29
1 Aircraft Equations of Motion AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree of dynamic stability: time it takes the motion to damp to half or to double the amplitude of its initial amplitude “Handling quality of an airplane” Oscillations growing exponentially

AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

Embed Size (px)

Citation preview

Page 1: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

1

Aircraft Equations of Motion

AE 430 - Stability and Control of Aerospace Vehicles

Dynamic Stability

Degree of dynamic stability:time it takes the motion to damp to half or to double the amplitude of its initial amplitude

“Handling quality of an airplane”

Oscillationsgrowing exponentially

Page 2: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

2

Dynamic Stability

Airplane Modes of Motion

Longitudinal (symmetric)– Long period (phugoid)

Exchange of KE and PEEasily controlled by pilot (usually)Lightly damped

– Short periodUsually heavily dampedHigher frequency than phugoid

Lateral-directional (asymmetric)– Spiral mode (aperiodic bank angle divergence)– Roll mode (aperiodic roll rate convergence)– Dutch roll mode

Moderately dampedModerate frequency

Page 3: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

3

Vector Analysis

A scalar quantity is one which has only magnitude, whereas a vector quantity has both magnitude and direction.From physical point of view, when a mathematical vector is used to express a physical element, such as force acting on an object, velocity of a mass point, the third factor of location needs to be accounted for. As a result, the vector quantities can be classified into three types:

– a free vector, such as wind speed, is one with a specified slope (direction) and sense (magnitude) but not acting through any particular point ;

– a sliding vector, such as the moment acting on the body depends upon the line of action of the force, has definite or specific line of action, but is independent of the precise point of application along that line;

– a fixed vector is a vector with specified magnitude, direction, and point of application.

Rigid body

A rigid body is a system of particles in which the distances between the particles do not vary. To describe the motion of a rigid body we use two systems of coordinates, a space-fixed system xe, ye, ze, and a moving system xb, yb, zb, which is rigidly fixed in the body and participates in its motion.

Rigid body equation of motion are obtained from Newton’s second law

Page 4: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

4

Body and inertial axis systems

Body frame

Fixed frame“inertial axis”

rcv

CM

Velocity and acceleration of differential mass respect to inertial reference system

a,v referred to an absolute reference system (inertial) mδ

rcv

ddt

= + = + ×c crv v v ω r

( )2

2ddt

= + = + × + × ×c cra a a ω r ω ω r

CM

CM Center of mass of the airplaneω Angular velocity

P

( ) ( ) ( )t t t= +P c r

ye

ze

xe

c

o

Fixed frame“inertial axis”

Relative velocity of δm respect to CM

p q r= + +ω i j k

Page 5: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

5

Newton’s second law

( )d mdt

=∑F v

ddt

=∑M H

( ) ( ) ( ); ;x y zd d dF mu F mv F mwdt dt dt

= = =

; ;x y zd d dL H M H N Hdt dt dt

= = =

Summation of all external forces acting on a body is equal to the time rate of change of the momentum of the body

Summation of all external moments acting on a body is equal to the time rate of change of the moment of the momentum (angular momentum)

The time rate of change of linear and angular momentumare referred to an absolute or inertial reference frame

x y zF F F= + +F i j k

x y zM M M L M N= + + = + +M i j k i j k

F,M Forces and Moments due to Aerodynamic, Propulsive and Gravitational forces

Force Equation

dmdt

δ δ=vF

ddt

= +crv v

d d d dm m mdt dt dt dt

δ δ δ δ⎛ ⎞ ⎛ ⎞= = + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑ ∑c cr rF F v v

2

2d dd d dm m m mdt dt dt dt dt

δ δ= + = +∑ ∑c cv vrF r

0mδ =∑r r measured from the center of mass

dm

dt= cvF

Resulting force acting on an element of mass (second Newton’s law)

Total external force acting on the airplane

Assuming constant mass:

Force equation:

( )d mdt

=∑F v

Page 6: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

6

Moment Equation

( )d d mdt dt

δ δ δ= = ×M H r v

( ) ( )m mδ δ δ⎡ ⎤= = × + × ×⎣ ⎦∑ ∑ ∑cH H r v r ω r

0mδ =∑r r measured from the center of mass

( )m mδ δ⎡ ⎤= × + × ×⎣ ⎦∑ ∑cH r v r ω r

( ) mδ⎡ ⎤= × ×⎣ ⎦∑H r ω r

Resulting moment acting on an element of mass

Total angular momentum acting on the airplane

ddt

= + = + ×c crv v v ω r

vc constant with respect to the summation

ddt

=∑M H

( ) mδ δ= ×H r v

Moment Equation

( )( ) ( )

× × ≡

• − •

r ω r

r r ω r ω r

p q r= + +ω i j k x y z= + +r i j k

( ) ( )( )( )

2 2 2p q r x y z m

x y z px qy rz m

δ

δ

= + + + +

− + + + +

∑∑

H i j k

i j k

( )2 2xH p y z m q xy m r xz mδ δ δ= + − −∑ ∑ ∑

( )2 2yH p xy m q x z m r yz mδ δ δ= − + + −∑ ∑ ∑

( )2 2zH p xz m q yz m r x y mδ δ δ= − − + +∑ ∑ ∑

Vector equation for the angular momentum

Angular velocity Position vector

xI

Propriety of CrossProduct

( ) mδ⎡ ⎤= × ×⎣ ⎦∑H r ω r

Page 7: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

7

Moment Equation

Mass moments and products of inertia

( )( )( )

2 2

2 2

2 2

x xy

y xz

z yz

I y z m I xy m

I x z m I xz m

I x y m I yz m

δ δ

δ δ

δ δ

= + =

= + =

= + =

∫∫∫ ∫∫∫∫∫∫ ∫∫∫∫∫∫ ∫∫∫

The larger moment of inertia, the greater will be the resistance to rotation

Moment Equation

x x xy xzH pI qI rI= − −

y xy y yzH pI qI rI= − + −

z xz yz zH pI qI rI= − − +

NOTE: If the reference frame is not rotating, then as the airplane rotates the moments and the products of inertia will vary with the time

To simplify the problem we will fix the axis system to the aircraft(body axis system)

Scalar equations for the angular momentum

Page 8: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

8

Relationship inertia frame and rotating body frame

v and H referred to the rotating body frame

I B

d ddt dt

= + ×A A ω A

( )I B

d dm m m

dt dt= = + ×c c

cv v

F ω v

I B

d ddt dt

= = + ×H HM ω H

then

Scalar equations of motion for reference axis fixed to the airplane

( ) ( ) ( ); ;x y zF m u qw rv F m v ru pw F m w pv qu= + − = + − = + −

u v w= + +cv i j k

; ;x z y y x z z y xL H qH rH M H rH pH N H pH qH= + − = + − = + −xz plane of symmetry 0yz xyI I= =

( )x xz z y xzL I p I r qr I I I pq= − + − −

( ) ( )2 2y x z xzM I q rp I I I p r= + − + −

( )xz z y x xzN I p I r pq I I I qr= − + + − +

Force equations

Moment equations

Moment equations:

( )B

dLdtH ω H i= + × •

( )xB

dF m m

dt⎛ ⎞

= + × •⎜ ⎟⎜ ⎟⎝ ⎠

cc

vω v i

Page 9: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

9

Orientation and position of the airplane (respect to a fixed frame)

At t = 0 the axis system fixed to the airplane and the one of a fixed frame coincide

Orientation of airplane described by three consecutive angular rotation (Euler Angles)

– rotation about z (through the yaw angle ψ

– rotation about y (through the pitch angle θ

– rotation about x (through the roll (bank) angle Φ

Euler Angles

1 1

1 1

1

cos sin

sin cos

dx u vdtdy u vdtdz wdt

ψ ψ

ψ ψ

= −

= +

=

Fixed Reference Frame:

1 1 1 2 2 2

2 2 2

, , ( , , ), , ( , , )

u v w f u v wu v w g u v w

==

1u

1v1w

Page 10: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

10

Orientation and position of the airplane (respect to a fixed frame)

The orientation of an airplane, relative to local axes, can be specified by the three sequential rotations about the body axes. Starting with the body axes aligned with the local axes, the first rotation is about the z-axis through an angle Ψ , followed by a rotation about the y-axis through an angle Θ , followed by a rotation about the x-axis through an angle Φ . These angles of rotation are the Euler angles, and can represent any possible orientation of the airplane.

Airplane's direction cosine matrix constructed from the Euler angles

==

=

[ ]

dxdt udy C vdt

wdzdt

⎡ ⎤⎢ ⎥

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦

⎢ ⎥⎢ ⎥⎣ ⎦

; ;dx dy dzdt dt dt

Absolute velocity components along the fixed frame

; ;u v w Velocity components along the body axes

NOTE: Use of Quarternions is sometime better: seehttp://www.aerojockey.com/papers/meng/node19.html

Kinematicequations for the Euler angles

Page 11: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

11

Relationship between body angular velocities (in the body frame) and the Euler rates

1 000

p Sq C C Sr S C C

θ

θ

θ

θψ

Φ Φ

Φ Φ

⎡ ⎤− Φ⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 tan tan00 sec sec

S C pC S q

S C r

θ θθψ θ θ

Φ Φ

Φ Φ

Φ Φ

⎡ ⎤Φ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Gravitational Forces

= + +aero grav propF F F F

Along the body axes

m=gravF g

grav

grav

grav

sin

cos sin

cos cos

x

y

z

F mg

F mg

F mg

θ

θ

θ

= −

= Φ

= Φ

Page 12: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

12

Force andMoment due to propulsion system

propF

prop

prop

prop

x T

y T

z T

F X

F Y

F Z

=

=

=

prop

prop

prop

T

T

T

L L

M M

N N

=

=

=

Trust forces

Summary

xz plane of symmetry 0yz xyI I= =

Page 13: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

13

Summary

12 equations, 12 unknowns/variables: x, y, z; ψ, φ, θ; u, v, w; p, q, r

Nonlinear Equation of Motion

The nonlinear equations of motion given previously may be used to predict the motion of a vehicle assuming the forces and moments can be computed at the flight conditions of interest. The equations are nonlinear because of the quadratic dependence of the inertia forces on the angular rates, the presence of trigonometric functions of the Euler anglesand angles of attack and sideslip, and the fact that the forces depend on the state variables in fundamentally nonlinear ways. While the quaternion formulation avoids some of the trigonometric nonlinearities, the equations remain nonlinear.

Page 14: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

14

Linearization of equations of motion

Despite the nonlinear character of the equations, one may consider small variations of motion about some reference condition for which the equations (including the forces and moments) may be approximated by a linear model. This approach was extremely important in the early days of simulation when high speed computers were not available to solve the fully nonlinear system. Now, the general set of equations is often maintained for the purposes of simulation, although there are still important reasons to consider linear approximations and many conditions for which the linear approximation of the system is perfectly acceptable.

Reasons to consider linear approximations

Much of the mathematics of control system design was developed based on linear models. The theory of linear quadratic regulator design (LQR) and most other optimal control law synthesis techniques are based on a linear system model. Even many nonlinear simulations, that keep the full equations of motion, rely on linear aerodynamic models (or at least partially linearized aero models) to keep the size of the aerodynamic database more manageable

Page 15: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

15

Linearized Aerodynamics: Stability Derivatives

There are two senses in which we may deal with "linear" aerodynamic models.

– To most aerodynamicists, this means that the partial differential equations describing the fluid flow are linearized. These linear models lead to aerodynamic characteristics that are nonlinear in the dynamics state variables (such as angle of attack) due to nonlinearities in the boundary conditions and speed-pressure relations. Thus, dynamicists must deal with the results of potential flow codes, Euler codes, or Navier-Stokes solvers in much the same way as they do with wind tunnel data.

– The linearizations lead to aerodynamic models that are comprised of a set of reference values and a set of "stability derivatives" or first order expansions of the actual variations of forces and moments with the state variables of interest.

– Because these are first order models, the total force can be conveniently "built-up" as the sum of the individual effects of angle of attack, pitch rate, sideslip, etc. Since the six aerodynamic forces and moments do not depend explicitly on the orientation of the vehicle with respect to inertial coordinates, we expect derivatives only with respect to the 3 relative wind velocity components and the 3 rotation rates.

Linearized Aerodynamics: Stability Derivatives

– This means that there are usually 36 stability derivatives required to describe the first order aerodynamic characteristics of a flight vehicle. However, the applied forces and moments may also vary, not just with the values of the state variables, but also their time derivatives. This can represent a significant complication to the basic concept of stability derivatives. In most cases, however, these effects are small and usually the only terms of much significance are those associated with the rate of change of angle of attack.

– These derivatives can be expressed in dimensional form making them just the coefficients in the linear state space model, and assigning some direct physical significance to their numerical values, or in dimensionless form. The latter has the advantage that the values are relatively independent of dynamic pressure and model size and that this is the form that is used in wind tunnel databases and computational aerodynamics models.

Page 16: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

16

Small-Disturbance Theory

The equations of motion are frequently linearized for use in stability and control analysis. It is assumed that the motion of the aircraft consists of small deviation from a steady flight condition. The use of small disturbance theory predicts the stability of unaccelerated flight. In most cases, a perturbed fluid-aerodynamic force is a function of perturbed linear and angular velocities and their rates:

Thus the aerodynamic force at time t0 is determined by its series expansion of the right-hand side of this equation:

stability derivatives, or more generally asaerodynamic derivatives.

Small-Disturbance Theory

For small perturbations, the higher-order terms are dropped. Also, due to the assumed symmetry of the vehicle, derivatives of X, Z, M w.r.t. motions out of the longitudinal plane are zero, thus may be visualized by noting that X, Z, M must be symmetrical w.r.t. lateral perturbations. In other words, we neglect the symmetric derivatives w.r.t. the asymmetric motion variables, i.e., for aerodynamic force X,

and so on.

Page 17: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

17

Stability Derivative Control

Page 18: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

18

We obtain the following linearized equations (taking first order approximations),

Page 19: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

19

Assume the reference flight condition to be symmetric, unaccelerated, steady, and with no angular velocity, therefore

Linearized longitudinal and lateral equations

Page 20: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

20

Linearized longitudinal and lateral equations

Small-Disturbance Theory

0 0 0

0 0 0

0 0 0

0 0 0

0

; ; ;; ; ;

; ; ;; ; ;;

u u u v v v w w wp p p q q q r r rX X X Y Y Y Z Z ZL L L M M M N N Nδ δ δ

= + Δ = + Δ = + Δ= + Δ = + Δ = + Δ= + Δ = + Δ = + Δ

= + Δ = + Δ = + Δ= + Δ

Symmetric flight condition and constant propulsive forces

0 0 0 0 0 0 0v p q r ψ= = = = Φ = =

0 0w =(x-axis in the direction of the velocity vector)

Small deviations about the steady-flight:

Page 21: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

21

X Force Equation

( )sinX mg m u qw rvθ− = + −

( )

( ) ( )( ) ( )( )

0 0

0 0 0 0 0

sinX X mg

dm u u q q w w r r v vdt

θ θ+ Δ − + Δ =

⎡ ⎤= + Δ + + Δ + Δ − + Δ + Δ⎢ ⎥⎣ ⎦

Derivation of the linearized small-disturbance longitudinal and lateral rigid body equation of motion

0cosX mg m uθ θΔ − Δ = Δ

( ), , ,e T e Te T

X X X XX u w u wu w

δ δ δ δδ δ

∂ ∂ ∂ ∂Δ = Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂

( )

( ) ( ) ( ) ( )

0

0

cos

cose T

e Te T

u w e T

d X X X Xm u w mgdt u w

d X u X w g X Xdt δ δ

θ θ δ δδ δ

θ θ δ δ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− Δ − Δ + Δ = Δ + Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎛ ⎞− Δ − Δ + Δ = Δ + Δ⎜ ⎟⎝ ⎠

1u

XXm u

∂=

Longitudinal equation for the X force equation

Page 22: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

22

Aerodynamic force and moment representation

Expressed by mean of a Taylor series in the term of perturbation variables about the reference equilibrium condition

e Te T

X X X XX u wu w

δ δδ δ

∂ ∂ ∂ ∂Δ = Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂

Stability derivative (evaluated at the reference flight condition)

0

0 0 0 0

1 1u

x xx

C u CX QS QS C QSu u u u u u u

∂ ∂∂= = =

∂ ∂ ∂

xX C QS=Stability coefficient (dimensionless)

Bryan, 1904

X,M (aero)Expressed as function of the instantaneous values of the perturbation variables

Change in the force in x direction and change in the pitching moment (in terms of perturbation variables)

( ), , , , , ,

H.O.T.

e e

e ee e

X u u w w

X X X XX u uu u

δ δ

δ δδ δ

Δ =

∂ ∂ ∂ ∂Δ = Δ + Δ + + Δ + Δ +

∂ ∂ ∂ ∂

( ), , , , , , , , , , ,a e rM u v w u v w p q rM M M MM u v w pu v w p

δ δ δΔ =

∂ ∂ ∂ ∂Δ = Δ + Δ + Δ + + Δ +

∂ ∂ ∂ ∂… …

Page 23: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

23

Most important aerodynamic derivative

e Te T

rr

e Te T

r ar a

ee

X X X XX u wu wY Y Y YY v p rv p rZ Z Z Z Z ZZ u w w qu w w qL L L L LL v p rv p rM M M M MM u w w qu w w q

δ δδ δ

δδ

δ δδ δ

δ δδ δ

δδ

∂ ∂ ∂ ∂Δ = Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ + Δ + Δ∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ + Δ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

Δ = Δ + Δ + Δ + Δ + Δ +∂ ∂ ∂ ∂ ∂ T

T

r ar a

M

N N N N NN v p rv p r

δδ

δ δδ δ

Δ∂

∂ ∂ ∂ ∂ ∂Δ = Δ + Δ + Δ + Δ + Δ

∂ ∂ ∂ ∂ ∂

Linearized small-disturbance longitudinal and lateral rigid body equation of motion

Longitudinal Equations

Lateral Equations

( )

( ) ( )

0

0 0

2

2

cos

1 sin

e T

e T

e T

u w e T

u w w q e T

u w w q e T

d X u X w g X Xdt

d dZ u Z Z w u Z g Z Zdt dt

d d dM u M M w M M Mdt dtdt

δ δ

δ δ

δ δ

θ θ δ δ

θ θ δ δ

θ δ δ

⎛ ⎞− Δ − Δ + Δ = Δ + Δ⎜ ⎟⎝ ⎠

⎡ ⎤ ⎡ ⎤− Δ + − − Δ − + − Δ = Δ + Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎛ ⎞⎛ ⎞− Δ − + Δ + − Δ = Δ + Δ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

( ) ( )0 0cosr

a r

a r

v p r r

xzv p r a r

x

xzv p r a r

z

d Y v Y p u Y r g Ydt

Id dL v L p L r L Ldt I dt

I d dN v N p N r N NI dt dt

δ

δ δ

δ δ

θ φ δ

δ δ

δ δ

⎛ ⎞− Δ − Δ + − Δ − Δ = Δ⎜ ⎟⎝ ⎠

⎛ ⎞⎛ ⎞− Δ + − Δ − + Δ = Δ + Δ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎛ ⎞ ⎛ ⎞− Δ − + Δ + − Δ = Δ + Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

Page 24: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

24

Effect of the Mach number on the Stability Derivatives

Derivatives due to the change in Forward Speed

0

0

20 0

1

22

ux

DD

X D TX u u uu u u

X D T C QSu u u u

CX S Tu u Cu u u

ρ

∂ ∂ ∂Δ = Δ = − Δ + Δ

∂ ∂ ∂∂ ∂ ∂

= − + =∂ ∂ ∂

∂∂ ∂⎛ ⎞= − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

L,M,D,T all vary with changes in the airplane’s forward speed

D,T in the x directionchanges in the x Force

DuC uT0 u

X uu X

CQS

=

Page 25: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

25

( )

0

0

20 0 0

20 0

0 0

1 22

1 2 22

u

Dx D

DD D D Tu u

CS TC u u u CQS u u

CS Tu C C C CQS u u u u

ρ

ρ

⎛ ⎞∂ ∂⎛ ⎞= − + + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎛ ⎞⎛ ⎞∂ ∂

= − + + = − + +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

0 0;D T

D Tu uC CC Cu u u u

∂ ∂= =

∂ ∂

; Mach numberDDu

CC M MM

∂= =

( )02ux Du D T uC C C C= − + +

0T uC =

0T u DC C= −

Gliders and jet powered a/c (constant trust – cruise)

Piston Engine powered a/c and variable pitch propeller

Change in the Z force

0

0

0

02

2 0

20

2 00

1 22

2

1

1

1

u

u u

u

L L

Z L L

L ML

LL M

L L LL L M

Z Su C Cu

C C C

CC

MC M CM M

uC C C MC M Cu u a u a M M

ρ

=

=

=

∂ ⎡ ⎤= − +⎣ ⎦∂⎡ ⎤= − +⎣ ⎦

=−

∂=

∂ −∂ ∂ ∂

= = = =∂ ∂ ∂ −

Prandtl-Glauert Formula

Page 26: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

26

Change in the pitching moment

0u

u

m

mm

MM uu

M C Scuu

CC M

M

ρ

∂Δ = Δ

∂∂

=∂

∂=

Derivative due to the Pitching Velocity, q

0

0 0

0

0

22 2

2

t

t

t t

q t t

t L t t t

tt L t t

Z

t t t t tZ L L

t tZ ZZ L L H

L C Q S

qlZ L C Q S

uZC

QSql Q S ql S

C C Cu QS u S

u l SC CC C C Vqc u c q c S

α

α

α α

α α

α

η

η η

Δ = Δ

Δ = −Δ = −

=

Δ = − = −

∂ ∂≡ = = − = −

∂ ∂

(for the tail)

qzCqmC

Page 27: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

27

Derivative due to the Pitching Velocity, q

0

0

0

0

22

2

q t

q

cgq t

q

q t

tcg t t t L t t

cg tm H L

m mm

tm L H

qlM l L l C Q S

uM ql

C V CQSc uC u C

Cqc u c q

lC C V

c

α

α

α

η

η

Δ = − Δ = −

ΔΔ = = −

∂ ∂≡ =

∂ ∂

≡ −

(for the tail)

(for the complete aircraft) 1.1 ; 1.1q qZ mC C

Derivative due to the Time Rate of Change of the AOA,

0t

t

t l ud d d dt t tdt d dt dε ε α εα α

α α

Δ =

Δ = Δ = Δ = Δ

Δt : Increment in time that it takes to the changein circulation imparted to the trailing vortex waketo reach the tail

α

zCα mC

α

Due to the lag in the wing downwash getting to the tail

lt

0

tt

ldd u

εα αα

Δ =

Lag in the angle of attack at the tail

Changes the downwash at the tail

Page 28: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

28

Derivative due to the Time Rate of Change of the AOA,

0 ;t tdt l u tdtεαΔ = Δ = Δ

0 0 0

t t tt

l l ld d d ddt u d dt u d uε ε α εα α

α αΔ = = =

tt L t t tL C Q Sα

αΔ = Δ

0t t

t t t tz L t L

L S l SdC C CQS S d u Sα α

εα η α ηα

ΔΔ = − = − Δ = −

α

tQQ

η =

( )0

0

22

/ 2 t

z zz H L

uC C dC V Cc u c dα α

εηα α α

∂ ∂= = = −

∂ ∂t t

Hl S

Vc S

=

Derivative due to the Time Rate of Change of the AOA,

( )

0

0

0

22

/ 2

t

cg t

t

cg t t t L t t t

tm H L

m m tm H L

M l L l C Q S

ldC V Cd u

C u C ldC V Cc u c d c

α

α

α α

α

εη αα

εηα α α

Δ = − Δ = − Δ

Δ = −

∂ ∂= = = −

∂ ∂

α

(for the complete aircraft) 1.1 ; 1.1Z mC Cα α

Page 29: AE 430 - Stability and Control of Aerospace Vehiclespeople.clarkson.edu/~pmarzocc/AE430/AE-430-8.pdf · AE 430 - Stability and Control of Aerospace Vehicles Dynamic Stability Degree

29

Derivative due to the Rolling Rate, p

l

0

Lift=C

Lift y

Qcdy

pyu

dL

αα

α

Δ Δ

Δ =

= −Δ

(roll rate)

02

LL

CCpbu

∂⇒ ⇒

⎛ ⎞∂ ⎜ ⎟

⎝ ⎠

, ,yp np lpC C C

Derivative due to the Yawing Rate, r

( )0/ 2

L v v v Y Y r

YYr

Y C Q S C CCC

rb u

α β= − Δ ⇒ ⇒∂

=∂

0

L v v v v n nr

v

N C Q S l C Crlu

α β

β

= Δ ⇒ ⇒

Δ = −