41
Carrier Dynamics and Multiple Exciton Generation in Nanocrystals: Applications to 3 rd Generation Solar Photon Conversion Randy Ellingson Exciton dynamics, MEG Matt Beard THz spectroscopy, MEG Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen (PD) Exciton dynamics, MEG (Si) Joseph Luther (GS) MEG photocurrent, QD arrays Jim Murphy (GS) THz Spectroscopy, QD arrays Pingrong Yu MEG Solar Cells Mark Hanna Thermodynamic Efficiencies Sasha Efros (NRL) Theory of MEG Andrew Shabaev (NRL) Theory of MEG Josef Michl (UCB) Singlet Fission (SF) Mark Ratner (NWU) Singlet Fission (Theory) Funding: U.S. DOE Office of Science, Div Basic Energy Sciences, Division of Chemical Sciences A.J. Nozik National Renewable Energy Laboratory University of Colorado, Boulder

A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Embed Size (px)

Citation preview

Page 1: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Carrier Dynamics and Multiple Exciton Generation in Nanocrystals: Applications to 3rd Generation Solar Photon Conversion

Randy Ellingson Exciton dynamics, MEG Matt Beard THz spectroscopy, MEGJustin Johnson(PD) SF,Exciton dynamics,MEGKelly Knutsen (PD) Exciton dynamics, MEG (Si)Joseph Luther (GS) MEG photocurrent, QD arraysJim Murphy (GS) THz Spectroscopy, QD arraysPingrong Yu MEG Solar CellsMark Hanna Thermodynamic EfficienciesSasha Efros (NRL) Theory of MEGAndrew Shabaev (NRL) Theory of MEGJosef Michl (UCB) Singlet Fission (SF)Mark Ratner (NWU) Singlet Fission (Theory)

Funding: U.S. DOE Office of Science, Div Basic Energy Sciences, Division of Chemical Sciences

A.J. NozikNational Renewable Energy Laboratory

University of Colorado, Boulder

Page 2: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Consequences of Size Quantization

Large blue shift of absorption edgeDiscrete energy levels/structured absorption and photoluminescence spectraDramatic variation of optical and electronic propertiesEnhanced photoredoxproperties for photogenerated electrons and holes Greatly enhanced excitonabsorption at 300 KConversion of indirect semiconductors to direct semiconductors or vice versaGreatly enhanced oscillator strength per unit volume (absorption coefficient

■ Greatly modified pressure dependence of phase changes and direct to indirect transitions■ Greatly enhanced non-linear

optical propertiesEfficient anti-Stokes luminescence

Effects on Dynamics:

Slowed relaxation and cooling Slowed relaxation and cooling ((~~10X) of 10X) of photogeneratedphotogenerated hot hot electrons and holes (electrons and holes (excitonsexcitons))Conservation of crystal Conservation of crystal momentum relaxedmomentum relaxedEnhanced Auger processes Enhanced Auger processes (invoked to explain PL blinking, (invoked to explain PL blinking, breaking phonon bottleneck, and breaking phonon bottleneck, and multiple multiple excitonexciton generation )generation )

Page 3: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Quantum Well

Ebarrierg

Bulkτ QW

therm τ bulktherm>>

τQWtherm τbulk

therm

P84IIB-G0933203

Bulk band gap

ne = 4

ne = 2

ne = 1

hh = 1hh = 2hh = 3hh = 4

ne = 3

hν hν

Ec

Ev

h+h+

e– e–

QUANTIZATION EFFECTSQUANTIZATION EFFECTS●● Auger processes enhancedAuger processes enhanced●● Hot Hot excitonexciton cooling slowed (compared to MEG)cooling slowed (compared to MEG)●● Crystal momentum not a good quantum numberCrystal momentum not a good quantum number

Page 4: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

e-

e- e-

Oh+

Oh+

Egap

One photon yieldstwo e-–h+ pairs

impact ionization (now called MultipleExciton Generation (MEG)

Enhanced Photovoltaic Efficiency in Quantum Dot Solar Enhanced Photovoltaic Efficiency in Quantum Dot Solar Cells by Multiple Exciton GenerationCells by Multiple Exciton Generation

A.J. Nozik, Ann. Rev. Phys. Chem. 52, 193, 2001; Physica E14,115, 2002; and in “Next Generation Photovoltaics”, Marti& Luque, Eds, AIP, 2003;

Quantum Dot

MEG is an inverse Augerprocess; Auger processesare enhanced in QDs:<2Pe|ν(r1,r2)|1Se1Se1Sh>

● crystal momentum need not be conserved (not a good quantum number)● Carrier thermalizationissuppressed (phonon bottleneck)

______________1Pehω = 20 meV

_______________1Se

100 meV(MEG can compete successfullywith phonon emission and forwardAuger processes)

Page 5: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Hot e-

Relaxation

Main Process Limiting Conversion Efficiency(> 50% loss)

Efficiency of Solar Photon Conversion

Page 6: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

e-

usable photo-voltage (qV)

Energy

e-

n-typep-type

1 e- - h+ pair/photon

ηmax = 32%

heat loss

heat loss

Conventional PV CellConventional PV Cell

SOLAR ELECTRICITY

Page 7: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Photovoltaic CellsI. 1st Generation

• Single crystal Si• Poly-grain Si

II. 2nd Generation (Polycrystalline Thin Film)• Amorphous Si• Thin film Si• CuInSe2• CdTe• Dye-sensitized Photochemical Cell

III. 3rd Generation (ntheor>32% Queisser-Shockley limit and low cost)• (High efficiency multi-gap tandem cells(here now but expensive))• Multiple Exciton Generation (MEG) solar cells• Quantum Dot Solar Cells • Singlet Fission Solar Cells• Hot electron converters• Intermediate Band PV• Photon management (upconversion and down conversion)• Thermophotovoltaics/thermophotonics

See: M. Green, “Third Generation Photovoltaics”. Springer, 2003, andMarti and A. Luque, “Next Generaton Photovoltaics”, Inst. Of Physics Series in Optics and Optoelectronics, 2002

Page 8: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Photocurrent Multiplication by Impact Ionization (I.I.)Photocurrent Multiplication by Impact Ionization (I.I.)

1 photon yields 2 (or more) e- - h+ pairs

(I.I. previously observed in bulk Si, Ge, InSb, PbS, and PbSe> 30 years ago—mainly with applied electric field (avalanche photodiodes)—BUT NOT USEFUL FOR PV BULK MATERIALS

h+

e e

hν ≥ 2 Eg Eg

e

h+ h+ h+h+

e e

Another Way

Page 9: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

-All photons above the bandgap are absorbed.-Photons less than the bandgap not absorbed.-Only loss if radiative recombination.-All photogenerated carriers are collected.

QY for carrier generation:QY=0 E<EgQY = M MxEg<E<(M+1)Eg for M <Mmax, where Mmax=4/Eg

Photogenerated current:Jg =q C∫QY(E)Γ(E)dE

Recombination current:

IV curve: J(V)=Jg – JR(V)

Series connected Tandem Cell:J(V) = J1(V1) = J2(V2) and V = V1+V2.

Detailed Balance Efficiency Calculations

( )( )∫

−−

=gE

gR dE

kTVEqQYE

EEQYqgEVJ1)exp(

),(2

Detailed balance model

0 1 2 3 4 50

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

Eg=0.75 eV

AM1.5G

Opt

ical

Gen

erat

ion

Qua

ntum

Yie

ld

hν (eV)

M=3

M=2

M=1

Mmax=5

Sola

r Pho

ton

Cur

rent

(m

A/cm

2 eV)

M=4

Eg1 2Eg1

2Eg2Eg2

1

12

2

QY for a tandem MEG cell

Mtop=2

Mbottom=2

Page 10: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

0.0 0.5 1.0 1.5 2.00

5

10

15

20

25

30

35

40

45

M=3

SF

M=1

QDMmax

M=2

AM

1.5

Effic

ienc

y (%

)

Bandgap (eV)

Limiting Efficiency for Unconcentrated AM1.5G Spectrum

Hanna and Nozik, JAP 100, 74510 (2006)

(Single Bandgap)

Page 11: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Maixmum Efficiency at Optimum Band Gap

1 10 100 1000 1000030

40

50

60

70

80

90

M=3

M=1

Maximum multiplication

M=2

Max

imum

Effi

cien

cy (%

)

Concentration

Single gap MEG cell efficiency increases at a faster rate under solar concentration than a normal semiconductor cell with no carrier multiplication (M=1).

RATE OF EFFICIENCY INCREASE WITH SOLAR CONCENTRATION

Page 12: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Conservation of energy E and momentum hk/(2π) is fulfilled if the two dash-dotted arrows add vectorially to zero.

QDs: Requirement for conservation of momentum is relaxed. Threshold should be lower.

Queisser, et al. 1994

Bulk Si

Page 13: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Quantum yield & IQE measurements Si

Because of the need to conservemomentum, and because the rate ofimpact ionization is much slower than the rate of phonon emission at lowelectron energies, impact ionization is an inefficient process in bulk semiconductors in the visible andnear IR, and for Si requires UVphotons.

Page 14: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

TransmissionElectron Micro-graph (TEM) ofPbSe QuantumDots (also called (Nanocrystals)

5 nanometers5 x 10-9 m 0.000005 mm

20 rows of atoms,~ 6000 atoms, in these QDs

TEM From Andrew Norman

Page 15: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

PbTe Arrays in HCP Configuration

Murphy, J. E. et al. “PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation.” J. Am. Chem. Soc. 128, 3241–3247 (2006).

PbTe NCs•New Synthetic Routes•First optical characterization -absorption spectra-Photoluminescence-multiple exciton generation•Sphere to Cube Transition•Comparison of Lead Salt

Properties

TEM: Andrew Norman

Page 16: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Arrays of Cubic-shaped Lead Salt NCsPbSe PbTe

TEM: Andrew Norman

Page 17: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

MEG DYNAMICS

Pump hν > nEg

IR Probe: λ~5000nmHOMO-LUMO Probe: λ ~ 1300-1700 nm

∆α α e-h pair (exciton) density; 1S bleach decay dynamics = f(multiexcitondensity); 1S bleach dynamics and induced exciton absorption determine carrier cooling rate and carrier multiplication rate

Determine the photogenerated carrier density (QY) and thus MEGdynamics by: (a) measuring the free carrier absorption (IR probe) and exciton bleach (HOMO-LUMO probe); (b) measuring dynamics of multi-exciton decay vs single exciton decay, and the rise time of exciton bleaching and induced exciton absorption

VB

CB

+

-

-

+

-

Page 18: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Transient absorption experimental setup

QuantronixTi:SapphireAmplifier

Topas OPA

Topas OPA

805 nm

Al2O3

White Light probe440-1070 nm

PCKMLTi:S

Oscillator

Pump290-2200 nm

Vis/IR probe290 nm-10 µm

Delay1.5 ns

Monochromator

SRSBoxcar

Sample Delay1.5 ns

Chopper

Page 19: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Experimental Verification of Greatly Enhanced e--h+ multiplication (we term Multiple Exciton Generation (MEG)) in

Quantum Dots● R.D. Schaller and V.I. Klimov, Phys. Rev. Letts, 92,

186601 (May), 2004 (PbSe QDs)●R.J. Ellingson, M. Beard, J. Johnson, P. Yu, O.Micic, A.

Shabaev, A. Efros, A.J. Nozik, Nano Letters 5, 865, 2005 (PbSe and PbS QDs; 300% QY (3 e-/photon) at 4 times Eg)

●Recently, MEG also found in PbTe (NREL, JACS, 128, 3241, 2006) and CdSe (LANL, APL, 2005); 7 e-/photon in PbSe! (LANL, NanoLetts, 6, 424, 2006); InAs (Van Maekelbergh, Banin, et. Al., J. Phys. Chem. C (2007)); and Si (NREL, 2007)

Page 20: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

0.6

0.5

0.4

0.3

0.2

0.1

0.0

∆α

(nor

mal

ized

at t

ail)

4003002001000Time delay (ps)

Ehν/Eg = 5.00 Ehν/Eg = 4.66 Ehν/Eg = 4.25 Ehν/Eg = 4.05 Ehν/Eg = 3.60 Ehν/Eg = 3.25 Ehν/Eg = 1.90

(a)

Exciton dynamics for different pump energies with mid-IR intraband probe (5 µ)

Page 21: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

300

250

200

150

100

Qua

ntum

Yie

ld

54321

Ehν/Eg

Eg(HOMO - LUMO) -- 0.91 eV 0.91 eV 0.91 eV 0.91 eV 0.82 eV 0.73 eV 0.73 0.73 PbTe - 0.91 eV PbS - 0.8 eV

Qua

ntum

Yie

ld (%

)

MEG in MEG in PbXPbX; X = Se, S, Te; X = Se, S, Te(QY > 200% means 3 e(QY > 200% means 3 e--/photon are created; QY = 300% means all /photon are created; QY = 300% means all

dots have 3 edots have 3 e-- ))

Page 22: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Silicon Nanocrystals• Particles 3-10 nm diameter• Bulk bandgap 1.12 eV (~1100 nm); • Si NC bandgaps 1.22-1.6 eV (1016 –

775 nm)

TEM image courtesy of Innovalight, Inc.

Page 23: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Amine soak properties

aniline

ethylenediamine

oleate

Murphy, Beard, Nozik, JPC B 2006

Page 24: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

COHERENT SUPERPOSITION OF MULTI-EXCITON STATES IN SEMICONDUCTOR NANOCRYSTALS

Shabaev, Efros, Nozik, Nano Lett. 6, 2856 (2006)

PROPOSED NEW PHYSICS BASED ON MODEL INVOLVING:

Other proposed models to explain MEG:

R.D. Schaller, V.M. Agranovich, and V.I.Klimov, Nature Phys. 1 (2005) p. 189.

A. Franceschetti, J.M. An, and A. Zunger,Nano Lett. 6 (2006) p. 2191.

Page 25: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Multi-Exciton Generation by One PhotonEfficient Multi-Exciton Generation in PbSe

R.Ellingson, et.al. NanoLetters TBP

0.6

0.5

0.4

0.3

0.2

0.1

0.0

∆α

(nor

mal

ized

at t

ail)

4003002001000Time delay (ps)

Ehν/Eg = 5.00 Ehν/Eg = 4.66 Ehν/Eg = 4.25 Ehν/Eg = 4.05 Ehν/Eg = 3.60 Ehν/Eg = 3.25 Ehν/Eg = 1.90

(a)300

250

200

150

100

Qua

ntum

Yie

ld (%

)

5432Ehν/Eg

Eg (Homo - Lumo) 0.72 eV 0.72 eV 0.72 eV 0.82 eV 0.91 eV 0.91 eV 0.91 eV 0.91 eV PbS - 0.85 eV

(b)

1.0

0.8

0.6

0.4

0.2

0.0

∆T/

T (N

orm

aliz

ed)

543210

Time delay (ps)

Excitation Energy -- 1 x Eg 2 x Eg 3 x Eg 4 x Eg

Instrument Response

(a)

What is the reason of such high efficiency? -Impact Ionization?

Puzzle:

•Decay time ~100 ps (Auger process)

•Rise time ~ < 2-3 ps (Inverse Auger process)

(c)

Instantaneous creation of a coherent superposition of several electron-hole pairs by a single photon

Page 26: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

2Pe

1Se

1Sh

2Ph

2Pe

1Se

1Sh

2Ph

2Pe

1Se

1Sh

2Ph

2Pe

1Se

1Sh

2Ph

NEW MODEL FOR MEGCoherent Superposition of Multi-Excitonic States in PbSe QDs

Page 27: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

States with Energy Larger than Energy Gap

1Se

2Pe

1Sh

2Ph

1Se

2Pe

1Sh

2Ph

∆2P

EgEg ≈ ∆2P

0.02 0.03 0.04 0.05 0.06

-2

-1

0

1

2

4.084.475.005.777.07d (nm)

2Fh 3Sh1Hh

2Dh

1Gh

1Ph

1Fh

2Sh

1Dh

1Ph

1Sh

2Fe 3Se 1He2De1Ge2Pe1Fe2Se1De

1Pe

1Se

Ener

gy (e

V)

1/d2 (nm-2)

Eg

∆2P

Kang&Wise (1997)

PbSe

Two states are

degenerate and coupled:

WC= <2Pe|v(r1,r2)| 1Se 1Se 1Sh> 0

1Se

2Pe

1Sh

Eg

1Se

2Pe

1Sh

Eg

r1

r2

r2r1e2/| r1- r2|

WC

WC

Electron in NC occupying 2Pe state:

d

Page 28: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Coherent Superposition of Multi-Exciton States

Optical excitation of

“2Pe”-”2Ph” transitions:

1Se

2Pe

1Sh

2Ph1Se

2Pe

1Sh

2Ph

1Se

2Pe

1Sh

2Ph1Se

2Pe

1Sh

2Ph

Eg

Eg

Eg

Eg

∆2P

∆2P

∆2P

∆2P

1 e-h pair2 e-h pairs

3 e-h pairs

ωh

The efficiency of the multi-exciton generation depends on the relaxation mechanism.

There is high probability that the state relaxes to the two e-h pair state.

light

Page 29: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Density matrix

[ ]Hit

ρρh

=∂∂

Dynamics for times: ∆t << τA<< τr

1Se

2Pe

1Sh

2Ph

Eg

1Se

2Pe

1Sh

2Ph

1Se

2Pe

1Sh

2Ph

1Se

2Pe

1Sh

2Ph

1Se

2Pe

1Sh

2Ph

1Se

2Pe

1Sh

2Ph

γ1 γ2

W

f11f22

f00

f12

f21

g11g22

Vf10f01

1/τA

1/τex

1/τbi

fast component

Theoretical description requires:

time dependent density matrix for:

• Short pulse excitation

•Different relaxation mechanisms

((ShabaevShabaev, Efros, Nozik,, Efros, Nozik,NanoNano LettLett. 6, 2856 (2006). 6, 2856 (2006)

Page 30: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Time Resolved THz Spectroscopy

∆Φ

Sample

τ

Pump Scan = “pump on”

Nonphotoexcitedor reference scan = “pump off” (t) E Off

(t, τ) EOn THz

THz

oOffTHz

THzcn

x

tE

tEετστ

2)(

)(

),( −≅

∆ •Measure transient THz frequency average conductivity•Subpicosecond resolution•Mechanistic information•No electrical contacts

Page 31: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Film Treatments

Oleate CapCH3(CH2)7HC=CH(CH2)7COOHD ∼ 1.8 nm

Aniline Cap

D ∼ 0.8 nm

EthylenediamineH2NCH2CH2NH2

D = < 0.4 nm

Treatment d(nm) εS nave µ (cm2V-1s-1)

Oleic Acid 1.8 2 1.57 ---

Aniline 0.8 2 2.2 ---

Butlyamine 0.4 5.4 2.46 7.4ethylenediamine 0.4 16 2.62 47.0hydrazine 0.25 52 2.69 29.4NaOH 0.1 1 2.4 35.0

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Abso

rban

ce (O

.D.)

200016001200800400

Wavelength (nm)

3Eg ↓

2Eg

0.20

0.15

0.10

0.05

Abso

rban

ce (O

.D.)

200016001200800Wavelength (nm)

FWHM = 49 meV

Page 32: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Quantum Dot Solar Cells

Potential Major Advantages of Using Quantum Dots

• Enhanced photocurrent multiplication by MEG (Inverse Auger Process

• Hot electron transport through minibands in QD arrays

• Slowed Cooling of High Energy (Hot) Electrons (phonon bottleneck)

Page 33: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Quantum Dot Quantum Dot Solar CellsSolar Cells

●e-

e-

●e-

Oh+

Oh+

E gap

One photon yieldstwo e-–h+ pairs

Impact ionization

Enhanced Photovoltaic Efficiency in Quantum Dot

Solar Cells by Inverse Auger Effect (Impact Ionization)

2e–/photon

QD-Conducting Polymer Blend

Solar Cell

p-i-n QD Array Solar Cell

QD-Sensitized Nanocrystalline TiO2 Solar Cell

A.J. Nozik, PhysicaE 14, 115 (2002);

InAs QD0.4-1.0 eV

> 2Eg

Page 34: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Quantum Dot Sensitized TiO2Solar Cell

3.2 eV

TiO2

e-

e-e-

e-

e-e-Vph

TransparentTCO

Electrode

electrolyte

PtCounterElectrode

h+

QD

I3-/I-

-Analogous to dye-sensitized TiO2 solar cells-10 to 20 µm film of NC TiO2 (10-30 nm)-Ru dyes ⇒ Efficiency ~ 11%

-Advantages of QD’s as sensitizers:-possibility of slowed hot e- cooling-possibility of impact ionization-tunable absorption

TCOelectrode

300 Å TiO2

MEG QDs ,30-60 Å

Page 35: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

InAs

TiO2

Vacuum

eV-3

-4

-5

-6

-7

-8 TiO2 InAs

bulk QD1 QD2

e-

h+

InAs QD Solar Cell Based on NC TiO2

Page 36: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

J-V Characteristic for 3.4 nm InAs QD Sensitized Solar Cell

Page 37: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Miniband Formation in 1-D Confined Quantum Films

Page 38: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

e–

e– e–

e– minibands

h+ minibands

<8 Å

h+h+ h+

EgMEG

e–e–

h+ h+

MEGe–

e–

n i p

h+

QD Array in p-i-n Photon Conversion Cell

Page 39: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

PV Cell Based on QDs Dispersed in n-and p-type Organic Conducting Polymers

Page 40: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

● Size quantization in semiconductors may greatly affect the relaxation dynamics of photoinduced carriers. These include:

- slowed hot electron relaxation (partial phonon bottleneck)- enhanced Auger process (MEG)

● The theoretical and measured energy threshold for impact ionization in bulk semiconductors (e.g. Si, InAs, GaAs) is 4-5 times the band gap. Much lower thresholds are predicted for QDs because of the relaxation of the need to conserve momentum. The rate of exciton multiplication is also expected to be much faster in QDs (Auger processes α 1/d6 )

● Very efficient exciton multiplication experimentally observed in PbSe, PbTe, PbS, InAs, and Si QDs; the threshold photon energy is 2Eg. Up to 3 electrons per photon (300% QY) have been observed at sufficiently high photon energies (≥ 4Eg ). A new model based on coherent superposition of multiexcitonic states is introduced to explain these results. Two excitons/photon yield over 90% of the efficiency benefit of carrier multiplication.

● Singlet fission is the molecular analog of MEG and also could yield enhanced solar photon conversion efficiencies. It had been observed in dimeric diphenylisobenzofurane. Single gap cells with carrier multiplication with MEG yield the same improvement for PV as 2-gap tandem PV cells. A tandem cell with SF and/or MEG is required to improve maximum efficiency for H2O splitting. Higher efficiency in SF cells for PV require a tandem cell configuration.

Summary/ConclusionsSummary/Conclusions

Page 41: A.J. Nozik National Renewable Energy Laboratory … · 30/04/2007 · Applications to 3rd Generation Solar Photon Conversion ... Justin Johnson(PD) SF,Exciton dynamics,MEG Kelly Knutsen

Summary/Conclusions Summary/Conclusions -- ContinuedContinued

• Various configurations of Quantum Dot Solar Cells are suggested that could yield high conversion efficiencies:

1. Nanocrystalline TiO2 sensitized with QDs2. QD arrays exhibiting 3-D miniband formation3. QDs embedded in a polymeric blend of electron- and

hole-conducting polymers.4. SF molecular chromophores in a tandem cell for PV

and photoelectrolysis● THE DYNAMICS OF HOT ELECTRON and

EXCITED MOLECULE COOLING, FORWARD AND INVERSE AUGER RECOMBINATION (MEG), AND ELECTRON TRANSFER CAN BE MODIFIED IN QD AND SF SYSTEMS TO POTENTIALLY ALLOW VERY EFFICIENT SOLAR PHOTON CONVERSION VIA EFFICIENT MULTIPLE EXCITON GENERATION