45
AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated in HBWR, Norway o J-A. Gyllander AKTIEBOLAGET ATOMENERGI STOCKHOLM, SWEDEN 1967

AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

AE-306 (JDC 621039548

G2103952446034

Final Report on IFA-10 the first Swedish

Instrumented Fuel Assembly Irratiated in

HBWR Norway

o

J-A Gyllander

AKTIEBOLAGET ATOMENERGI

STOCKHOLM SWEDEN 1967

AE-306

FINAL REPORT ON IFA-10 THE FIRST SWEDISH INSTRUshy

MENTED FUEL ASSEMBLY IRRADIATED IN HBWR NORWAY

J-Aring Gyllander

ABSTRACT

A final repor t is given on IFA-10 the f i rs t Swedish ins t rumented

fuel assembly i r rad ia ted in HBWR

The pos t - i r rad ia t ion data a re presented and co r re l a t ed with the

i r radia t ion s ta t i s t i cs

No bowing of the bundle was observed no equi-axed gra in growth

was d iscernible the fission gas r e l ease was very smal l and the r e l a shy

tive dimensional changes in length and diameter were of the order of -4 magnitude 9 x 1 0

The hydride content of the can increased from 35 ppm to 65 ppm

and in the contact point of the spacer to 1 80 ppm

Pr inted and distr ibuted in December 1 967

LIST OF CONTENTS

P a g e

In t roduc t ion

Objec t ives of I F A - 1 0

D e s i g n and d e s c r i p t i o n of IFA-1 0

A s s e m b l y d e s i g n

I n s t r u m e n t a t i o n

I r r a d i a t i o n cond i t ions

I r r a d i a t i o n h i s t o r y

Hea t r a t i n g s

P o s t - i r r a d i a t i o n e x a m i n a t i o n

V i s u a l i n s p e c t i o n

D i m e n s i o n a l m e a s u r e m e n t

C r u d m e a s u r e m e n t

F i s s i o n gas r e l e a s e

y- s c a n n i n g

C e r a m og r aphy

H y d r o g e n p i c k - u p

D i s c u s s i o n of the r e s u l t s

Hea t r a t i n g s and UO t e m p e r a t u r e effects

1 T h e r m a l conduc t iv i ty

2 F i s s i o n gas r e l e a s e

3 G r a i n g rowth

D i m e n s i o n a l changes

1 A s s e m b l i e s

2 Indiv idual r ods

S p a c e r d e s i g n

1 S tab i l i ty

2 F r e t t i n g

3 H y d r o g e n p i c k - u p

4 C r u d depos i t i on

P a s e

7 Conclusions for the actual experiment 9

7 1 Feasibi l i ty of long fuel s t r ingers 9

72 Deformation behaviour of a s ix - rod element 9

7 3 The effect of the spacers 9

74 Thermal conductivity of UO 9

8 References 10

9 List of computer p rograms used 12

1 0 Lis t of figures 1 3

Tables

F igures

- 3 -

1 INTRODUCTION

During the period January 1964 to December 1966 AB Atomenergi

Sweden has extended its collaboration in the OECD Halden Projec t to a

s e r i e s of experimental fuel assembl ies in the Halden Boiling Water Reacshy

to r HBWR The f i rs t Swedish tes t fuel assembly was designated IFA-1 0

and the final repor t on this experiment is given below

2 OBJECTIVES OF IFA-1 0

The main purposes of this i r rad ia t ion experiment were the folshy

lowing

i) to study the possibi l i ty of using long fuel s t r ingers in element

design

ii) to study the form of deformation if any ar is ing in a s ix - rod

element i r rad ia ted in conditions as close to those of the Marviken

reac tor as possible

iii) to tes t the effectivity of the s t r ip spacer design with respec t to

avoiding fretting of the rods

iv) to test the corros ion ra te due to the spacer s t r i p

v) to measu re the heat conductivity of the actual oxide fuel

See also ref [ 1 2 3 and 1 5 ]

3 DESIGN AND DESCRIPTION OF IFA-1 0

3 1 Assembly design

The fuel bundle consisted of six rods UO canned in Z r - 2 and

a r ranged with one cent ra l and five equally spaced c i rcumferent ia l rods

The active length of each of the rods was 1 71 4 m m and they were sepashy

ra ted by three s t r ip spacers along the length The pellet d iameter was

1 2 47 mm and the shroud tube had an inner d iameter of 71 m m

3 2 Instrumentation

The assembly was equipped with ins t ruments to m e a s u r e power

flow exit s team quality centra l oxide t empera ture and the coolant

t empe ra tu r e These signals were r eg i s t e red continuously during the

i r radia t ion The total UO - s tack movement after i r rad ia t ion was m e a s -

- 4 -

ured in five of the rods The integrated the rmal neutron dose was m e a s shy

ured by means of in ternal cobalt monitors along the c i rcumference of

some of the pe l le t s See also ref [1 4 9 1 5 and 1 9 ] and fig 1-5

4 IRRADIATION CONDITIONS

4 1 I r radiat ion h is tory

Fig 1 6 gives the channel power as a function of in -core t ime It

is obvious that the evaluation of the data must be divided into two difshy

ferent power - s t eps

I High-power 340 kW

II Medium-power 275 kW

In tables 1 3 6 7 and 8 this division has been made

4 2 Heat ratings

The heat ratings have been calculated by an axial form factor of

127 The radial form factors have been calculated from the burn-up

values

In fig 1 7 the relat ionship between channel power l inear heat outshy

put heat conductivity in tegral heat surface flux on the canning and

specific power is given for the highest and lowest heat ra ted rods D

and C respect ively The dashed line in the middle cor responds to a

hypothetical rod with FRAD = 1

The computer p rograms 1 2 3 6 7 and 8 have been used for

the various calculat ions

5 POST-IRRADIATION EXAMINATION

51 Visual inspection

The visual inspection of the fuel assembly did not reveal any

special effects The only thing was a thin layer of crud which can be

seen in fig 14-15 The layer had a typical s t reaming pat tern behind

the spacers and it was very easi ly removed Under section 6 3 the crud

measu remen t will be discussed

After dismantling one could observe smal l fretting marks on the

can surface caused by the spacers (see fig 6 and 7)

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 2: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

AE-306

FINAL REPORT ON IFA-10 THE FIRST SWEDISH INSTRUshy

MENTED FUEL ASSEMBLY IRRADIATED IN HBWR NORWAY

J-Aring Gyllander

ABSTRACT

A final repor t is given on IFA-10 the f i rs t Swedish ins t rumented

fuel assembly i r rad ia ted in HBWR

The pos t - i r rad ia t ion data a re presented and co r re l a t ed with the

i r radia t ion s ta t i s t i cs

No bowing of the bundle was observed no equi-axed gra in growth

was d iscernible the fission gas r e l ease was very smal l and the r e l a shy

tive dimensional changes in length and diameter were of the order of -4 magnitude 9 x 1 0

The hydride content of the can increased from 35 ppm to 65 ppm

and in the contact point of the spacer to 1 80 ppm

Pr inted and distr ibuted in December 1 967

LIST OF CONTENTS

P a g e

In t roduc t ion

Objec t ives of I F A - 1 0

D e s i g n and d e s c r i p t i o n of IFA-1 0

A s s e m b l y d e s i g n

I n s t r u m e n t a t i o n

I r r a d i a t i o n cond i t ions

I r r a d i a t i o n h i s t o r y

Hea t r a t i n g s

P o s t - i r r a d i a t i o n e x a m i n a t i o n

V i s u a l i n s p e c t i o n

D i m e n s i o n a l m e a s u r e m e n t

C r u d m e a s u r e m e n t

F i s s i o n gas r e l e a s e

y- s c a n n i n g

C e r a m og r aphy

H y d r o g e n p i c k - u p

D i s c u s s i o n of the r e s u l t s

Hea t r a t i n g s and UO t e m p e r a t u r e effects

1 T h e r m a l conduc t iv i ty

2 F i s s i o n gas r e l e a s e

3 G r a i n g rowth

D i m e n s i o n a l changes

1 A s s e m b l i e s

2 Indiv idual r ods

S p a c e r d e s i g n

1 S tab i l i ty

2 F r e t t i n g

3 H y d r o g e n p i c k - u p

4 C r u d depos i t i on

P a s e

7 Conclusions for the actual experiment 9

7 1 Feasibi l i ty of long fuel s t r ingers 9

72 Deformation behaviour of a s ix - rod element 9

7 3 The effect of the spacers 9

74 Thermal conductivity of UO 9

8 References 10

9 List of computer p rograms used 12

1 0 Lis t of figures 1 3

Tables

F igures

- 3 -

1 INTRODUCTION

During the period January 1964 to December 1966 AB Atomenergi

Sweden has extended its collaboration in the OECD Halden Projec t to a

s e r i e s of experimental fuel assembl ies in the Halden Boiling Water Reacshy

to r HBWR The f i rs t Swedish tes t fuel assembly was designated IFA-1 0

and the final repor t on this experiment is given below

2 OBJECTIVES OF IFA-1 0

The main purposes of this i r rad ia t ion experiment were the folshy

lowing

i) to study the possibi l i ty of using long fuel s t r ingers in element

design

ii) to study the form of deformation if any ar is ing in a s ix - rod

element i r rad ia ted in conditions as close to those of the Marviken

reac tor as possible

iii) to tes t the effectivity of the s t r ip spacer design with respec t to

avoiding fretting of the rods

iv) to test the corros ion ra te due to the spacer s t r i p

v) to measu re the heat conductivity of the actual oxide fuel

See also ref [ 1 2 3 and 1 5 ]

3 DESIGN AND DESCRIPTION OF IFA-1 0

3 1 Assembly design

The fuel bundle consisted of six rods UO canned in Z r - 2 and

a r ranged with one cent ra l and five equally spaced c i rcumferent ia l rods

The active length of each of the rods was 1 71 4 m m and they were sepashy

ra ted by three s t r ip spacers along the length The pellet d iameter was

1 2 47 mm and the shroud tube had an inner d iameter of 71 m m

3 2 Instrumentation

The assembly was equipped with ins t ruments to m e a s u r e power

flow exit s team quality centra l oxide t empera ture and the coolant

t empe ra tu r e These signals were r eg i s t e red continuously during the

i r radia t ion The total UO - s tack movement after i r rad ia t ion was m e a s -

- 4 -

ured in five of the rods The integrated the rmal neutron dose was m e a s shy

ured by means of in ternal cobalt monitors along the c i rcumference of

some of the pe l le t s See also ref [1 4 9 1 5 and 1 9 ] and fig 1-5

4 IRRADIATION CONDITIONS

4 1 I r radiat ion h is tory

Fig 1 6 gives the channel power as a function of in -core t ime It

is obvious that the evaluation of the data must be divided into two difshy

ferent power - s t eps

I High-power 340 kW

II Medium-power 275 kW

In tables 1 3 6 7 and 8 this division has been made

4 2 Heat ratings

The heat ratings have been calculated by an axial form factor of

127 The radial form factors have been calculated from the burn-up

values

In fig 1 7 the relat ionship between channel power l inear heat outshy

put heat conductivity in tegral heat surface flux on the canning and

specific power is given for the highest and lowest heat ra ted rods D

and C respect ively The dashed line in the middle cor responds to a

hypothetical rod with FRAD = 1

The computer p rograms 1 2 3 6 7 and 8 have been used for

the various calculat ions

5 POST-IRRADIATION EXAMINATION

51 Visual inspection

The visual inspection of the fuel assembly did not reveal any

special effects The only thing was a thin layer of crud which can be

seen in fig 14-15 The layer had a typical s t reaming pat tern behind

the spacers and it was very easi ly removed Under section 6 3 the crud

measu remen t will be discussed

After dismantling one could observe smal l fretting marks on the

can surface caused by the spacers (see fig 6 and 7)

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 3: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

LIST OF CONTENTS

P a g e

In t roduc t ion

Objec t ives of I F A - 1 0

D e s i g n and d e s c r i p t i o n of IFA-1 0

A s s e m b l y d e s i g n

I n s t r u m e n t a t i o n

I r r a d i a t i o n cond i t ions

I r r a d i a t i o n h i s t o r y

Hea t r a t i n g s

P o s t - i r r a d i a t i o n e x a m i n a t i o n

V i s u a l i n s p e c t i o n

D i m e n s i o n a l m e a s u r e m e n t

C r u d m e a s u r e m e n t

F i s s i o n gas r e l e a s e

y- s c a n n i n g

C e r a m og r aphy

H y d r o g e n p i c k - u p

D i s c u s s i o n of the r e s u l t s

Hea t r a t i n g s and UO t e m p e r a t u r e effects

1 T h e r m a l conduc t iv i ty

2 F i s s i o n gas r e l e a s e

3 G r a i n g rowth

D i m e n s i o n a l changes

1 A s s e m b l i e s

2 Indiv idual r ods

S p a c e r d e s i g n

1 S tab i l i ty

2 F r e t t i n g

3 H y d r o g e n p i c k - u p

4 C r u d depos i t i on

P a s e

7 Conclusions for the actual experiment 9

7 1 Feasibi l i ty of long fuel s t r ingers 9

72 Deformation behaviour of a s ix - rod element 9

7 3 The effect of the spacers 9

74 Thermal conductivity of UO 9

8 References 10

9 List of computer p rograms used 12

1 0 Lis t of figures 1 3

Tables

F igures

- 3 -

1 INTRODUCTION

During the period January 1964 to December 1966 AB Atomenergi

Sweden has extended its collaboration in the OECD Halden Projec t to a

s e r i e s of experimental fuel assembl ies in the Halden Boiling Water Reacshy

to r HBWR The f i rs t Swedish tes t fuel assembly was designated IFA-1 0

and the final repor t on this experiment is given below

2 OBJECTIVES OF IFA-1 0

The main purposes of this i r rad ia t ion experiment were the folshy

lowing

i) to study the possibi l i ty of using long fuel s t r ingers in element

design

ii) to study the form of deformation if any ar is ing in a s ix - rod

element i r rad ia ted in conditions as close to those of the Marviken

reac tor as possible

iii) to tes t the effectivity of the s t r ip spacer design with respec t to

avoiding fretting of the rods

iv) to test the corros ion ra te due to the spacer s t r i p

v) to measu re the heat conductivity of the actual oxide fuel

See also ref [ 1 2 3 and 1 5 ]

3 DESIGN AND DESCRIPTION OF IFA-1 0

3 1 Assembly design

The fuel bundle consisted of six rods UO canned in Z r - 2 and

a r ranged with one cent ra l and five equally spaced c i rcumferent ia l rods

The active length of each of the rods was 1 71 4 m m and they were sepashy

ra ted by three s t r ip spacers along the length The pellet d iameter was

1 2 47 mm and the shroud tube had an inner d iameter of 71 m m

3 2 Instrumentation

The assembly was equipped with ins t ruments to m e a s u r e power

flow exit s team quality centra l oxide t empera ture and the coolant

t empe ra tu r e These signals were r eg i s t e red continuously during the

i r radia t ion The total UO - s tack movement after i r rad ia t ion was m e a s -

- 4 -

ured in five of the rods The integrated the rmal neutron dose was m e a s shy

ured by means of in ternal cobalt monitors along the c i rcumference of

some of the pe l le t s See also ref [1 4 9 1 5 and 1 9 ] and fig 1-5

4 IRRADIATION CONDITIONS

4 1 I r radiat ion h is tory

Fig 1 6 gives the channel power as a function of in -core t ime It

is obvious that the evaluation of the data must be divided into two difshy

ferent power - s t eps

I High-power 340 kW

II Medium-power 275 kW

In tables 1 3 6 7 and 8 this division has been made

4 2 Heat ratings

The heat ratings have been calculated by an axial form factor of

127 The radial form factors have been calculated from the burn-up

values

In fig 1 7 the relat ionship between channel power l inear heat outshy

put heat conductivity in tegral heat surface flux on the canning and

specific power is given for the highest and lowest heat ra ted rods D

and C respect ively The dashed line in the middle cor responds to a

hypothetical rod with FRAD = 1

The computer p rograms 1 2 3 6 7 and 8 have been used for

the various calculat ions

5 POST-IRRADIATION EXAMINATION

51 Visual inspection

The visual inspection of the fuel assembly did not reveal any

special effects The only thing was a thin layer of crud which can be

seen in fig 14-15 The layer had a typical s t reaming pat tern behind

the spacers and it was very easi ly removed Under section 6 3 the crud

measu remen t will be discussed

After dismantling one could observe smal l fretting marks on the

can surface caused by the spacers (see fig 6 and 7)

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 4: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

P a s e

7 Conclusions for the actual experiment 9

7 1 Feasibi l i ty of long fuel s t r ingers 9

72 Deformation behaviour of a s ix - rod element 9

7 3 The effect of the spacers 9

74 Thermal conductivity of UO 9

8 References 10

9 List of computer p rograms used 12

1 0 Lis t of figures 1 3

Tables

F igures

- 3 -

1 INTRODUCTION

During the period January 1964 to December 1966 AB Atomenergi

Sweden has extended its collaboration in the OECD Halden Projec t to a

s e r i e s of experimental fuel assembl ies in the Halden Boiling Water Reacshy

to r HBWR The f i rs t Swedish tes t fuel assembly was designated IFA-1 0

and the final repor t on this experiment is given below

2 OBJECTIVES OF IFA-1 0

The main purposes of this i r rad ia t ion experiment were the folshy

lowing

i) to study the possibi l i ty of using long fuel s t r ingers in element

design

ii) to study the form of deformation if any ar is ing in a s ix - rod

element i r rad ia ted in conditions as close to those of the Marviken

reac tor as possible

iii) to tes t the effectivity of the s t r ip spacer design with respec t to

avoiding fretting of the rods

iv) to test the corros ion ra te due to the spacer s t r i p

v) to measu re the heat conductivity of the actual oxide fuel

See also ref [ 1 2 3 and 1 5 ]

3 DESIGN AND DESCRIPTION OF IFA-1 0

3 1 Assembly design

The fuel bundle consisted of six rods UO canned in Z r - 2 and

a r ranged with one cent ra l and five equally spaced c i rcumferent ia l rods

The active length of each of the rods was 1 71 4 m m and they were sepashy

ra ted by three s t r ip spacers along the length The pellet d iameter was

1 2 47 mm and the shroud tube had an inner d iameter of 71 m m

3 2 Instrumentation

The assembly was equipped with ins t ruments to m e a s u r e power

flow exit s team quality centra l oxide t empera ture and the coolant

t empe ra tu r e These signals were r eg i s t e red continuously during the

i r radia t ion The total UO - s tack movement after i r rad ia t ion was m e a s -

- 4 -

ured in five of the rods The integrated the rmal neutron dose was m e a s shy

ured by means of in ternal cobalt monitors along the c i rcumference of

some of the pe l le t s See also ref [1 4 9 1 5 and 1 9 ] and fig 1-5

4 IRRADIATION CONDITIONS

4 1 I r radiat ion h is tory

Fig 1 6 gives the channel power as a function of in -core t ime It

is obvious that the evaluation of the data must be divided into two difshy

ferent power - s t eps

I High-power 340 kW

II Medium-power 275 kW

In tables 1 3 6 7 and 8 this division has been made

4 2 Heat ratings

The heat ratings have been calculated by an axial form factor of

127 The radial form factors have been calculated from the burn-up

values

In fig 1 7 the relat ionship between channel power l inear heat outshy

put heat conductivity in tegral heat surface flux on the canning and

specific power is given for the highest and lowest heat ra ted rods D

and C respect ively The dashed line in the middle cor responds to a

hypothetical rod with FRAD = 1

The computer p rograms 1 2 3 6 7 and 8 have been used for

the various calculat ions

5 POST-IRRADIATION EXAMINATION

51 Visual inspection

The visual inspection of the fuel assembly did not reveal any

special effects The only thing was a thin layer of crud which can be

seen in fig 14-15 The layer had a typical s t reaming pat tern behind

the spacers and it was very easi ly removed Under section 6 3 the crud

measu remen t will be discussed

After dismantling one could observe smal l fretting marks on the

can surface caused by the spacers (see fig 6 and 7)

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 5: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 3 -

1 INTRODUCTION

During the period January 1964 to December 1966 AB Atomenergi

Sweden has extended its collaboration in the OECD Halden Projec t to a

s e r i e s of experimental fuel assembl ies in the Halden Boiling Water Reacshy

to r HBWR The f i rs t Swedish tes t fuel assembly was designated IFA-1 0

and the final repor t on this experiment is given below

2 OBJECTIVES OF IFA-1 0

The main purposes of this i r rad ia t ion experiment were the folshy

lowing

i) to study the possibi l i ty of using long fuel s t r ingers in element

design

ii) to study the form of deformation if any ar is ing in a s ix - rod

element i r rad ia ted in conditions as close to those of the Marviken

reac tor as possible

iii) to tes t the effectivity of the s t r ip spacer design with respec t to

avoiding fretting of the rods

iv) to test the corros ion ra te due to the spacer s t r i p

v) to measu re the heat conductivity of the actual oxide fuel

See also ref [ 1 2 3 and 1 5 ]

3 DESIGN AND DESCRIPTION OF IFA-1 0

3 1 Assembly design

The fuel bundle consisted of six rods UO canned in Z r - 2 and

a r ranged with one cent ra l and five equally spaced c i rcumferent ia l rods

The active length of each of the rods was 1 71 4 m m and they were sepashy

ra ted by three s t r ip spacers along the length The pellet d iameter was

1 2 47 mm and the shroud tube had an inner d iameter of 71 m m

3 2 Instrumentation

The assembly was equipped with ins t ruments to m e a s u r e power

flow exit s team quality centra l oxide t empera ture and the coolant

t empe ra tu r e These signals were r eg i s t e red continuously during the

i r radia t ion The total UO - s tack movement after i r rad ia t ion was m e a s -

- 4 -

ured in five of the rods The integrated the rmal neutron dose was m e a s shy

ured by means of in ternal cobalt monitors along the c i rcumference of

some of the pe l le t s See also ref [1 4 9 1 5 and 1 9 ] and fig 1-5

4 IRRADIATION CONDITIONS

4 1 I r radiat ion h is tory

Fig 1 6 gives the channel power as a function of in -core t ime It

is obvious that the evaluation of the data must be divided into two difshy

ferent power - s t eps

I High-power 340 kW

II Medium-power 275 kW

In tables 1 3 6 7 and 8 this division has been made

4 2 Heat ratings

The heat ratings have been calculated by an axial form factor of

127 The radial form factors have been calculated from the burn-up

values

In fig 1 7 the relat ionship between channel power l inear heat outshy

put heat conductivity in tegral heat surface flux on the canning and

specific power is given for the highest and lowest heat ra ted rods D

and C respect ively The dashed line in the middle cor responds to a

hypothetical rod with FRAD = 1

The computer p rograms 1 2 3 6 7 and 8 have been used for

the various calculat ions

5 POST-IRRADIATION EXAMINATION

51 Visual inspection

The visual inspection of the fuel assembly did not reveal any

special effects The only thing was a thin layer of crud which can be

seen in fig 14-15 The layer had a typical s t reaming pat tern behind

the spacers and it was very easi ly removed Under section 6 3 the crud

measu remen t will be discussed

After dismantling one could observe smal l fretting marks on the

can surface caused by the spacers (see fig 6 and 7)

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 6: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 4 -

ured in five of the rods The integrated the rmal neutron dose was m e a s shy

ured by means of in ternal cobalt monitors along the c i rcumference of

some of the pe l le t s See also ref [1 4 9 1 5 and 1 9 ] and fig 1-5

4 IRRADIATION CONDITIONS

4 1 I r radiat ion h is tory

Fig 1 6 gives the channel power as a function of in -core t ime It

is obvious that the evaluation of the data must be divided into two difshy

ferent power - s t eps

I High-power 340 kW

II Medium-power 275 kW

In tables 1 3 6 7 and 8 this division has been made

4 2 Heat ratings

The heat ratings have been calculated by an axial form factor of

127 The radial form factors have been calculated from the burn-up

values

In fig 1 7 the relat ionship between channel power l inear heat outshy

put heat conductivity in tegral heat surface flux on the canning and

specific power is given for the highest and lowest heat ra ted rods D

and C respect ively The dashed line in the middle cor responds to a

hypothetical rod with FRAD = 1

The computer p rograms 1 2 3 6 7 and 8 have been used for

the various calculat ions

5 POST-IRRADIATION EXAMINATION

51 Visual inspection

The visual inspection of the fuel assembly did not reveal any

special effects The only thing was a thin layer of crud which can be

seen in fig 14-15 The layer had a typical s t reaming pat tern behind

the spacers and it was very easi ly removed Under section 6 3 the crud

measu remen t will be discussed

After dismantling one could observe smal l fretting marks on the

can surface caused by the spacers (see fig 6 and 7)

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 7: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 5 -

5 2 Dimensional measu remen t (by B Winqvist)

The dimensional measu remen t s have included determinat ion of

radial and tangential rod prof i les distance between adjacent rods in an

assembled bundle and measu remen t s of d iameter and profile of deshy

mounted cent ra l rods

In connection with the measu remen t of tangential prof i les the

d iameters of the outer rods have been determined

The measuremen t s have been c a r r i e d out in our measur ing rig

Goliath Zeroing of the rig measur ing head has been c a r r i e d out by

mounting together gauge blocks until they nominally formed the distance

concerned

The following gauge blocks have been used (fig- 1 8)

Determination of radial profile (by scanning along the 0 genera tor )

Gauge block 0 57 00 plusmn 001 m m

Determination of tangential profile and rod diameter (by scanning along

the 270deg and 270-90deg genera tors ) Gauge block 0 1 4 00 plusmn 0 001 mm

Determination of separat ion between adjacent rods (by scanning along

the 36deg and 324deg genera tors ) Gauge block 0 39 00 plusmn 0 01 mm

The resu l t s are summar ized in table 4 where the UO s tack

movement relat ive to the can is also given See also ref [ 4 6 8 9 and 16]

5 3 Crud measu remen t

As mentioned in paragraph 5 1 the crud was very easi ly removed

Six crud samples were taken and analyzed The positions of the samples

and the analysis values a re given in tables 9-1 1 See also ref [22]

5 4 Fiss ion gas re lease

The fission gas re lease was measu red for five rods The gas was

analyzed by y - spec t romet ry and m a s s - s p e c t r o m e t r y and the r e l ease

values were calculated by the computer p rogram FARMA The values

are given in table 1 2

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 8: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 6 -

5 5 y-scanning

Longitudinal y-scanning was performed for all the six rods The

energy used for the y-scanning was 0 75 MeV (Zr-Nb) and the curves

a re reproduced in fig 19-24

5 6 Ceramography

According to the y-scanning the highest hea t - r a t ed pellets were

taken for ceramography The resul ts a re shown in fig 10-13 fig 10

from rod A fig 11-13 from rod D the same a rea at various magni shy

fications

5 7 Hydrogen pick-up

F r o m rod E six samples were taken for hydride m e a s u r e m e n t s

The reference m a r k is shown in fig 7 and fig 8 and 9 show the r e shy

sulting can after the samples were taken The resul ts a re given in

detail in fig 25 and are summar ized in table 5

6 DISCUSSION OF THE RESULTS

6 1 Heat ratings and UP- t empera tu re effects

611 Thermal conductivity

With only one oxide thermocouple it is not possible to determine

the thermal conductivity of UO for the following reasons

a) the heat t ransfe r coefficient of the c learance between canning and

UO has a great influence

b) the assumed thermal neutron distribution and hence the heat

generation distr ibution cannot be checked

In addition to these points rod A which was equipped with the

thermocouple had an enrichment of 2 5 w o U-235 in the lower pa r t of

the rod (835 6 mm) and 2 8 w o U-235 in the upper pa r t of the rod

(878 4 mm) The other five rods had an enrichment of 2 8 w o U-235

along the whole length Hence the heat rating figure for the t h e r m o shy

couple rod in the plane where the thermocouple was positioned a re

not given in table 3 but the t empera tu re distribution in table 6 is ca l -

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 9: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 7 -

culated according to a linear heat output of 323 400 and 409 Wcm

respectively corresponding to a heat conductivity integral of 24 8

30 7 and 31 4 Wcm respectively

In ref [l 1 ] the integral values given in table IV are not corrected

either for the radial form factors the internal form factors or the

different enrichments The temperature figures corresponding to the

element power Q of approximately 340 kW (6407122320 6407160900

and 640721 1 410) which are 1395 1415 and 1 420 degC respectively are

about 20 C higher than those calculated with the recommended value of

heat transfer coefficient given in ref [14] (a - 10 Wc m bull C for an

assembly clearance of 0 01 6 cm) and with the thermal conductivity

value recommended by AB Atomenergi ref [2425] The agreement

is not so good at lower heat ratings - probably owing to an inproper

choice of a

612 Fission gas release

The values given in table 1 2 are very small The reason for this

is very clearly understood by comparing fig 1617 tables 1 3 7 and

8 The values in table 1 2 which are computed by the program FARMA

is fractional gas release (f g r ) in percent Fig 1 6 shows that the

higher element power of 340 kW is only achieved at the beginning of the

irradiation and table 1 shows that this power level only corresponds to

30 4 of the total burn-up So in fact in order to calculate the fission

gas release for the 340 kW period only one must multiply by the factor

_n which gives a f g r of 0 0 7

The explanation for this very low figure is given in tables 7 and 8

Even at the highest heat-rated rod D the volume of UO which is over

1 600 C is only 1 6 of the total volume The remarkably low f g r

values are therefore in full accord with experience If we assume no

fission gas release below 1600 C the result will be

1 0 0 100 bdquo w ^ f g- r 3Ouml74 T76 deg- 0 2 = 6

over 1600 degC

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 10: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 8 -

6 1 3 Grain growth

The same discussion as in point 6 1 Z gives the explanation for

the absence of gra in growth

6 2 Dimensional changes

6 2 1 Assemblies

The overal l stability of the bundle was surpr is ingly good No

bowing was detectable

6 2 2 Individual rods

The resu l t s a re summar ized in table 4 The dimensional changes

were smal l

6 3 Spacer design

6 3 1 Stability

As already mentioned in paragraph 6 2 1 the stabili ty of the

bundle was good

6 3 2 Fret t ing

As shown in fig 6 and 7 the fretting marks were smal l The

photographs show the wors t fretting mark of the whole bundle

6 3 3 Hydrogen pick-up

In table 5 and fig 25 the hydride content values a re given The

measurement s show a pronounced hydrogen pick-up in the vicinity of

the spacer

6 3 4 Crud deposition

The visual examination revealed a s t reaming pat tern behind the

spacer in the form of a very thin crud layer The thickness of the crud

does not seem to affect the heat t ransfe r appreciably

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 11: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 9 -

7 CONCLUSIONS FOR THE ACTUAL EXPERIMENT

7 1 Feasibi l i ty of long fuel s t r ingers

Long fuel s t r ingers are feasible

7 2 Deformation behaviour of a s ix - rod element

No deformation of the bundle was detected

7 3 The effect of the spacers

The chosen spacer design was good with respec t to stabili ty and

fretting but had a drawback in view of hydrogen pick-up

7 4 Thermal conductivity of UO

The experiment confirmed the out-of-pile data up to 1400 C with

a heat t ransfer coefficient of 1 0 Wcm bull C

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 12: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 10 -

8 REFERENCES

DJURLE S 1963 AB Atomenergi Sweden (internal repor t RMA-403 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-495 )

DJURLE S 1964 AB Atomenergi Sweden (internal repor t RM-203 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMB-351 rev 1 )

GOODE G 1964 AB Atomenergi Sweden (internal repor t TPM-RKS-1 61 )

BJOumlRZEacuteN H 1 964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -1 )

KRELL Auml 1964 AB Atomenergi Sweden (internal r epor t TPM-RFA-578 )

ERIKSSON E 1964 AB Atomenergi Sweden (Internal repor t AP-RMB-891 2-1 )

BJOumlRKLUND K 1964 AB Atomenergi Sweden (internal repor t TPM-RMB-550 )

JONASSON G 1964 AB Atomenergi Sweden (Internal r epor t TPM-RKS-1 69 )

ROLSTAD E 1964 Institutt for Atomenergi Norway (Internal r epor t EPB-305 )

HALLSTENSSON L 1964 AB Atomenergi Sweden (Internal repor t TPM-RMB-596 )

FORSBERG L GOODE G 1964 AB Atomenergi Sweden (internal r epor t STK-1 78 )

GYLLANDER J-Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RMA-541 )

ASPHAUG K 1964 Institutt for Atomenergi Norway (Internal repor t DP-305 )

FILIPSSON B 1964 AB Atomenergi Sweden (internal repor t AP-RMB-891 1 -2 )

KRELL Auml 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFA-559 )

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 13: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

FREDRIKSSON F 1964 AB Atomenergi Sweden (Internal r epor t TPM-RFR-292 )

SVENSSON S 1964 AB Atomenergi Sweden (Internal repor t RFA-598 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal r epor t TPM-RMA-579 )

GYLLANDER J-Auml 1965 AB Atomenergi Sweden (Internal repor t TPM-RMA-596 )

EDWALL B LUNDQVIST R 1965 AB Atomenergi Sweden (Internal r epor t AP-RKK-98 )

GYLLANDER J-Auml 1967 AB Atomenergi Sweden (Internal r epor t TPM-RMA-71 0 )

VOGT J GRANDELL L RUNFORS U 1964 AB Atomenergi Sweden (internal repor t RMB-527 )

RUNFORS U 1966 AB Atomenergi Sweden (Internal repor t RMB -1 089 )

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 14: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 12 -

9 LIST OF COMPUTER PROGRAMS USED

INDO integrated neutron dose and burn-up p r o g r a m

SLIRMA loop p r o g r a m in genera l

FIRMA neutron flux from Co-moni tors

FARMA fission gas re lease

GORMA dimensional changes

BURMA chemical burn-up measurement

TERMA t empera tu re distr ibution

VORMA volume distribution

STARMA s ta t i s t ics p r o g r a m

KORRMA corre la t ion p r o g r a m

S Svensson

J -Aring Gyllander

J -Aring Gyllander

B Danielsson

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

J-Aring Gyllander

J -Aring Gyllander

J -Aring Gyllander

P r o g r a m 1 is descr ibed in detail in ref [193 and p rog rams 2-10

descr ibed in ref [23]

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 15: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

- 13 -

10 LIST OF FIGURES

1 Top plug with gauge plug

2 Spacer

3 Upper end of the bundle

4 Upper end of the bundle

5 Lower end of the bundle

6 Fre t t ing m a r k on spacer

7 Fret t ing m a r k on rod E

8 Posit ion of samples for hydride measu remen t

9 Posit ion of samples for hydride measu remen t

1 0 T ransve r sa l cut rod A in axial maximum

1 1 T r a n s v e r s a l cut rod D in axial maximum

1 2 Detail of fig 11 1 4 x magnification

1 3 Detail of fig 1 1 500 x magnification

14 Fuel bundle bottom after i r radia t ion

1 5 Fuel bundle top after i r radia t ion

1 6 I r radiat ion his tory

1 7 Diagram over cer ta in heat data as a function of channel power

1 8 Goliath gauges

19- Y s c a n n ^ n g curves 24

25 The samples for the hydride measu remen t

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 16: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

T A B L E 1

I r r a d i a t i o n s t a t i s t i c s

E l e m e n t T i m e B u r n - u p

P o w e r P

kW Days MWd

P = 0 43 2 19 5

0 lt P lt 100 16 7 7 6 0 9 2 1

100 pound P lt 200 9 6 4 3 15 3 3

200 ^ P lt 300 1 1 0 7 50 1 29 1 6 4 2

300 pound P 40 8 18 5 1 3 8 30 4

T o t a l 2 2 1 0 100 0 4 5 3 1 0 0 0

T A B L E 2

B u r n - u p by m e a n s of c h e m i c a l - m a s s p e c t r o m e t r i c a n a l y s i s

Rod F IMA F I M A M W d t U 0 2 Ton UO- MWd

Max A v e r a g e A v e r a g e

A 5 50 bull 1 0 3 4 08 bull 10

B 5 16 4 0 6

C 4 52 3 56

D 5 55 4 3 6

E 5 4 3 4 2 7

F 4 74 3 73

To ta l

3420 2 164 bull 10 7 40

3400 2 1 70 7 38

2980 2171 6 4 7

3660 2 1 7 4 7 96

3580 2 1 7 4 7 78

3130 2 1 7 3 6 8 0

43 79

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 17: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

TABLE 3

Radial form factors FRAP l inear heat output Q(2 75) and Q(340)

Rod

A

B

C

D

E

F

FRAD

1068

1 003

0 877

1 077

1 054

0920

Q(275)

Wcm

-

271

237

291

285

248

Q(340)

Wcm

-

335

293

360

352

307

TABLE 4

Dimensional changes ridge heights and U 0 0 s tack movement

Rod

A

B

C

D

E

F

FRAD

1 068

1003

0877

1 077

1 054

0912

Length

oo

-

+ 79

+ 78

+ 87

+ 94

+ 76

Diamete Max |im

- 15

+ 7

+ 9

+ 6

+ 18

- 2

r Min (j m

+ 5

+ 19

+ 11

+ 11

+ 1 3

+ 3

bullc

Ridge height | j m

5

5

10

5

3

13

UO s tack movement deg oo

1 5

1 2

1 1

9

14

4

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 18: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

T A B L E 5

H y d r i d e f o r m a t i o n

Rod E

S p a c e r No ( f rom bo t tom) 3

Height over b o t t o m ( c m ) 88

Outs ide can t e m p e r a t u r e ( C) 245

H y d r i d e con ten t of the c a n ( p p m )

j u s t be low s p a c e r 65

con t ac t po in t 1 80

R e f e r e n c e (n o n - i r r a d i a t e d ) 35

T A B L E 6

T e m p e r a t u r e d i s t r i b u t i o n ( C) r o d A ( t h e r m o c o u p l e )

Rad ius

( m m )

0 00

0 50

1 00

1 50

2 00

2 50

3 00

3 50

4 0 0

4 50

5 00

5 50

6 0 0

6 23

E l e m e n t

275

1082

1077

1060

1033

995

947

891

826

755

6 79

598

515

431

391

p o w e r (kW)

340

1 379

1371

1 347

1 308

1255

1187

1107

101 7

91 7

811

700

589

477

426

348

1 416

140 7

1 383

1 343

1287

1217

1 1 34

1040

937

827

71 3

59 7

483

430

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 19: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

TABLE 7

Tempera tu re distr ibution ( C) rod D

Radius Element power (kW)

(mm) 275 340

0 00

0 5 0

1 00

150

2 00

2 50

3 00

3 50

4 0 0

4 5 0

5 00

5 50

6 00

6 2 3

1255

1248

1227

1193

1146

1087

1017

937

850

756

658

558

459

412

1618

1609

1580

1532

1466

1383

1 284

1171

1048

91 7

781

646

51 3

452

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 20: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

TABLE 8

Integrated volumes for rod D

Tempera tu re 275 kW 3

interval cm

300 - 500 60 0

500 - 600 40 5

600 - 700 32 0

700 - 800 24 5

800 - 900 ] 8 8

900 - 1000 14 4

1000 - 11 00 10 5

1 100 - 1200 6 8

1200 - 1300 1 9

1 300 - 1400 0 0

1400 - 1500

1500 - 1600

1600 - 1700

1 700 - 1800

340 kW

c m 3

2 8 7

19 4

1 5 3

1 1 7

9 0

6 9

5 0

3 3

8 9

0 0

3 7 0

32 8

29 8

24 5

19 8

16 3

13 4

11 0

9 0

7 1

5 3

3 2

0 2

0 0

17 7

15 7

1 4 3

1 1 7

9 5

7 8

6 4

5 3

4 3

3 4

2 5

15

0 1

0 0

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 21: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Crud measuremen t s

The positions of the samples a re given in the sketch below

Top F6 F4 F 5 F3 Bottom Fuel element

FZ outside

Fl inside Shroud

TABLE 9

Crud deposition (ngcm )

F e Ni C r Z r

F l

F2

F 3

F 4

F 5

F6

32

4

8

8

8

12

8

lt 2

lt 2

lt 2

lt 2

lt 2

5

lt 2

lt 2

lt 2

lt 2

lt 2

gt 2

gt 2

15

15

gt 2

gt 2

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 22: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

TABLE 10

The crud activit ies 22 9 65 (dps cm )

C o - 5 i Co-60 Zr -95 Fe-59 Cr-51 Mn-54

Fl

F2

F3

F4

F5

F6

8 5-

34-

56-

7 5-

5 2-

4 7-

10^ 1 2 - 1 0 ^ 3 8 - 1 0 2 3 - 1 0 2 4 - 1 0 9 7 1 0

10^ 2 2 - 1 0 ^ 1 1 - 1 0 ^ 3 5 - 1 0 ^ 1 0 - 1 0 ^ 1 8 0 - 1 0

l O 1 0 - 1 0 ^ 1 5 - 1 0 ^ 1 8 1 0 1 2 - 1 0 6 9 - 10^

l O 2 0 - l 0 ^ 2 0 - 1 0 ^ 2 0 - 1 0 ^ 2 2 - 1 0 ^ 1 9 0 - 1 0

l O 2 0 - 1 0 1 4 - 1 0 ^ 1 2 - 1 0 7 6 - 1 0 ^ 1 3 0 - 1 0

l O 7 3 - 1 0 ^ 1 8 - 1 0 2 5 - 1 0 ^ 6 4 - 1 0 1 7 - 1 0

TABLE 1 1

Specific activit ies (dpsmg Fe)

C o - 5 8 Co-60 Zr -95 Fe-59 Cr-51 Mn-54

F6

F4

F5

F3

Fl

F2

6

TABLE 1 2

F i ss ion gas re lease ()

Rod B D

Kr

Xe

-

-

002

002

003

003

0 02

0 03

0 02

002

0 02

0 02

3 9 2 - 1 0 ^ 6 0 8 - 1 0 ^ 1 5 - 1 0 ^ 2 0 8 - 1 0 ^ 5 3 3 - 1 0 ^ 1 4 2 1 0

9 3 7 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 5 0 - 1 0 ^ 2 7 5 - 1 0 ^ 2 3 7 - 1 0 ^

6 5 0 - 1 0 ^ 2 5 0 1 0 ^ 1 7 5 - 1 0 ^ 1 5 0 - 1 0 ^ 9 5 - 1 0 1 6 3 - 1 0

7 0 - 1 0 1 2 5 - 1 0 1 8 8 - 1 0 ^ 2 2 5 - 1 0 ^ 1 5 - 1 0 ^ 8 6 3 - 1 0 ^

2 6 6 - 1 0 ^ 3 7 5 - 1 0 ^ 1 1 9 1 0 7 1 9 1 0 ^ 7 5 - 1 0 3 0 3 - 1 0 ^

8 5 lt 1 0 5 5 - 1 0 ^ 2 7 5 - 1 0 ^ 8 7 5 - 1 0 ^ 2 5 - 1 0 ^ 4 5 - 1 0

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 23: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

F i g 1 Top plug with gauge plug

F ig 2 Spacer

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 24: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Fig 3 Upper end of the bundle F ig 4 Upper end of the bundle

F ig 5 Lower end of the bundle

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 25: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

t

Fig 6

F- -

4 5x

bull

bullaumlW^

Fig 7

Wr-

4 5x

amp

K bull i- m

Fig 8 4 5x Fig 9 4 5x

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 26: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

F i g 1 O 4 5x F i g 11 4 5x

8Epoundli2amp

F i e 12 14x F i g 1 3 500 x

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 27: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Fig 1 4 Through cell window

ml

8hfegt- laquo IgUtMIKflr i l - V T - rv

s-

jpj^EacuteASfe-laquobullbull bullilPfff

laquo -bull

Fig 1 5 Through cell window

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 28: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

i

bull i

T~-~

bull- l

bull bull bull - bull - - bull

bull bull bull bull i mdash

bull - - bull bull

L~Hr^

- j

) bull bull

bull bull bull

i i i i i i

i

bull mdash - bull - -

-

T

-bull

bull bull bull - bull mdash mdash

j - bull bull bull

bull bull

- 1 - bull

i bull bull

- r

bull - i i

i

jjU

bdquo _

bull bull

3e

-----

bull - -

bull - mdash -

- bull mdash i

Tii iampr

iiili

bullT-

i

i t -

i i

v

bull i bull

bull -

_-

d c

T I

| bull

bull

gt

I r r a d i a t i o n h i s t o r y

- C h a n n e l p o w e r in kW as a funct ion of i n - c o r e t i m e

^ ~ - -

bdquo

---

_ _

r

i r bull

m-v Hi i i ^ i i iH

iEK i i

- i i

~Fi

bull _

bull bull

m - bull bull bull bull

i iii

iYil

T

bullrill--l-

bull bull

j bull - _

bull bull

1

bull i -

bull

7H 7

bull

ui-i

jllUlIiL

- - bull

rn __

ji 1

bull -

bull i i

bull U

i|

i L

viii

r

bull T

LiLi

bull i i i

j -

| - bull bull bull bull

L _ 1 i

i bull

bull bull

bull

bull

---[[

i 1-

i ^

---

-

i

_ _

r f i i i

- - - - - bull mdash - bull - - J - mdash r

bull bull bull bull bull | bull 1

bull

bull bull i bull bull bull i

f

I bull 1

-

1

bull

bull bull bull

bull

1

bulli

r

bull-v-

j

bull bull

iiiii

bull

bull

bull

bull i - i bull -

i bull 1

--mdash

i

___mdash|

i

i

bull i -

mdash t i

- i ir

i

c

bull 1

bull bull

1

----

bull bull bull bull bull

Mh i

bull bull bull bull

bull

i

1 bull

i

bull bull bull

bull -Iii i T i

- bull bull bull

i i i i

mdash i mdash mdash i

_

J i i i - bull bull bull bull

ii i

bull

mdashti i - i bull

ii^

-

m i -

i

- iii-iiiii

i]i-i

|

i - - - -I

F i g 16

Bpl i i bull

bull _

iii

_

ii

ii

ii

t

o

o iw

bull i

i bull

i bull i 1 bull

i ^ bull bull bull

J L i

i-

1

-i

i

bull bull

- bull bull

bull

i

i

I

i

i bull

iLij i

bull bull bull bull

i i i i y

gt

i

r-iI 1

r bullbull--bull

iii

i i

i i

1

i

bull bull - J

i i bull

bull bull

mdash V

- mdash - mdash bull bull

i - _

mdashmdash

bull j

|

i -

i i i - i

o

o o CM

O

H

O O r-i

LPl

X K CM

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 29: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Linear heat output (Q) heat conductivity integral (I) heat 6urface flux on the canning (WKAP) and specific power (S) as a function -bullbull-bullbullbullbull _ of channel power in- axial maximum position i 1S _

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 30: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Golia th gauges F ig 1

+

o o

7=

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 31: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

100

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 32: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Gamma-scanning

Roumld B

Fig 20

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 33: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

+ i Gamma- s canning

Rod C

m

bullL^iL

m^ bull |

r

-LLL

f

bull bull

- - t bull bull

bull bull

St---bull bull L _

- i bull bull bull

i

bull[-bull

r--

bdquo

r_ t

t t

i

- i

i

LLi

I bullbull

bull-

(

[ bull bull

) bull

i i

bull bullbullbullbull- ) -

i i bull

it bull j |

j bullbull t -

bull bull

-tr-f --bull

r-rrr-T

bulliir

i - j bull bull bull

t

1 bull i -

I i t

i

mdash-vr

- 1 - - -

-

~zzLY

iaE^f ^ T p f

- - ( mdash bull laquo mdash

iblL

-bullbull

~L]-

-7T 1TJ FT

_ui

iiLilLLL

mdash i bull 1

1C

L-mdash-L-

LzzY

LLL1--

zj

LLi-L

-mdash

H-

i-i

^rTTTL

i l ~ i

i H W OU_

i

bull bull

bull bull r

LLii][ -

EriJpi

Sni i T IT

HTTI

LL-L-

bull[

i -t - i -r

] bull

m - bull -

i

LI T o p i i

if i

fcN-ii]jjiFrii

bull pound - 1 T - i bullbull

~ f bull bull bull bull [ bull bull bull bull -

bull | - i -M

1 i

bull - i f f bullbull f --T i

i pound 1 bull S

bull M - i -i j bull

-nkpound-I J ^ bull

bull bull i

H--- U-

bull i 1

mdash

|

t bull bull bull

bull -

j r - i bull 5 1

^ r r

--Trii ^

F gt

- 4 j

r r r r l r t

- r _ i l ^

-i i f

HTrpiP

bull bull

laquo

bull

rf1-r i

~rr

LLLLL1

T-Y~l

] i

i

T~~ t i r r

i r i i r i i i i

LYr-lL

H P

bull bull [

bull

L-----

LllLL

7 - p n f

bull - bull f r - - -

-

mdash i -

- -bullL bull - bull bull

TrHiii i i

bull

I

T

ipi

MP C

bull bull

I

bullLTLi-

L1LL

L-1L1

--bull ~ -

bull

I

-- -

i i t i i i r ril_

ri-j-T i i i i

~L i i t i

i

i ^ H

bull

bulli r~-

LLL

LL- i - i - -

y

r i i - |

r raquo i

-

- i r

bull h bull bull

_

bull I bullbull

ii

- i

bull -

bull bull i - bull

i

bull

j bull 1

v r K

Li-

bull bull

bull bull

bull

L~-i

bull bull

-r^jir

WL-Li

bull-~ -4- r i

J

i r a

ii^kr rrr

- f i 4 i i i LLH

)

bull - -

^LrL-~

L-SLi

-Mi-L

i i

mdash i mdash

TTTTT^^

^ r t j

Li

xLi m

i qjis

LWTL

bull bull

-

- j r

bull J -H-i-f-

LL

bullrL bull

liLLLi

bull

iLri

ilp mdash gt - bull |

LiLL

z T

i bull ( bull

trrr

bull -H

Jill

10

bull bull r bull

LL

i

gt

bull i i | j

^

Tirrrir-

i ^ - ^ bull bull

LrlzL-

O T

- -f i -

f j

bull - gt bull bull bull bull bull bull mdash

fy

i

-bullbullbull P bullbull

bull bull

-mdash ---

_ i i

- ^ j - 1 1

bull - bull r - f -

gt

bull _

F i g 21

L-mdashZ--

_ bdquo

bull bull

- x

^ T -

i i j -

i i i

j bull

i i 1 |

bull i

bull bull 1 1

bull - ] -

il~L

- i i ~ t - bull bull bull

1 bull bull

gt 1 bull

- r-iri mdash -Vfmdash

i B

i

- i i ~

I-ILL

r

0

- | f c r

_ rlj jt

l l fs

ii

- i i -

--ZLT

i - _

t

J_ _

=j 4 -

poundJ-

ri-

It v

mdash

^J

i1-

-mdash r

illLiz

bull bull - - T r -

n

- bull -

bullH^iri mdash i

d

bull t

bull - bull | T

bull ^ - L 1 -i bull bull bull bull 1

bull bull |

1 i

| i bull i

| T- i

- jv -j bull

r-rH bull bull bull bull ] - |

bull -

1 -I L j

bull

-i

i

j

i

i

i

bull bull bull bull

bull i

___ _J_ i l i bull

i i 1 i

( bull | |

| bull bull bull i - bull bull |

1 bull

bull i i p i 1 t L

bull bull J bull bull bull bull

-rrH---i

-1-~~

-L

rr-

- _ U bull =

IS-

bull

bullLL

bullLL

-----i

Z--1-L

bullmdash-bullbull

bull r---

rmdashr~ 7|

j i

bull bull i

j

I

bull bull i

i |

mdash

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 34: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

T Gamma-scanning

Rod D

Fig 22

100

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 35: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

t Gamma -se anning

R o d E F ig 23

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 36: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the

Fig 25

The samples for the hydride measu remen t

Reference m auml r k see figure 7

top

from spacer contact point

mdash ordinary canning

W waste

The figures in the symbols correspond to the hydride content in ppm

Page 37: AE-306 Final Report on IFA-10, the first Swedish Instrumented Fuel Assembly Irratiated ... · 2015-03-30 · AE-306 (JDC 621.039.548: G21.039.524.46.034 Final Report on IFA-10, the