24
Aeroacoustic Evaluation of an Axial Fan using CFD Methods Frederik Folke, Martin Hildenbrand (ITB Ingenieure GmbH) ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 1

Aeroacoustic Evaluation of an Axial Fan using CFD Methods

  • Upload
    lamdieu

  • View
    222

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Frederik Folke, Martin Hildenbrand (ITB Ingenieure GmbH)

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 1

Page 2: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Introduction

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

ITB Ingenieure GmbH – engineering since 1998

ITB GmbH, Folke, Hildenbrand 2

Digital Development

CFD (1D/3D)

FEM

Process Automatization /

Programming

Thermo-Mechanical

Fatigue

Page 3: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Introduction

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

ITB Ingenieure GmbH – engineering since 1998

ITB GmbH, Folke, Hildenbrand 3

Engine Development

www.itb-ingenieure.de

Production Processes

Exhaust After-Treatment Turbomachinery

Page 4: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Introduction

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 4

Aeroacoustic evaluation of an axial blower • Blower is used in urban environments

• Statutory limitations of noise pollution

Straightforward numerical approach for

aeroacoustic evaluation

Motivation

Aeroacoustic

results

CFD-Simulation

(aerodynamics) model adjustments

+ simulation time

Test case geometry

Page 5: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

• ITB Ingenieure GmbH

• Motivation

• Aeroacoustic Basics

• Computational Model

• Results

• Summary and Conclusion

Contents

ITB GmbH, Folke, Hildenbrand 5

TEST CASE

INTRODUCTION

BASICS

Page 6: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

AEROACOUSTIC BASICS What is "Aeroacoustic Noise"?

Numerical Simulation of Aeroacoustic Noise

Numerical Challenge in Time

Estimation of Discretization

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 6

Page 7: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Aeroacoustic Basics

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Flow induced (fluctuating) pressure waves in audible frequency range.

• Small magnitudes compared to flow field

• Wide frequency range ( depends on the receiver, e.g. human)

What is "Aeroacoustic Noise"?

ITB GmbH, Folke, Hildenbrand 7

Sound sources • monopole-sources

• interaction of flow and solid structures (dipoles)

• turbulence noise sources (quadrupoles)

Sound propagation • propagation from sources to far field

• damping

• interaction with solid structures (reflection, adsorption)

Page 8: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Sound propagation

• Resolution of the propagating pressure wave

• Elimination of boundary effects

• Propagation to locations outside of the

computational field

• Mesh

• sufficient mesh size in far-field

resolving propagating pressure waves

• Physics

• time-step

• boundary treatment

(non-reflecting boundaries)

Sound sources

• resolution of the aerodynamical flow field

• resolution / modelling of all relevant

mechanisms in space and time

(e.g. „blade passing“, turbulence)

• Mesh

• boundary layer resolution

• local mesh size

• moving mesh

• Physics

• turbulence models (resolution)

• time-step

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Aeroacoustic Basics

Numerical Simulation of Aeroacoustic Noise

ITB GmbH, Folke, Hildenbrand 8

Page 9: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Aeroacoustic Basics

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Numerical Challenge in Time

ITB GmbH, Folke, Hildenbrand 9

Frequency

Sound P

ressure

Low frequencies • long-time events in time-domain

• physical time of event has to be captured

𝜏𝑡𝑜𝑡𝑎𝑙 ≫ 1

High frequencies • short time events (turbulence)

• time-step has to capture event

Δ𝑡 ≪ 1

𝜏𝑡𝑜𝑡𝑎𝑙 ≥ 𝑛 ⋅ Δ𝑡 Large number of time-steps necessary

Page 10: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

TEST CASE Computational Domain

Physics and Solver

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 10

Page 11: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Test Case

Computational Domain

ITB GmbH, Folke, Hildenbrand 11

Freestream

boundary conditions

FW-H Surface

Pressure outlet

Rotor

Sound propagation

model

Stator

FW-H = Ffowcs Williams - Hawkings

Page 12: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Test Case

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Preconditions

rotational speed 16'000 min-1

frequency range 50 … 3000 Hz

Physics and Solver

ITB GmbH, Folke, Hildenbrand 12

Numeric Setup

solver CD-adapco® STAR-CCM+®

turbulence k-w SST (uRANS)

time step size 1e-5 s

boundary conditions freestream / pressure outlet

total number of cells ~ 10 million

Page 13: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

RESULTS Flow field

Sound pressure level

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 13

Page 14: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

TURBULENCE (microscopic) MEAN FLOW (macroscopic)

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Results

Flow Field (Aerodynamic)

ITB GmbH, Folke, Hildenbrand 14

Page 15: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Results

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Aeroacoustics

ITB GmbH, Folke, Hildenbrand 15

Main sound sources in region of rotor and stator

Surface sound

Volume sound

Page 16: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Results

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Sound Spectrum

ITB GmbH, Folke, Hildenbrand 16

BPF

2 x BPF

Receiver 2

(far away)

Receiver 1

(close)

Sim

ula

ted p

hysic

al tim

e

[dB

] x x

R1 R2

Broadband noise sources

insufficiently captured by uRANS!

Page 17: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

SUMMARY AND CONCLUSION Summary and Conclusion

Outlook

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 17

Page 18: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

• Successful aerodynamic simulation of axial fan

(very good agreement with measurement)

• Successful aeroacoustical simulation of an axial fan (academic test case)

based on a well-resolved transient uRANS simulation

• Ability to identify noise sources (dipoles, quadrupoles)

• Ability to resolve tonal noise (blade passing frequency)

• Ability to evaluate the sound pressure level

By an adequate numerical effort!

Summary & Conclusion

ITB GmbH, Folke, Hildenbrand 18

Conclusion

Summary

Page 19: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Special thanks to CD-adapco for support!

• Hildenbrand (2014), Aeroacoustic simulation of rotating parts, ITB GmbH / Uni Stuttgart

• Mir (2016), Aeroacoustic simulation of an axial fan, ITB GmbH / Uni Stuttgart (in progress)

• Ongoing study

• Improvement of boundary treatment

(non-reflecting boundaries, minimization of disturbing noise)

• Higher resolution of boundary layer (shear flow)

Turbulence

• Validation by experimental data (not measured yet)

Outlook

ITB GmbH, Folke, Hildenbrand 19

Outlook

Page 20: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

ITB Innovative Technische Berechnungen GmbH

Deckerstr. 37

D-70372 Stuttgart

+49 711 88 266 53 - 0 | [email protected] | www.itb-ingenieure.de

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 20

Page 21: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

APPENDIX

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 21

Page 22: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Noise Sources

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx 22

Monopole Radial radiation

Noise in jet stream

Cavitation bubbles

𝑝 𝑥 , 𝑡 =𝑓 t −

𝑥 𝑐

𝑥 𝑝 𝑥 , 𝑡 =

𝜕

𝜕𝑥1

𝑓 t −𝑥 𝑐

𝑥

𝑝 𝑥 , 𝑡 =𝜕2

𝜕𝑥1𝜕𝑥2

𝑓 t −𝑥 𝑐

𝑥 𝑝 𝑥 , 𝑡 =

𝜕2

𝜕𝑥1𝜕𝑥1

𝑓 t −𝑥 𝑐

𝑥

Dipole Directed radiation

Two contrary

monopoles

Surface noise

(separations)

Turbulence-Structure

interaction

Quadrupole Longitudinal / Transverse /

arbitrary

Free turbulence / shear flow

Page 23: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx ITB GmbH, Folke, Hildenbrand 23

Classification of Noise Sources

Acoustic Analogy Physical Phenomenon Numerical Treatment

Monopoles Jet stream, cavitation

bubbles

Not relevant in this case

Dipoles Interaction of flow with solid

structures

• Blade Passing

• Separation

• Stagnation Points

Sufficient resolution of the

boundary layer

Flow-Structure Interaction

Quadrupoles Turbulence Noise

• Shear flow

Resolution of turbulent

structures.

Scale resolving methods

Page 24: Aeroacoustic Evaluation of an Axial Fan using CFD Methods

Time Discretization

STAR-CCM+ Best Practice

Approx. 1° rotation per time-step or at least 15

time-steps per blade passage

Spatial Discretization

STAR-CCM+ Best Practice

20 cells per acoustic wavelength are

recommended

ITB_SGC_AeroacousticEvaluationOfAnAxialFanUsingCFDMethods_160803.pptx

Estimation of Discretization

ITB GmbH, Folke, Hildenbrand 24

Example: 𝜔 = 16000 1/min

Time step size = 1e-5 s

Example: 𝑓 = 3000 𝐻𝑧

Max. mesh size < 5.7 mm