average

Carbohydrates

Glycerol (C3H8O3 ) 92.09

0.000±0.006

0.000±0.005

0.031±0.009

0.001±0.007

0.000±0.007

0.044±0.016

0.000±0.003

0.020±0.013

0.041±0.011

0.036±0.012

0.064±0.014

0.053±0.017

0.113±0.038

0.000±0.010

0.013±0.020

0.024±0.018

0.058±0.046

Inositol (C6H12O6) 180.15

0.000±0.006

0.000±0.005

0.000±0.007

0.000±0.007

0.000±0.007

0.000±0.013

0.000±0.003

0.000±0.011

0.000±0.008

0.000±0.010

0.000±0.009

0.000±0.013

0.000±0.030

0.000±0.010

0.000±0.003

0.000±0.004

0.000±0.009

Erythritol (C4H10O4) 122.12

0.000±0.009

0.000±0.007

0.000±0.010

0.000±0.010

0.000±0.011

0.000±0.020

0.000±0.004

0.000±0.017

0.000±0.013

0.000±0.015

0.000±0.014

0.000±0.020

0.000±0.045

0.000±0.014

0.000±0.005

0.000±0.006

0.000±0.013

Xylitol (C5H12O5 ) 152.15

0.000±0.006

0.000±0.005

0.000±0.007

0.000±0.007

0.000±0.007

0.000±0.013

0.000±0.003

0.000±0.011

0.000±0.008

0.000±0.010

0.000±0.009

0.000±0.013

0.000±0.030

0.000±0.010

0.000±0.003

0.000±0.004

0.000±0.009

Levoglucosan (C6H10O5 )

162.14 0.000±0.012

0.000±0.009

0.000±0.014

0.000±0.013

0.000±0.014

0.000±0.026

0.000±0.006

0.000±0.023

0.000±0.017

0.000±0.019

0.000±0.019

0.000±0.027

0.000±0.060

0.000±0.019

0.000±0.006

0.000±0.009

0.000±0.018

Sorbitol (C6H14O6 ) 182.17

0.000±0.015

0.000±0.012

0.000±0.017

0.000±0.017

0.000±0.018

0.000±0.033

0.000±0.007

0.000±0.028

0.000±0.021

0.000±0.024

0.000±0.024

0.000±0.033

0.000±0.075

0.000±0.024

0.000±0.008

0.000±0.011

0.000±0.022

Mannosan (C6H10O5 ) 162.14

0.000±0.009

0.000±0.007

0.000±0.010

0.000±0.010

0.000±0.011

0.000±0.020

0.000±0.004

0.000±0.017

0.000±0.013

0.000±0.015

0.000±0.014

0.000±0.020

0.000±0.045

0.000±0.014

0.000±0.005

0.000±0.006

0.000±0.013

Trehalose (C12H22O11 ) 342.3

0.000±0.012

0.000±0.009

0.000±0.014

0.000±0.013

0.000±0.014

0.000±0.026

0.000±0.006

0.000±0.023

0.000±0.017

0.000±0.019

0.000±0.019

0.000±0.027

0.000±0.060

0.000±0.019

0.000±0.006

0.000±0.009

0.000±0.018

Mannitol (C6H14O6 ) 182.17

0.000±0.009

0.000±0.007

0.000±0.010

0.000±0.010

0.000±0.011

0.000±0.020

0.000±0.004

0.000±0.017

0.000±0.013

0.000±0.015

0.000±0.014

0.000±0.020

0.000±0.045

0.000±0.014

0.000±0.005

0.000±0.006

0.000±0.013

Arabinose (C5H10O5) 150.14

0.000±0.009

0.000±0.007

0.000±0.010

0.000±0.010

0.000±0.011

0.000±0.020

0.000±0.004

0.000±0.017

0.000±0.013

0.000±0.015

0.000±0.014

0.000±0.020

0.000±0.045

0.000±0.014

0.000±0.005

0.000±0.006

0.000±0.013

Glucose (C6H12O6 ) 180.16

0.000±0.006

0.000±0.005

0.000±0.007

0.000±0.007

0.000±0.007

0.000±0.013

0.000±0.003

0.000±0.011

0.000±0.008

0.000±0.010

0.000±0.009

0.000±0.013

0.000±0.030

0.000±0.010

0.000±0.003

0.000±0.004

0.000±0.009

Galactose (C6H12O6 ) 180.16

0.000±0.012

0.000±0.009

0.000±0.014

0.000±0.013

0.000±0.014

0.000±0.026

0.000±0.006

0.000±0.023

0.040±0.011

0.000±0.019

0.000±0.019

0.000±0.027

0.000±0.060

0.000±0.019

0.000±0.006

0.010±0.020

0.000±0.018

Maltitol (C12H24O11) 344.31

0.000±0.015

0.000±0.012

0.000±0.017

0.000±0.017

0.000±0.018

0.000±0.033

0.000±0.007

0.000±0.028

0.000±0.021

0.000±0.024

0.000±0.024

0.000±0.033

0.000±0.075

0.000±0.024

0.000±0.008

0.000±0.011

0.000±0.022

Page 87: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-26

Table 4-7. Continued

Compound MW

Run ID Liebherr T282B

CAT 797B-3

CAT 797B-4 S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

Organic Acids

Lactic acid (C3H6O3)

90 0.002±0.009

0.003±0.007

0.014±0.011

0.000±0.010

0.000±0.011

0.027±0.022

0.003±0.004

0.030±0.020

0.018±0.016

0.000±0.015

0.000±0.014

0.031±0.026

0.000±0.045

0.001±0.014

0.008±0.011

0.013±0.014

0.008±0.015

Acetic acid (C2H4O2 )

60 0.000±0.019

0.000±0.014

0.000±0.020

0.000±0.020

0.000±0.021

0.117±0.031

0.000±0.008

0.000±0.034

0.000±0.025

0.217±0.061

0.000±0.029

0.138±0.049

0.000±0.089

0.143±0.045

0.020±0.048

0.054±0.108

0.070±0.081

Formic acid (CH2O )

46 0.057±0.015

0.068±0.013

0.053±0.015

0.124±0.022

0.045±0.015

0.100±0.029

0.038±0.008

0.107±0.027

0.000±0.025

0.125±0.041

0.000±0.029

0.045±0.029

0.000±0.089

0.102±0.036

0.075±0.031

0.067±0.058

0.037±0.048

Methanesulfonic acid (CH4SO3 )

96 0.000±0.012

0.000±0.009

0.000±0.014

0.030±0.013

0.000±0.014

0.000±0.026

0.000±0.006

0.000±0.023

0.000±0.017

0.000±0.019

0.000±0.019

0.000±0.027

0.000±0.060

0.000±0.019

0.005±0.012

0.000±0.009

0.000±0.018

Glutaric acid (C5H8O4)

132 0.018±0.011

0.014±0.008

0.026±0.013

0.000±0.017

0.000±0.018

0.000±0.033

0.000±0.007

0.000±0.028

0.000±0.021

0.000±0.024

0.000±0.024

0.000±0.033

0.000±0.075

0.000±0.024

0.010±0.011

0.000±0.011

0.000±0.022

Succinic acid (C4H6O4 )

118 0.000±0.012

0.000±0.009

0.000±0.014

0.000±0.013

0.000±0.014

0.000±0.026

0.000±0.006

0.000±0.023

0.000±0.017

0.000±0.019

0.000±0.019

0.000±0.027

0.000±0.060

0.000±0.019

0.000±0.006

0.000±0.009

0.000±0.018

Malonic acid (C3H4O4)

104 0.000±0.019

0.000±0.014

0.000±0.020

0.000±0.020

0.000±0.021

0.000±0.039

0.000±0.008

0.000±0.034

0.000±0.025

0.000±0.029

0.000±0.029

0.000±0.040

0.000±0.089

0.000±0.029

0.000±0.010

0.000±0.013

0.000±0.026

Maleic acid (C4H4O4 )

116 0.000±0.015

0.000±0.012

0.000±0.017

0.000±0.017

0.000±0.018

0.000±0.033

0.000±0.007

0.000±0.028

0.000±0.021

0.000±0.024

0.000±0.024

0.000±0.033

0.000±0.075

0.000±0.024

0.000±0.008

0.000±0.011

0.000±0.022

Oxalic acid (C2H2O4)

90 0.000±0.012

0.012±0.008

0.010±0.011

0.013±0.011

0.010±0.011

0.042±0.024

0.012±0.005

0.005±0.017

0.051±0.024

0.031±0.021

0.052±0.025

0.089±0.039

0.047±0.055

0.043±0.023

0.014±0.014

0.025±0.021

0.058±0.021

WSOC

Neutral compounds

0.217±0.158

0.158±0.117

0.365±0.182

0.027±0.155

0.213±0.178

0.344±0.327

0.091±0.070

0.282±0.280

0.199±0.207

0.259±0.240

0.440±0.251

0.527±0.343

0.878±0.751

0.272±0.239

0.221±0.125

0.208±0.107

0.529±0.256

Mono-/di- carboxylic acids

0.255±0.294

0.396±0.256

0.000±0.255

0.069±0.274

0.068±0.291

0.534±0.623

0.137±0.136

0.036±0.449

0.510±0.428

0.099±0.398

0.168±0.410

0.024±0.525

0.447±1.265

0.231±0.422

0.220±0.212

0.195±0.214

0.217±0.373

Polycarboxylic acids

0.000±0.386

0.000±0.288

0.015±0.427

0.000±0.413

0.000±0.441

0.000±0.820

0.069±0.178

0.000±0.704

0.000±0.523

0.028±0.605

0.253±0.612

0.192±0.842

0.692±1.906

0.000±0.596

0.003±0.201

0.024±0.270

0.284±0.563

Sum of speciated WSOC

0.472±0.511

0.555±0.403

0.381±0.529

0.096±0.520

0.281±0.557

0.878±1.081

0.296±0.235

0.318±0.881

0.709±0.707

0.386±0.763

0.861±0.779

0.743±1.050

2.017±2.408

0.503±0.769

0.444±0.266

0.427±0.346

1.031±0.711

Total WSOC

4.494±0.913

4.428±1.504

9.942±1.614

5.440±0.803

5.602±0.915

8.997±1.336

2.638±0.562

2.132±0.610

2.909±0.750

3.391±0.694

3.032±1.782

3.643±0.924

4.578±1.628

7.330±1.481

6.484±2.380

2.767±0.526

4.646±1.899

Page 88: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-27

a)

b)

Figure 4-9. Abundances of: a) hopanes and b) steranes of the five trucks (normalized to total hopanes or steranes for each truck).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S‐2009 S‐2010 A‐2009 A‐2010 C‐2010

Hopan

es Relative Abudan

ce 

Trucks

22R‐pentashomohopane(C35)

22S‐pentashomohopane(C35)

22R‐tetrashomohopane (C34)

22S‐tretrahomohopane (C34)

22R‐trishomohopane (C33)

22S‐trishomohopane (C33)

αβR‐bishomohopane (C32αβR‐hopane)

αβS‐bishomohopane (C32αβS‐hopane)

αβR‐homohopane (C31αβR‐hopane)

αβS‐homohopane (C31αβS‐hopane)

βα‐hopane (C30βα ‐hopane)

αα‐hopane (30αα‐hopane)

αβ‐hopane (C30αβ ‐hopane)

αα‐ + βα‐norhopane (C29αα‐ + βα ‐hopane)

22,29,30‐norhopane (29Ts)

αβ‐norhopane (C29αβ‐hopane)

22,29,30‐trisnorphopane (Tm)

22,29,30‐trisnorneophopane (Ts)

370

MW

398

412

426

440+

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S‐2009 S‐2010 A‐2009 A‐2010 C‐2010

Steran

es Relative Abudan

ce 

Trucks

ααα 20R 24R‐Ethylcholestane 

αββ 20S 24R‐Ethylcholestane 

αββ 20R 24R‐Ethylcholestane 

ααα 20S 24R/S‐Ethylcholestane 

ααα 20R 24R‐Methylcholestane

αββ 20S 24S‐Methylcholestane 

αββ 20R 24S‐Methylcholestane 

ααα 20S 24S‐Methylcholestane 

ααα 20R‐Cholestane 

αββ 20s‐Cholestane 

αββ 20R‐Cholestane 

ααα 20S‐Cholestane 

372MW

386

400

Page 89: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

4-28

Table 4-8. Source profile of NH3, SO2, and H2S measured from impregnated backup filters. Data are expressed as a percentage of the Teflon-membrane filter PM2.5 mass concentration.

Gases Run ID Liebherr

T282B Average

CAT 797B-3 Average

CAT 797B-4

Average S1 S2 S3 S4 S5 S6 A1 A2 A3 A4 C1 C2 C3 C4

NH3 0.00 ± 0.07

0.00 ± 0.05

0.06 ± 0.08

0.00 ± 0.08

0.00 ± 0.08

0.00 ± 0.15

0.00 ± 0.03

0.92 ± 0.15

0.16 ± 0.10

0.00 ± 0.11

0.20 ± 0.11

0.16 ± 0.16

3.03 ± 0.43

0.47 ± 0.12

0.01 ± 0.04

0.27 ± 0.44

0.97 ± 1.38

SO2 0.00 ± 0.07

0.00 ± 0.05

0.00 ± 0.08

0.00 ± 0.08

0.00 ± 0.08

0.00 ± 0.15

0.00 ± 0.03

0.00 ± 0.13

0.00 ± 0.10

0.00 ± 0.11

0.00 ± 0.11

0.00 ± 0.16

0.00 ± 0.35

0.00 ± 0.11

0.00 ± 0.04

0.00 ± 0.05

0.00 ± 0.10

H2S 0.00 ± 0.59

0.00 ± 0.43

0.00 ± 0.66

0.00 ± 0.76

0.00 ± 0.70

0.00 ± 0.78

0.00 ± 0.57

0.00 ± 0.63

0.00 ± 0.55

0.00 ± 0.68

0.00 ± 0.33

0.00 ± 0.59

0.00 ± 0.54

0.00 ± 0.60

0.00 ± 0.27

0.00 ± 0.30

0.00 ± 0.26

Page 90: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

5-1

5 Summary, Conclusion and Recommendations The on-board PEMS deployed to the AOSR in 2009 to measure emissions from heavy

hauler mining trucks was upgraded and used for quantifying emissions from one Liebherr T282B and two CAT 797Bs in three facilities in October, 2010. Gases (total VOCs, CO, CO2, NO, NO2, and SO2), particle number, PM2.5 mass, and BC concentrations were measured in real time. Integrated canister and DNPH cartridge samples were taken for speciated VOCs, halocarbons, and carbonyls. NH3, H2S, SO2, PM2.5 mass, light absorption coefficient (babs), elements, isotopes, ions, carbon fractions, carbohydrates, organic acids, water-soluble organic carbon (WSOC), and speciated organic compounds were taken on gas- and particle-absorbing filters. Fuel-based emission factors and chemical source profiles were derived from these measurements. The key findings are summarized as follows:

All five truck emissions were below all U.S. EPA Tier 1 emission limits (voluntary limits for trucks in Canada) for NMHC, CO, and PM2.5, but exceeded the NOx (as NO2) limit by 20%, 27%, 22%, 70%, and 195% for CAT 797B-1, CAT 797B-2, CAT 797B-3, CAT 797B-4, and Liebherr T282B, respectively. All five tested trucks except the Liebherr T282B met the Canadian Tier 2 limit for CO. All trucks exceeded the Tier 2 limit for NMHC+NOx, while all of them met the Tier 2 limit for PM2.5. All five trucks except the Liebherr T282B met the Canadian Tier 4 limit for CO. All trucks except the CAT 797B-2 met the Tier 4 limit for NMHC. However, all trucks exceeded Tier 4 limits for NOx and PM2.5.

Average EFs for the three measured criteria air contaminants in g/kg fuel are: CAT 797B-1– CO: 9.6±3.7; NOx (as NO2): 49.3±3.9; and PM2.5: 0.51 ± 0.14 CAT 797B-2– CO: 6.5±3.6; NOx (as NO2): 52.4±11.8; and PM2.5: 0.80 ± 0.35 CAT 797B-3 – CO: 10.7±2.5; NOx (as NO2): 50.3±8.3; and PM2.5: 0.59 ± 0.04 CAT 797B-4 – CO: 14.3±8.9; NOx (as NO2): 70.0±14.3; and PM2.5: 0.80 ± 0.32 Liebherr T282B– CO: 32.8±14.6; NOx (as NO2): 121.6±58.8; and PM2.5: 0.89 ± 0.42

SO2 was near or below detection limit (<0.004 g/kg fuel) for all trucks. The Liebherr T282B emitted higher CH4 (2–3.4 times), CO (3.1–5.0 times), NOx (2.2–

2.4 times), particle number (1.4–15 times), PM2.5 (1.1–1.7 times), and BC (1.2–2.2 times) than CAT 797B-1, CAT 797B-2, and CAT 797B-3. It had similar EFs for CH4 with CAT 797B-4, and ~24% lower in particle number EF.

For the two trucks in Facility A, CAT 797B-3 with fuel additives had similar EFs for NOx, 60–85% higher for CH4, CO, and BC, ~18 times higher for NH3, but 56% and 27% less for particle number and PM2.5, respectively, as compared to the CAT 797B-2 without fuel additives. All trucks had low EFs for CH4, NH3, and H2S, usually below detection limits.

Certification tests reported lower CO and NOx, higher NMHC, comparable PM2.5 as compared to real-world tests. The Liebherr T282B real-world NOx emissions were about 3.3 times of that from certification tests. Facility estimates of annual emissions are generally conservative for NMHC and PM,, but may underestimate CO and NOx emissions, especially for Liebherr T282B.

Among the measured NMHC, alkanes and cycloalkanes and alkenes were the most abundant species, with the sum of these two groups accounting for 83%–90% of total NMHC emissions. Among the NMHC species listed as MSATs by the U.S. EPA, benzene and toluene had EFs of 3–27 mg/kg fuel. The sum of NMHC EFs varied by a

Page 91: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

5-2

factor of 5 among the five tested trucks, with CAT 797B-2 highest (951±289 mg/kg fuel) and CAT 797B-3 lowest (170±73 mg/kg fuel).

Halocarbon emissions were low (<72 mg/kg fuel), probably from ambient intake air to the truck or from the dilution air of the sampling system that broke through the carbon filter. Species with the highest EFs were dichloromethane, 1,3-dichlorobenzene , tetrachloroethene, 1,1,2,2-tetrachloroethane, and dichlorodifluoromethane.

Formaldehyde was detectable in all three trucks tested in 2010 with EFs of 0.5-3.4 mg/kg fuel. Most other carbonyls were below MDLs for trucks Liebherr T282B and CAT 797B-3. Truck CAT 797B-4 had more detectable carbonyl compounds.

Total VOCs were highly correlated with NOx (R2 = 0.97). Total VOCs and NOx were

also correlated with CO2 (R2 = 0.82 and 0.83, respectively). Particle number concentration had fair correlation with CO2 (R2 = 0.57), NOx (R2 = 0.53), and total VOCs (R2 = 0.48). CO and PM2.5 were mildly correlated (R2 = 0.43).

Fuel-based EFs were variable among sub-activities of idling, traveling with load, and traveling without load. EFs of total VOCs and NO during idling were higher than when moving.

The NMHC source profile was dominated by alkenes and alkanes for all five trucks, accounting for 59±17% and 35±21% of the sum of PAMS compounds, respectively. Formaldehyde, acetaldehyde, and acetone are the most abundant carbonyls species.

Carbon is the most abundant component of PM2.5 for all five trucks. Average TC accounted for 68–88% of PM2.5 mass. OC accounted for 14-36% and EC for 49–67% of PM2.5 mass for the five trucks. EC2 was the dominant carbon fraction for trucks CAT 797B-1, CAT 797B-3, and Liebherr T282B, accounting for 45-63% of PM2.5 and 90–95% of EC. EC2 from CAT 797B-2 accounts for 29% and 60% of PM2.5 and EC, respectively. The EC1 abundance for CAT 797B-4 (37%) exceeded its EC2 abundance (19%).

Soluble ions contributed <8% to PM2.5 for all five trucks. The most abundant anions were PO4

≡ (1.1 ± 1.0%), NO3- (0.7 ± 0.5%), and SO4

= (0.3 ± 0.2%), while the most abundant cation was Ca++ (0.7 ± 0.8%). Elemental abundances were low for all five trucks, typically < 0.1%, except for lubrication oil constituents: Ca (0.9 ± 0.8%), Zn (0.5 ± 0.3%), P (0.4 ± 0.3%), and S (0.1 ± 0.1%). Among the three trucks tested in 2010, Liebherr T282B had the lowest abundances of P, Ca, and Zn, approximately 50% of those from truck CAT 797B-3 and 25% of those from truck CAT 797B-4. CAT 797B-4 PM2.5 contained NO2

-, NO3-, PO4

≡, SO4=, Ca++, Na, P, S, Cl, Ca, and Zn abundances that

were 2-9 times higher than the other two trucks tested in 2010. Abundances of rare earth elements were low for all five trucks (<0.002%).

Alkanes and PAHs were the most abundant particle-bound organic compounds, accounting for 0.03–0.05% and 0.02–0.04% of PM2.5, respectively, for the three trucks tested in 2010. Particle-associated PAHs were mostly two- to four- ring semi-volatile PAH. Hopanes and steranes abundances accounted for 0.001–0.005% and 0.0004–0.002% of PM2.5. Abundances of non-polar organic compounds were 2–5 times lower than tests in 2009.

Key PM2.5 components as tracers for diesel exhaust from mining trucks were OC, EC, particularly EC2 from thermal analysis, the OC/EC ratio, some metals like Ca, P, S, and Zn, as well as hopanes and steranes.

Page 92: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

5-3

This study quantified a variety of potentially toxic gases and particle components of interest for environmental protection such as benzene, toluene, xylene, particle-bound PAHs, and DPM. Exhaust components of ecological concern include acid gases and trace metals. Species identified in the organic fraction of gases and particles have unclear toxicity to ecosystems.

Emission factors and diesel exhaust composition vary with operational parameters, such as speed, load, age, fuel composition and consumption, ambient air temperature and humidity (Clark et al., 2002). For example, vehicle deterioration-caused malfunctions such as retarded timing, fuel injector malfunctions, smoke limiting mechanism deterioration, clogged air filters, worn turbochargers, clogged intercoolers, engine wear, excessive oil consumption, and electronics may reduce or increase emissions (Yanowitz et al., 2000). CO, NMHC, and PM2.5 are products of incomplete combustion, while NOx form from oxidation of nitrogen (N2) at high temperatures. Typically, lower ambient temperatures lead to lower combustion temperatures and less complete combustion, resulting higher CO, NMHC, and PM emissions, but lower NOx emissions. Lower ambient temperatures also favor the condensation of semi-volatile organic compounds onto PM2.5, resulting in higher PM emissions. Higher relative humidity can reduce the oxygen content in intake air and lower combustion temperatures, and therefore reducing NOx emissions (Pekula et al., 2003; Yanowitz et al., 2000). This study measured emissions from five trucks with specific wear stage and operation conditions during a short period of falls of 2009 and 2010. Addition measurements are needed to evaluate emissions change as a function of truck wear conditions, fuel, and ambient air temperature and humidity.

Page 93: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

6-1

6 References Abolhasani, S.; Frey, H.C.; Kim, K.; Rasdorf, W.; Lewis, P.; Pang, S.H. (2008). Real-world in-

use activity, fuel use, and emissions for nonroad construction vehicles: A case study for excavators. J. Air Waste Manage. Assoc., 58(8):1033-1046. ISI:000258800100006.

Bachmann, J.D. (2007). Will the circle be unbroken: A history of the US national ambient air quality standards-2007 Critical Review. J. Air Waste Manage. Assoc., 57(6):652-697. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.57.6.652.

Ban-Weiss, G.A.; McLaughlin, J.P.; Harley, R.A.; Lunden, M.M.; Kirchstetter, T.W.; Kean, A.J.; Strawa, A.W.; Stevenson, E.D.; Kendall, G.R. (2008). Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline and diesel vehicles. Atmos. Environ., 42(2):220-232.

Burtscher, H. (2005). Physical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 36(7):896-932.

Cao, J.J.; Chow, J.C.; Lee, S.C.; Watson, J.G. (2013). Evolution of PM2.5 measurements and standards in the U.S. and future perspectives for China. AAQR, 13(4):1197-1121. http://aaqr.org/VOL13_No4_August2013/5_AAQR-12-11-OA-0302_1197-1211.pdf.

Carlier, P.; Hannachi, H.; Mouvier, G. (1986). The chemistry of carbonyl compounds in the atmosphere - A review. Atmos. Environ., 20:2079-2099.

Caterpillar Inc. (2003). Caterpillar 797B Mining Truck Product Brochure AEHQ5511. http://www.webcitation.org/5kqmQ4sYK.

Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. (1993). The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies. Atmos. Environ., 27A(8):1185-1201.

Chow, J.C.; Watson, J.G. (1999). Ion chromatography in elemental analysis of airborne particles. In Elemental Analysis of Airborne Particles, Vol. 1, Landsberger, S., Creatchman, M., Eds.; Gordon and Breach Science: Amsterdam, 97-137.

Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T.M. (2001). Comparison of IMPROVE and NIOSH carbon measurements. Aerosol Sci. Technol., 34(1):23-34. http://www.tandfonline.com/doi/pdf/10.1080/02786820600623711.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Arnott, W.P.; Moosmüller, H.; Fung, K.K. (2004). Equivalence of elemental carbon by Thermal/Optical Reflectance and Transmittance with different temperature protocols. Environ. Sci. Technol., 38(16):4414-4422.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Paredes-Miranda, G.; Chang, M.-C.O.; Trimble, D.L.; Fung, K.K.; Zhang, H.; Yu, J.Z. (2005). Refining temperature measures in thermal/optical carbon analysis. Atmos. Chem. Phys., 5(4):2961-2972. 1680-7324/acp/2005-5-2961. http://www.atmos-chem-phys.net/5/2961/2005/acp-5-2961-2005.pdf.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.L.; Kohl, S.D. (2007a). The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc., 57(9):1014-1023. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.57.9.1014.

Chow, J.C.; Yu, J.Z.; Watson, J.G.; Ho, S.S.H.; Bohannan, T.L.; Hays, M.D.; Fung, K.K. (2007b). The application of thermal methods for determining chemical composition of carbonaceous aerosols: A Review. Journal of Environmental Science and Health-Part A, 42(11):1521-1541.

Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Chen, L.-W.A.; Zielinska, B.; Mazzoleni, L.R.; Magliano, K.L. (2007c). Evaluation of organic markers for chemical mass balance source

Page 94: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

6-2

apportionment at the Fresno supersite. Atmos. Chem. Phys., 7(7):1741-1754. http://www.atmos-chem-phys.net/7/1741/2007/acp-7-1741-2007.pdf.

Chow, J.C.; Watson, J.G.; Feldman, H.J.; Nolan, J.; Wallerstein, B.R.; Hidy, G.M.; Lioy, P.J.; McKee, H.C.; Mobley, J.D.; Bauges, K.; Bachmann, J.D. (2007d). 2007 Critical review discussion - Will the circle be unbroken: A history of the U.S. National Ambient Air Quality Standards. J. Air Waste Manage. Assoc., 57(10):1151-1163. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.57.10.1151.

Chow, J.C.; Bachmann, J.D.; Kinsman, J.D.; Legge, A.H.; Watson, J.G.; Hidy, G.M.; Pennell, W.R. (2010). Multipollutant air quality management: Critical review discussion. J. Air Waste Manage. Assoc., 60(10):1151-1164. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.60.10.1154.

Chow, J.C.; Watson, J.G. (2011). Air quality management of multiple pollutants and multiple effects. Air Quality and Climate Change Journal, 45(3):26-32. https://www.researchgate.net/publication/234903062_Air_quality_management_of_multiple_pollutants_and_multiple_effects?ev=prf_pub.

Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Lowenthal, D.H.; Motallebi, N. (2011). PM2.5 source profiles for black and organic carbon emission inventories. Atmos. Environ., 45(31):5407-5414.

Chow, J.C.; Watson, J.G. (2012). Chemical analyses of particle filter deposits. In Aerosols Handbook : Measurement, Dosimetry, and Health Effects, 2; Ruzer, L., Harley, N. H., Eds.; CRC Press/Taylor & Francis: New York, NY, 179-204.

Clark, N.N.; Kern, J.M.; Atkinson, C.M.; Nine, R.D. (2002). J.Air Waste Manage.Assoc. 52(1):84-94.

Cocker, D.R.; Shah, S.D.; Johnson, K.C.; Zhu, X.N.; Miller, J.W.; Norbeck, J.M. (2004). Development and application of a mobile laboratory for measuring emissions from diesel engines. 2. Sampling for toxics and particulate matter. Environ. Sci. Technol., 38(24):6809-6816.

Dreher, D.B.; Harley, R.A. (1998). A fuel-based inventory for heavy-duty diesel truck emissions. J. Air Waste Manage. Assoc., 48(4):352-358.

Elia, M.; McDonald, T.; Crisp, A. (1986). Errors in measurements of CO2 with the use of drying agents. Clinica Chimica Acta, 158(3):237-244. http://www.sciencedirect.com/science/article/B6T57-47R9WX2-CV/2/816c6ffcba52110a2f8fc804934297a1.

Environment Canada (2005). SOR/2005-32: Off-Road Compression-Ignition Engine Emission Regulations. Canada Gazette Part II, 139(4)http://laws-lois.justice.gc.ca/PDF/SOR-2005-32.pdf.

Environment Canada (2011). Regulations Amending the Off-Road Compression-Ignition Engine Emission Regulations (SOR/2011-261). Canada Gazette Part II, 145(25):2454-2489. http://www.gazette.gc.ca/rp-pr/p2/2011/2011-12-07/pdf/g2-14525.pdf#page=52.

Environment Canada (2012). SOR/2002-254: Sulphur in diesel fuel regulations. Canada Gazette Part II, 136(16)http://laws-lois.justice.gc.ca/PDF/SOR-2002-254.pdf.

Fraser, M.P.; Cass, G.R.; Simoneit, B.R.T. (1998). Gas-phase and particle-phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel. Environ. Sci. Technol., 32(14):2051-2060.

Fraser, M.P.; Cass, G.R.; Simoneit, B.R.T. (1999). Particulate organic compounds emitted from motor vehicle exhaust and in the urban atmosphere. Atmos. Environ., 33(17):2715-2724.

Page 95: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

6-3

Frey, H.C.; Rasdorf, W.; Kim, K.; Pang, G.H.; Lewis, P. (2008). Comparison of real-world emissions of B20 biodiesel versus petroleum diesel for selected nonroad vehicles and engine tiers. Transportation Research Record, (2058):33-42.

Fujita, E.M.; Zielinska, B.; Campbell, D.E.; Arnott, W.P.; Sagebiel, J.C.; Mazzoleni, L.R.; Chow, J.C.; Gabele, P.A.; Crews, W.; Snow, R.; Clark, N.N.; Wayne, W.S.; Lawson, D.R. (2007). Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin. J. Air Waste Manage. Assoc., 57(6):705-720. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.57.6.705.

Grosjean, D.; Grosjean, E.; Gertler, A.W. (2001). On-road emissions of carbonyls from light-duty and heavy-duty vehicles. Environ. Sci. Technol., 35(1):45-53.

Hansen, J.E.; Sato, M.; Kharecha, P.; Russell, G.; Lea, D.W.; Siddall, M. (2007). Climate change and trace gases. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 365(1856):1925-1954.

Hesterberg, T.W.; Long, C.M.; Sax, S.N.; Lapin, C.A.; McClellan, R.O.; Bunn, W.B.; Valberg, P.A. (2011). Particulate matter in New Technology Diesel Exhaust (NTDE) is quantitatively and qualitatively very different from that found in Traditional Diesel Exhaust (TDE). J. Air Waste Manage. Assoc., 61(9):894-913.

Hidy, G.M.; Pennell, W.R. (2010). Multipollutant air quality management: A critical review. J. Air Waste Manage. Assoc., 60(6):645-674. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.60.10.1154.

Ho, S.S.H.; Yu, J.Z. (2004). In-injection port thermal desorption and subsequent gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons and n-alkanes in atmospheric aerosol samples. J. Chromatogr. A, 1059(1-2):121-129.

International Programme on Chemical Safety (1996). Environmental Health Criteria 171: Diesel Fuel and Exhaust Emissions. Report Number EHC171; prepared by World Health Organization, Geneva, Switzerland, http://www.inchem.org/documents/ehc/ehc/ehc171.htm.

Kean, A.J.; Sawyer, R.F.; Harley, R.A. (2000). A fuel-based assessment of off-road diesel engine emissions. J. Air Waste Manage. Assoc., 50(11):1929-1939.

Kean, A.J.; Harley, R.A.; Kendall, G.R. (2003). Effects of vehicle speed and engine load on motor vehicle emissions. Environ. Sci. Technol., 37(17):3739-3746.

Kean, A.J.; Littlejohn, D.; Ban-Weiss, G.A.; Harley, R.A.; Kirchstetter, T.W.; Lunden, M.M. (2009). Trends in on-road vehicle emissions of ammonia. Atmos. Environ., 43(8):1565-1570.

Kirchstetter, T.W.; Harley, R.A.; Kreisberg, N.M.; Stolzenburg, M.R.; Hering, S.V. (1999). On-road measurement of fine particle and nitrogen oxide emissions from light- and heavy-duty motor vehicles. Atmos. Environ., 33(18):2955-2968.

Kittelson, D.B. (1998). Engines and nanoparticles: A review. J. Aerosol Sci., 29(5/6):575-588. Kittelson, D.B. (1999). Review of diesel particulate matter sampling methods. prepared by Univ.

of Minnesota, Dept. of Mechanical Engineering Center for Diesel Research, Minneapolis, MN, http://www.me.umn.edu/centers/cdr/Proj/EPA.html.

Liebherr Mining Equipment Co. (2004). Liebherr T 282 B Product Brochure (Mining Truck T 282 B BK-RP LME 10100384-DD-05.09).

Lin, C.I.; Friedlander, S.K. (1988). A note on the use of glass fiber filters in the thermal analysis of carbon containing aerosols. Atmos. Environ., 22(3):605-607.

Lloyd, A.C.; Cackette, T.A. (2001). Critical review - Diesel engines: Environmental impact and control. J. Air Waste Manage. Assoc., 51(6):809-847. http://www.tandfonline.com/doi/pdf/10.1080/10473289.2001.10464315.

Page 96: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

6-4

Lombaert, K.; Morel, S.; Le Moyne, L.; Adam, P.; de Maleissye, J.T.; Amouroux, J. (2004). Nondestructive analysis of metallic elements in diesel soot collected on filter: Benefits of laser induced breakdown spectroscopy. Plasma Chemistry and Plasma Processing, 24(1):41-56. ISI:000186731700004.

Maricq, M.M. (2007). Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci., 38(11):1079-1118.

Moosmüller, H.; Mazzoleni, C.; Barber, P.W.; Kuhns, H.D.; Keislar, R.E.; Watson, J.G. (2003). On-road measurement of automotive particle emissions by ultraviolet lidar and transmissometer: Instrument. Environ. Sci. Technol., 37(21):4971-4978.

Ning, Z.; Polidori, A.; Schauer, J.J.; Sioutas, C. (2008). Emission factors of PM species based on freeway measurements and comparison with tunnel and dynamometer studies. Atmos. Environ., 42(13):3099-3114.

Pekula, N.; KURITZ, B.; Hearne, J.; Marchese, A.J.; Hesketh, R.P. (2003). The effect of ambient temperature, humidity, and engine speed on idling emissions from heavy-duty Diesel trucks. SAE TRANSACTIONS, 112(4):11.

Ris, C. (2007). US EPA health assessment for diesel engine exhaust: A review. Inhal. Toxicol., 19(Suppl. 1):229-239.

Risher, J.F.; Rhodes, S.W. (1995). Toxicological profile for fuel oils. Agency for Toxic Substances and Disease Registry, Atlanta, Ga .

Rogge, W.F.; Hildemann, L.M.; Mazurek, M.A.; Cass, G.R.; Simoneit, B.R.T. (1993). Sources of fine organic aerosol - 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ. Sci. Technol., 27(4):636-651.

Schauer, J.J. (2003). Evaluation of elemental carbon as a marker for diesel particulate matter. J. Expo. Anal. Environ. Epidemiol., 13(6):443-453. ISI:000186454100004.

Simoneit, B.R.T. (1985). Application of molecular marker analysis to vehicular exhaust for source reconciliations. Int. J. Environ. Anal. Chem., 22:203-233.

Singer, B.C.; Harley, R.A. (1996). A fuel-based motor vehicle emission inventory. J. Air Waste Manage. Assoc., 46(6):581-593.

Toner, S.M.; Sodeman, D.A.; Prather, K.A. (2006). Single particle characterization of ultrafine and accumulation mode particles from heavy duty diesel vehicles using aerosol time-of-flight mass spectrometry. Environ. Sci. Technol., 40(12):3912-3921.

U.S.EPA (1985). Compilation of air pollutant emission factors, Volume II: mobile sources. prepared by U.S. EPA, Air and Energy Engineering Research Laboratory, Research Triangle Park, NC.

U.S.EPA (1999a). Toxic organic compounds in Ambient Air Compendium Method TO-11A: Determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography (HPLC). Report Number EPA/625/R-96/101b; prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC.

U.S.EPA (1999b). Toxic organic compounds in Ambient Air Compendium Method TO-15: Determination of volatile organic compounds (VOCs) in air collected in specially-prepared canisters and analyzed by gas chromatography/mass spectrometry (GC/MS). Report Number EPA/625/R-96/101b; prepared by U.S. Environmental Protection Agency, Research Triangle Park, NC.

U.S.EPA (2001). 40 CFR Parts 80 and 86: Control of emissions of hazardous air pollutants from mobile sources. Federal Register, 66(61):17230-17273.

Page 97: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

6-5

U.S.EPA (2004a). Control of emissions of air pollution from nonroad diesel engines and fuel: Final rule. Federal Register, 69(124):38958-39273. http://epa.gov/nonroad-diesel/2004fr.htm.

U.S.EPA. (2004b). Exhaust and Crankcase Emission Factors for Nonroad Engine Modeling-- Compression-Ignition, Report No. NR-009c. EPA420-P-04-009 , Assessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency.

U.S.EPA. (2005a). Engine-Testing Procedures: 40 CFR Part 1065. 3 January 2014a. U.S.EPA (2005b). NONROAD model (nonroad engines, equipment, and vehicles). prepared by

U.S. Environmental Protection Agency, Research Triangle Park, NC, http://www.epa.gov/omswww/nonrdmdl.htm.

U.S.EPA (2012). Report to congress on black carbon. Report Number EPA-450/D-12-001; prepared by U.S. Environmental Protection Agency, Washington DC, http://www.epa.gov/blackcarbon/.

U.S.EPA. (2013). Control of Emissions from New and In-Use Nonroad Compression-Ignition Engines (Code of Federal Regulations: Title 40,Section 89).

Wagner, T.; Wyszynski, M.L. (1996). Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 210(2):109-122.

Wang, X.L.; Chancellor, G.; Evenstad, J.; Farnsworth, J.E.; Hase, A.; Olson, G.M.; Sreenath, A.; Agarwal, J.K. (2009). A novel optical instrument for estimating size segregated aerosol mass concentration in real time. Aerosol Sci. Technol., 43:939-950.

Wang, X.L.; Robbins, C.; Hoekman, S.K.; Chow, J.C.; Watson, J.G.; Schuetzle, D. (2011). Dilution sampling and analysis of particulate matter in biomass-derived syngas. Frontiers of Environmental Science and Engineering in China, 5(3):320-330.

Wang, X.L.; Watson, J.G.; Chow, J.C.; Gronstal, S.; Kohl, S.D. (2012). An efficient multipollutant system for measuring real-world emissions from stationary and mobile sources. AAQR, 12(1):145-160. http://aaqr.org/VOL12_No2_April2012/1_AAQR-11-11-OA-0187_145-160.pdf.

Watson, J.G. (1984). Overview of receptor model principles. J. Air Poll. Control Assoc., 34(6):619-623. http://www.tandfonline.com/doi/pdf/10.1080/00022470.1984.10465780.

Watson, J.G.; Chow, J.C.; Pace, T.G. (1991). Chemical mass balance. In Receptor Modeling for Air Quality Management, Hopke, P. K., Ed.; Elsevier Press: New York, NY, 83-116.

Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; Robbins, R. (1994). Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles. Atmos. Environ., 28(15):2493-2505.

Watson, J.G.; Chow, J.C.; Pace, T.G. (2000). Fugitive dust emissions. In Air Pollution Engineering Manual, Second Edition, 2nd; Davis, W. T., Ed.; John Wiley & Sons, Inc.: New York, 117-135.

Watson, J.G.; Chow, J.C.; Fujita, E.M. (2001). Review of volatile organic compound source apportionment by chemical mass balance. Atmos. Environ., 35(9):1567-1584.

Watson, J.G.; Zhu, T.; Chow, J.C.; Engelbrecht, J.P.; Fujita, E.M.; Wilson, W.E. (2002). Receptor modeling application framework for particle source apportionment. Chemosphere, 49(9):1093-1136.

Watson, J.G.; Chow, J.C. (2004). Receptor models for air quality management. EM, 10(Oct.):27-36.

Watson, J.G.; Chow, J.C. (2005). Receptor models. In Air Quality Modeling -Theories, Methodologies, Computational Techniques, and Available Databases and Software. Vol. II -

Page 98: Alberta's environmental monitoring and science programenvironmentalmonitoring.alberta.ca/wp-content/uploads/2018/07/... · Characterization of Real-World Emission from Non-Road Mining

6-6

Advanced Topics, Zannetti, P., Ed.; Air and Waste Management Association and the EnviroComp Institute: Pittsburgh, PA, 455-501.

Watson, J.G.; Chow, J.C. (2007). Receptor models for source apportionment of suspended particles. In Introduction to Environmental Forensics, 2nd Edition, 2; Murphy, B., Morrison, R., Eds.; Academic Press: New York, NY, 279-316.

Watson, J.G.; Chen, L.-W.A.; Chow, J.C.; Lowenthal, D.H.; Doraiswamy, P. (2008a). Source apportionment: Findings from the U.S. Supersite Program. J. Air Waste Manage. Assoc., 58(2):265-288. http://www.tandfonline.com/doi/pdf/10.3155/1047-3289.58.2.265.

Watson, J.G.; Miller, J.W.; Moosmüller, H.; Kuhns, H.D.; Chow, J.C.; Chang, O.M.C.; Nussbaum, N.J.; Mazzoleni, C.; Zhu, D.; Barber, P.W.; Kemme, M.R.; Cocker, D.R. (2008b). Characterization of off-road diesel emissions of criteria pollutants. Report Number WP-1336; prepared by Desert Research Institute, Reno, NV and CE-CERT, University of California, Riverside, CA, Reno, NV, for Strategic Environmental Research and Development Program, http://www.serdp.org/Program-Areas/Weapons-Systems-and-Platforms/Noise-and-Emissions/Air-Emissions/WP-1336/WP-1336/(language)/eng-US.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Kohl, S.D.; Chen, L.-W.A.; Etyemezian, V. (2012). Overview of real-world emission characterization methods. In Alberta Oil Sands: Energy, Industry, and the Environment, Percy, K. E., Ed.; Elsevier Press: Amsterdam, The Netherlands, 145-170.

Watson, J.G.; Chow, J.C.; Wang, X.L.; Zielinska, B.; Kohl, S.D.; Gronstal, S. (2013). Characterization of real-world emissions from nonroad mining trucks in the Athabasca Oil Sands Region during September, 2009. prepared by Desert Research Institute, Reno, NV, for Ft. McMurray, AB, Canada, Wood Buffalo Environmental Association.

Yanowitz, J.; McCormick, R.L.; Graboski, M.S. (2000). In-Use Emissions from Heavy-Duty Diesel Vehicles. Environmental Science & Technology, 34(5):729-740. http://dx.doi.org/10.1021/es990903w.

Zhu, D.; Nussbaum, N.J.; Kuhns, H.D.; Chang, M.-C.O.; Sodeman, D.; Moosmüller, H.; Watson, J.G. (2011). Real-world PM, NOx, CO, and ultrafine particle emission factors for military non-road heavy duty diesel vehicles. Atmos. Environ., 45(15):2603-2609. http://www.sciencedirect.com/science/article/pii/S135223101100166X.

Zielinska, B.; Sagebiel, J.C.; Harshfield, G.; Pasek, R. (2001). Volatile organic compound measurements in the California/Mexico border region during SCOS97. Sci. Total Environ., 276(1-3):19-31.

Zielinska, B.; Sagebiel, J.C.; Whitney, K.; Lawson, D.R. (2004). Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. J. Air Waste Manage. Assoc., 54(9):1138-1150.