16
Agenda UNECE Convention on Long-range Transboundary Air Pollution General cost methodology Calculation of boiler outlet emission loads Economic assessment of DeNOx technologies Economic assessment of dedusting technologies Economic assessment of DeSOx technologies

Agenda UNECE Convention on Long-range Transboundary Air Pollution General cost methodology Calculation of boiler outlet emission loads Economic assessment

Embed Size (px)

Citation preview

Page 1: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Agenda

UNECE Convention on Long-range Transboundary Air Pollution

General cost methodology

Calculation of boiler outlet emission loads

Economic assessment of DeNOx technologies

Economic assessment of dedusting technologies

Economic assessment of DeSOx technologies

Page 2: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

IED ELVs and Dust emission issues in coal power plant

Existing plants New plants

Power (MW) ELV (mg/Nm3) Power (MW) ELV (mg/Nm3)

50-100 3050-300 20

100-300 25

>300 20 >300 10

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

Ash

mas

s fra

ction

(%)

Dus

t loa

d (t

/yea

r)

Carbon ash content and Dust load emissions

Dust load (t/h)

Ash mass fraction (%)

Page 3: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Specific cost methodology for DedusterAdapted methodogy from US EPA Air pollution cost control manual

Variable operating cost

Fabric Filter Electrostatic Precipitator

Cequip

1.Baghouse compartments2.Bags3.Cages

General equipment

0.74 0.67

0.45 0.57

Cop,var

1.Bag replacement2.Compressed air consumption

3. Fan consumption

1.ESP power requirement2.Fan consumption

3. SO3 consumption

finstdirect

finstindirect

Investment cost

Cinvሾ€ሿ= Cequip ሾ€ሿ+ finstdirect ∙Cequip ሾ€ሿ+ finstindirect ∙Cequip ሾ€ሿ Cop,var €year൨= Cunit €year൨

Page 4: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Pulse Jet Fabric Filter

Page 5: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

General approach for Pulse Jet Fabric Filter equipment cost

UNECE Convention on Long-range Transboundary Air Pollution

Logic Tree

Economic assessment of Dedusting technologies

Page 6: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Total filtration area calculation and industrial example

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Atot (m2)

fN-G

AGC (m2)

ANC (m2)

Acomp (m2) Extra-compartment ?

Compartment division

Industrial example from Termokimik1

• Power 660 MWe => 1,650 MWth• Volumetric flow gas = 1,750,000 Nm3/h• A/C = 1.11 cm/s• ANC = 45,900 m2

• AGC = 47,736 m2

• 16 compartments => Acomp = 2,984 m2 1Available online : http://www.termokimik.it/pdf/torrevaldaliga_eng.pdf

Page 7: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Cost comparison for Pulse Jet Fabric Filter units Variable input parameters and comparison with literature data

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Parameter Value

A/C (m/s) 1.8e-2

Number of compartments

Division made in order to get Acomp = 2,500 m2

Number of extra-compartments

Bettween 0 and 2

Compartement baghouse

Stainless steelInsulated

Filtering media

RT

Reference price for PE media (€)

9

Bag dimension

Lenght : 8mDiameter : 150 mm

Cage price (€/m2)

20250 500 750 1,000 1,250 1,500 1,750 2,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

EGTEI Model

RAINS

AEP

Nalbandian [Smith]

Naldandian [Orfanoudakis]

Nalbandian

World bank

IEA

Balcke Durr

PM BART determination [American Electric Power]

Sergent et Lundy

IEA

Wu

Power (MWth)

Inve

stm

ent c

ost (

2010

k€)

Page 8: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Air to Cloth ratio influence and industrial values

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

20 000

22 500

25 000

27 500

30 000

32 500

35 000

37 500

40 000

42 500

45 000

47 500

8,00E-03 1,00E-02 1,20E-02 1,40E-02 1,60E-02 1,80E-02 2,00E-02 2,20E-02 2,40E-02

Tota

l Air fi

ltrati

on ar

ea (m

2)

Inves

tmen

t cos

t (201

0 k€)

Air to Cloth ratio (m/s)

Evolution of Investment Cost and Total Filtration Area depending on Air to Cloth ratio

Investment cost

Atot (m2)

Industrial example

Air to cloth ratio (m/s)

Termokimik 0.011

Balcke Dürr 0.014

GE Energy 0.014 – 0.017

Lurgi 0.014 – 0.0167

Otter Tail Power Company

0.0172

For a 1000 MWth combustion plant

Page 9: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Operating Cost for Pulse Jet Fabric Filter and Efficiency

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Operating cost(€2010)

Pressure drop (mbar)

Cleaningfrequency

Total filtration area (m2)

Fan power requirement (MW)

Air compressor power requirement (MW)

Dust load(g/Nm3)

Dust accumulation on bags (g/m2)

Bag lifetime (h)

Efficiency(%)

A/C (m/s)

vሶλ,dry ,secflue gas ሺNm3/sሻ

Page 10: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Operating Cost for Pulse Jet Fabric Filter

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

-10

10

30

50

70

90

110

130

150

0

100

200

300

400

500

600

700

800

0 20 40 60 80 100

Spec

ific

dust

red

ucti

on c

ost

(€/t

/yea

r)

Elec

tric

ity

and

Bag

Repl

acem

ent

cost

(k€

/yea

r)

Capacity factor (%)

utility electricity cost

Bag replacement costspec. Dust reduction costs

Specific dust reduction cost = total cost per year / dust emission saved per yearUtility electricity cost : Fan consumption and comrpessed air consumptionBag replacement : assuming 20,000 hours of bag lifetime

Page 11: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Electrostatic Precipitator

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Page 12: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

General approach for ESP equipment cost

UNECE Convention on Long-range Transboundary Air Pollution

Logic Tree

Economic assessment of Dedusting technologies

fSN

MMDin (µm)

fRR

Efficiency (%)

Specific CollectingPlate (s/m)

Effective CollectingPlate Area (m²)

Equipment costs(€2010)

T (K)

MMDp (µm)

MMDr (µm)

fL

Ε0 (F/m)

pe (%)

Ebd (V/m)

υG (kg/m/s)

Eavg (V/m)

n pes

pec MMDrp (µm)

SCAk (s/m) MMDk (µm)

Ref.Box ESP1

Ref.Box ESP2-3

vሶλ,dry ,secflue gas ሺNm3/sሻ Equations or correlations

Cost equations

Operator data

Calculated values

Cost results

Literature data

Page 13: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Effective collecting plate area determination from method 2

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

SCA1

AECP,1

SCAn

AECP,n

k = 1 k = n

MMD1=MMDin MMDn

𝑀𝑀𝐷𝑘+1,𝑖𝑛ሾµ𝑚ሿ= ቂ𝑀𝑀𝐷𝑘,𝑖𝑛ሾµ𝑚ሿ∗𝑓𝑆𝑁+ 𝑝𝑒𝑐 ∗ቀሺ1− 𝑝𝑒𝑐ሻ𝑀𝑀𝐷𝑝ሾµ𝑚ሿ+ 𝑝𝑒𝑐 ∗𝑀𝑀𝐷𝑘,𝑖𝑛ሾµ𝑚ሿቁቃ𝑝𝑒𝑠 + 𝑀𝑀𝐷𝑟𝑝ሾµ𝑚ሿ

𝑆𝐶𝐴𝑘ቂ𝑠𝑚ቃ= −𝜈𝐺 𝑘𝑔𝑚.𝑠൨𝜀0ቂ 𝐶𝑉.𝑚ቃ∗ሺ1− 𝑓𝑆𝑁ሻ∗ ln ሺ𝑝𝑒𝑐ሻ

ቀ𝐸𝑎𝑣𝑔 ቂ𝑉𝑚ቃቁ2 𝑀𝑀𝐷𝑘,𝑖𝑛ሾµ𝑚ሿ∗10−6

𝐴𝐸𝐶𝑃ሾ𝑚2ሿ= 𝑆𝐶𝐴𝑘ቂ𝑠𝑚ቃ

𝑛𝑘=1 ∗𝑣ሶ𝜆,𝑑𝑟𝑦,𝑠𝑒𝑐𝑓𝑙𝑢𝑒 𝑔𝑎𝑠 ቈ𝑁𝑚3𝑠

1 10 1000

0.2

0.4

0.6

0.8

1

Particle Size Distribution

Particle Diameter (µm)Cum

ulat

ive

Mas

s F

ract

ion

(%)

n = number of ESP fields

Page 14: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Evolution of SCA as a function of MMDin and T

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

0 10 20 30 40 50 60 70 80 90 1000

500

1,000

1,500

2,000

2,500

3,000

3,500SCA = f ( MMDin and T)

400450500550600650

Mass Mean Diameter [MMDin] (µm)

Spec

ific c

olle

cting

Are

a [S

CA] (

s/m

)

T (K)

CUECost workbook : 50 s/m < SCA <190 s/mSchwarze Pumpe: SCA =117.4 s/m [Balcke Dürr]Waigaoqiao : SCA = 85.6 s/m [Balcke Dürr]Baclke Dürr : SCA = 226 s/m

𝑆𝐶𝐴ቂ𝑠𝑚ቃ= 𝐴𝐸𝐶𝑃ሾ𝑚2ሿ𝑣ሶ𝜆,𝑑𝑟𝑦,𝑠𝑒𝑐𝑓𝑙𝑢𝑒 𝑔𝑎𝑠 𝑚3𝑠 ൨

Page 15: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Cost comparison for ESP units Variable input parameters and comparison with literature data

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

Parameter Range choice

Efficiency [η] (%)

99.89

Temperature [T] (K)

400

Mass Mean diameter [MMDin] (µm)

12

ESP specific equipment

Yes

ESP material Stainless steel 304

SO3 injection precaution

Yes

250 500 750 1,000 1,250 1,500 1,750 2,0000

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

EGTEI Model

RAINS

AEP

Nalbandian

Naldandian [Or-fanoudakis]

World bank

IEA

Balcke Durr

Questionnary Plant D

Zevenhoven & Kilpinen

Rubin

Sankey

IEA

Power (MWth)

Inve

stm

ent c

ost (

2010

k€)

Page 16: Agenda UNECE Convention on Long-range Transboundary Air Pollution  General cost methodology  Calculation of boiler outlet emission loads  Economic assessment

Operating Cost for ESP units

UNECE Convention on Long-range Transboundary Air Pollution

Economic assessment of Dedusting technologies

0

25

50

75

100

125

150

0

100

200

300

400

500

600

0 20 40 60 80 100

Spec

ific d

ust r

educ

tion

cost

(€/t

/yea

r)

Elec

tric

ity a

nd S

O3

cost

(k €

/yea

r)

Capacity factor (%)

utility electricity cost

SO3 consumption costspec. Dust reduction costs

Specific dust reduction cost = total cost per year / dust emission saved per yearUtility electricity cost : Fan consumption and ESP power requirementSO3 consumption : assuming precaution injection at 35 kg/h