15
AEM 668 Lecture 8 Aircraft Forces and Moments Dr. Jinwei Shen University of Alabama Feburary 3, 2015

Aircraft Forces and Moments

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Aircraft Forces and Moments

AEM 668 Lecture 8Aircraft Forces and Moments

Dr. Jinwei ShenUniversity of Alabama

Feburary 3, 2015

Page 2: Aircraft Forces and Moments

Aerodynamics

β–Ά Aero loads are dependent upon the vehicle’s velocityrelative to the air and the attitude of the body relativeto that relative velocity.

β–Ά The velocity of the body relative to the air isβ€œrelative velocity” = π―π‘Ÿπ‘’π‘™ = β€œAirspeed vector”

AEM 668 Lecture 8 J. Shen 2/15

Page 3: Aircraft Forces and Moments

Axes and Angles

β–Ά Body axisβ–Ά Stability axis

β–Ά 𝐢𝑠/𝑏 = 𝐢𝑏/𝑛(0, 𝛼𝑒, 0)β–Ά Wind axis

β–Ά 𝐢𝑀/𝑠 = 𝐢𝑏/𝑛(βˆ’π›½, 0, 0)β–Ά 𝐢𝑀/𝑏 = 𝐢𝑏/𝑛(βˆ’π›½, 𝛼𝑒, 0)

β–Ά 𝛼, 𝛽 undefined if π―π‘Ÿπ‘’π‘™ = 0β–Ά πœ“, πœƒ, πœ™ always exist

AEM 668 Lecture 8 J. Shen 3/15

Page 4: Aircraft Forces and Moments

Velocitiesβ–Ά Absolute Velocity

𝐯 = π―π‘Žπ‘–π‘Ÿ + π―π‘Ÿπ‘’π‘™π―π‘Ÿπ‘’π‘™ = 𝐯 βˆ’ π―π‘Žπ‘–π‘Ÿ

𝐯𝑏𝐢𝑀/𝑒 = ⎑⎒⎒

⎣

π‘ˆπ‘‰π‘Š

⎀βŽ₯βŽ₯⎦

π―π‘π‘Ÿπ‘’π‘™ = ⎑⎒⎒

⎣

π‘ˆβ€²

𝑉 β€²

π‘Š β€²

⎀βŽ₯βŽ₯⎦

π―π‘€π‘Ÿπ‘’π‘™ = ⎑⎒⎒

⎣

𝑉𝑇00

⎀βŽ₯βŽ₯⎦

tan(𝛼) = π‘Šβ€²π‘ˆβ€²

sin(𝛽) = 𝑉 ′𝑉𝑇

𝑉𝑇 = |π―π‘Ÿπ‘’π‘™|

β–Ά NED to 𝐹𝑏: πœ“, πœƒ, πœ™β–Ά NED to 𝐹𝑀: πœ“π‘€, πœƒπ‘€, πœ™π‘€

β–Ά πœ“π‘€: trajectoryheading

β–Ά πœƒπ‘€: flight path angle 𝛾▢ πœ™π‘€: wind frame bank

β–Ά Ex: 𝐯𝑏𝐢𝑀/𝑁 =

𝐢𝑏/π‘€π―π‘€π‘Ÿπ‘’π‘™ + 𝐢𝑏/𝑀𝐢𝑀/𝑁𝐯𝑁

π‘Žπ‘–π‘Ÿ

β–Ά Atmosphere is quiescent if π―π‘Žπ‘–π‘Ÿ/𝑖 = πœ”π‘’/𝑖 Γ— π©π‘Žπ‘–π‘Ÿπ‘π‘œπ‘–π‘›π‘‘/𝑖

AEM 668 Lecture 8 J. Shen 4/15

Page 5: Aircraft Forces and Moments

Force and MomentAerodynamic Force

β–Ά Defined in wind frame

𝐅𝑀𝐴 = ⎑⎒⎒

⎣

βˆ’π·βˆ’πΆβˆ’πΏ

⎀βŽ₯βŽ₯⎦

βˆ₯ π―π‘Ÿπ‘’π‘™βŸ‚ π―π‘Ÿπ‘’π‘™βŸ‚ π―π‘Ÿπ‘’π‘™

β–Ά Lift, drag, cross windforce

Gravity Force𝐅𝑏

𝐺 = 𝐢𝑏/𝑁(πœ“, πœƒ, πœ™)𝐖𝑁

𝐅𝑀𝐺 = 𝐢𝑀/𝑁(πœ“π‘€, πœƒπ‘€, πœ™π‘€)𝐖𝑁

β–Ά In body frame

𝐅𝑏𝐴 = ⎑⎒⎒

⎣

π‘‹π‘Œπ‘

⎀βŽ₯βŽ₯⎦

X forceSide force

Z forceβ–Ά From 𝐅𝑀 to 𝐅𝑏:

𝐅𝑏 = 𝐢𝑏/𝑀(βˆ’π›½, 𝛼)𝐅𝑀

Moments

πŒπ‘π΄ = ⎑⎒⎒

⎣

π‘™π‘šπ‘›

⎀βŽ₯βŽ₯⎦

πŒπ‘€π΄ = ⎑⎒⎒

⎣

π‘™π‘€π‘šπ‘€π‘›π‘€

⎀βŽ₯βŽ₯⎦

AEM 668 Lecture 8 J. Shen 5/15

Page 6: Aircraft Forces and Moments

Aerodynamic Coefficientsβ–Ά For any aerodynamic force

β–Ά L, C, D, X, Y, Zβ–Ά 𝐢𝐹𝐴 = 𝐹𝐴

1/2πœŒπ‘‰2𝑇 𝑆

β–Ά Dynamic pressure: π‘ž = 1/2πœŒπ‘‰2𝑇

β–Ά For aerodynamic momentsβ–Ά Rolling: 𝐢𝑙 = 𝑙

π‘žπ‘†π‘β–Ά Pitching: πΆπ‘š = π‘š

π‘žπ‘† 𝑐▢ 𝑐: mean aerodynamic chord

β–Ά Yawing: 𝐢𝑛 = π‘›π‘žπ‘†π‘

Wing-Planform Parameters𝑏 = wing span (tip to tip)𝑐 = wing chord (varies along span)

𝑐 = mean wing chord (mac)𝑆 = wing area (total)

AEM 668 Lecture 8 J. Shen 6/15

Page 7: Aircraft Forces and Moments

Aerodynamic DerivativesDamping derivatives:

β–Ά Δ𝐢(𝑙,π‘š,𝑛) = 𝐢(𝑙,π‘š,𝑛) π‘˜2𝑉𝑇

(𝑝, π‘ž, π‘Ÿ)β–Ά Example:

β–Ά Δ𝐢𝑙 = 𝐢𝑙𝑝 𝑏2𝑉𝑇

𝑝▢ Ξ”πΆπ‘š = πΆπ‘šπ‘ž 𝑐

2π‘‰π‘‡π‘ž

β–Ά Δ𝐢𝑛 = πΆπ‘›π‘Ÿ 𝑏2𝑉𝑇

π‘Ÿ

β–Ά 𝐢𝑙𝑝 = πœ•πΆπ‘™πœ•π‘

β–Ά πΆπ‘šπ‘ž = πœ•πΆπ‘šπœ•π‘ž

β–Ά πΆπ‘›π‘Ÿ = πœ•πΆπ‘›πœ•π‘Ÿ

Acceleration derivativesβ–Ά οΏ½οΏ½, 𝛽, 𝑉𝑇▢ Unsteady aerodynamics: 𝐢𝑙��, πΆπ‘šοΏ½οΏ½

Moment derivatives are important damping sources onthe natural modes of aircraft

AEM 668 Lecture 8 J. Shen 7/15

Page 8: Aircraft Forces and Moments

Aero-Coefficient Component Buildup 𝐢𝐷

β–Ά 𝐢( ) =𝐢( )(𝛼, 𝛽, 𝑀, β„Ž, 𝛿𝑠, 𝑇𝐢)

β–Ά 𝐢𝐷 = 𝐢𝐷(𝛼, 𝛽, 𝑀, β„Ž) +Δ𝐢𝐷(𝑀, 𝛿𝑒) +Δ𝐢𝐷(𝑀, π›Ώπ‘Ÿ) + Δ𝐢𝐷(𝛿𝐹) +Δ𝐢𝐷(gear) + …

AEM 668 Lecture 8 J. Shen 8/15

Page 9: Aircraft Forces and Moments

Aero-Coefficient Component Buildup 𝐢𝐿

β–Ά 𝐢𝐿 = 𝐢𝐿(𝛼, 𝛽, 𝑀, 𝑇𝐢) +Δ𝐢𝐿(𝛿𝐹) + Δ𝐢𝐿(β„Ž)

β–Ά Turboprop aircraftβ–Ά Thrust Coefficient (TC)

effect on 𝐢𝐿

AEM 668 Lecture 8 J. Shen 9/15

Page 10: Aircraft Forces and Moments

Aero-Coefficient Component Buildup πΆπ‘Œ

β–Ά πΆπ‘Œ = πΆπ‘Œ(𝛼, 𝛽, 𝑀) +Ξ”πΆπ‘Œ(𝛼, 𝛽, 𝑀, π›Ώπ‘Ÿ) +Ξ”πΆπ‘Œπ›Ώπ‘Ž

+ Ξ”πΆπ‘Œπ‘ƒ + Ξ”πΆπ‘Œπ‘…

β–Ά Linearized:β–Ά Ξ”πΆπ‘Œπ›Ώπ‘Ÿ

= πΆπ‘Œ π›Ώπ‘Ÿ π›Ώπ‘Ÿβ–Ά Ξ”πΆπ‘Œπ›Ώπ‘Ž

= πΆπ‘Œ π›Ώπ‘Ž π›Ώπ‘Ž

AEM 668 Lecture 8 J. Shen 10/15

Page 11: Aircraft Forces and Moments

Aero-Coefficient Component Buildup 𝐢𝑙

β–Ά 𝐢𝑙 =𝐢𝑙(𝛼, 𝛽, 𝑀) + Ξ”πΆπ‘™π›Ώπ‘Ž +Ξ”πΆπ‘™π›Ώπ‘Ÿ + Δ𝐢𝑙𝑝 + Ξ”πΆπ‘™π‘Ÿ

β–Ά Slide Slipβ–Ά Stabilizing

β–Ά Dihedralβ–Ά Wing backward

sweepβ–Ά High wing

β–Ά Destablizingβ–Ά Anhedralβ–Ά Wing forward sweepβ–Ά Low wing

AEM 668 Lecture 8 J. Shen 11/15

Page 12: Aircraft Forces and Moments

Aero-Coefficient Component Buildup πΆπ‘š

β–Ά πΆπ‘š =πΆπ‘š(𝛼, 𝑀, β„Ž, 𝛿𝐹 , 𝑇𝑐) +Ξ”πΆπ‘šπ›Ώπ‘’ + Ξ”πΆπ‘šπ‘ž + Ξ”πΆπ‘šοΏ½οΏ½ +𝑋𝑅

𝑐 𝐢𝐿+Ξ”πΆπ‘šthrust+Ξ”πΆπ‘šgearβ–Ά πΆπ‘šπ›Ό < 0: stabilizing

β–Ά tail contribution

AEM 668 Lecture 8 J. Shen 12/15

Page 13: Aircraft Forces and Moments

Aero-Coefficient Component Buildup 𝐢𝑛

β–Ά 𝐢𝑛 =𝐢𝑛(𝛼, 𝛽, 𝑀, 𝑇𝑐)+Ξ”πΆπ‘›π›Ώπ‘Ÿ +Ξ”πΆπ‘›π›Ώπ‘Ž + Δ𝐢𝑛𝑝 + Ξ”πΆπ‘›π‘Ÿ

β–Ά Slide Slipβ–Ά Stabilizing

β–Ά Wing backwardsweep

β–Ά Stabilizerβ–Ά Destablizing

β–Ά Wing forward sweepβ–Ά Fuselage

AEM 668 Lecture 8 J. Shen 13/15

Page 14: Aircraft Forces and Moments

Aero-Coefficient Component Buildup πΆπ‘Œ

β–Ά Simulation fidelity levelβ–Ά simplified tablesβ–Ά or large, fine tables

AEM 668 Lecture 8 J. Shen 14/15

Page 15: Aircraft Forces and Moments

Next lecture (SL 2.4)

β–Ά Static Analysis

0β€œAircraft Control and Simulation, 2ed” by B.L. Stevens and F.L.Lewis, Wiley, 2003

AEM 668 Lecture 8 J. Shen 15/15