26
Advances in Nanostructured Functional Materials in São Paulo José A. Varela IQ UNESP and FAPESP [email protected] Fronteras de la Ciência en Brasil y España Madrid 13 y 14 diciembre de 2012

Advances in Nanostructured Functional Materials in São Paulo · Advances in Nanostructured Functional Materials in São Paulo José A. Varela IQ UNESP and FAPESP [email protected]

  • Upload
    phamque

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

Advances in Nanostructured Functional Materials in São Paulo

José A. Varela

IQ UNESP and FAPESP

[email protected]

Fronteras de la Ciência en Brasil y España

Madrid 13 y 14 diciembre de 2012

Ongoing Research Grants 124

Completed Research Grants 244

Ongoing scholarships in Brazil 258

Completed scholarships in Brazil 434

Ongoing scholarships abroad 12

Completed scholarships abroad 26

FAPESP – recent grants and scholarships on

Nanoscience Nanomaterials and Nanotechnology

Recent grants and scholarships (1992-2013)

0

100

200

300

400

500

600

PROJECTS BY AREA

Main subjects on nanoscience

- Nanoparticles, nanotubes and nanobelts - Composite – nanotube/nanoparticle and nanotube/polymer - Molecular assembly - Carbon nanostructured - Metallic nanoalloys - Graphene layers on silicon carbide - Modeling and simulation

Functionality - Energy: hydrogen storage, water splitting, solar cells, SOFCs - Catalysis - Biotechnology - Sensors: gas and bio - Memories - Ferromagnetic, Piezoelectric, Ferroelectric and Multiferroics

PROPOSALS

RESEARCHER

INSTITUTION

National Institute for Materials Science in Nanotechnology

E. Longo UNESP

Development and characterization of iron oxide nanoparticles

coated with polymeric cover complexing H.E. Toma USP

Development of modified electrodes with carbon nanotubes and

polyaniline composites F.R. Simões UNIFESP

Development of molecular devices composed of light synthesized

gold nanoparticle J.A. Bonacin UNICAMP

Canada

Combining theory, simulations and experiments. applications in

nanotechnology E. Longo UNESP

Spain

Modeling carbon nanostructured materials A.F. da Fonseca UNESP

Composites based on carbon nanostructures: an application in

nanobiotechnology osteogenesis P. Ciancaglini USP

Computational nanoscience for energy materials: hydrogen storage

and production and ethanol catalysis through metallic nanoalloys

A. Antonelli UNICAMP

Detection, removal and recovery of heavy metals with functionalized

magnetic nanoparticles R.M.C. Peña USP

Third generation biosensors based on the interaction among reduced

graphene oxide, ionic liquids and oxidase enzymes S.I.C. de Torresi USP

Study of the interaction of nanoparticles and nanotubes with cell

membrane models and possible applications V. Zucolotto USP

Bond rupture and energy GAP engineering of graphene layers

epitaxially grown on silicon carbide: ab-initio calculations

A. Fazzio USP

Some FAPESP Research Grants on Materials Nanoscience

and Nanotechnology

Metal Nanoparticle

Amorphous Mesoporous Silica Matrix

2m

20nm

“Bottom-up” • Hybrid materials are composite materials (e.g. ceramic-metal)

that have distinct properties or superior performance from the simple materials.

The NanoxClean

PROJETO COORDINATOR COMPANY

Filmes de DLC para aplicações em superfícies anti-

bacteriana, anti-atrito, espaciais, industriais e para tubos

de perfuração de poços de petróleo

Alessandra V Diniz Clorovale Diamantes Indústria e

Comércio S.A

Sistema híbrido de armazenamento de energia para

veículos elétricos Fellipe S. Garcia

Ekion Tecnologia de Veículos Elétricos

Ltda

Biochip micro e nano fabricado para liberação controlada

de fatores de crescimento para regeneração óssea Claudio R. C. Carvalho

Nanobionics Biotecnologia e

Bioengenharia Ltda

Desenvolvimento de sistema nanoestruturado de alta

estabilidade para carreamento de ativos cosméticos com

segurança e eficácia

Paula A. Barbugli Nanomed - Nanotecnologia em Saúde e

Bem-Estar Ltda

Escalonamento e implementação de controle de

qualidade para produção de antimicrobianos

nanoestruturados para aplicação em cerâmicas e

plásticos

Luiz G. P. Simões Nanox Tecnologia S/A

Nanotecnologia aplicada em catalisadores e filtros

automotivos de exaustão Melchior A. Momesso

Nantex Nanotecnologia Experimental

Ltda

Filmes com propriedades catalíticas para pistões

automotivos Melchior A Momesso

Nantex Nanotecnologia Experimental

Ltda

Desenvolvimento de um aditivo nanocompósito

modificador para o elastômero EPDM María V.. C. Oropeza

Orbys Desenvolvimento de Tecnologia

de Materiais Ltda

Produção de vacina gênica em nanoestrutura lipossomal

para a tuberculose Lucimara G. de la Torre

SMF Bioplus Desenvolvimento

Pesquisas Tecnológicas Químicas Ltda

EPP

Some FAPESP PIPE Grants on Materials Science and Nanotechnology

Ev

EC

EF0

EG

EB0

E0

ZnO Film Gas

Ev

EC

EF0

EG

EB0

E0

ZnO Film Gas

Ev

EC

EF0

EG

E0

ZnO Film Gas

EB < EB0

Ev

EC

EF0

EG

E0

ZnO Film Gas

EB < EB0

Semiconducting Metal Oxide (SMO) Gas Sensors

substrate

contact

metal oxide

Oxygen

Physisorption:

↑ surface density of states

Chemisorption:

↑ surface trapped charge

20 30 40 50 60 70

(210)

(202)

(301)

(112)

(310)

(002)

(220)

(211)

(200)

(111)

(101)

Inte

nsid

ad

e / u

.a.

2graus

a)

b)

(110)

XRD data show SnO2 phase with

preferential orientation for (101)

planes.

White deposit

SEM shows nanobelts

2.6 A

TEM: Nanobelts grow in the (101) planes

SnO2

SEM: Nanobelts

Black Deposit

TEM: single crystal

Nanobelts: orthorhombic SnO

[110]

110 growth direction

10 20 30 40 50 60 70 80

0

2000

4000

6000

8000

10000

+## +

* *##*%+

*

*

#

*

*

*

*

*

*

*

SnO2

Inte

nsid

ad

e / c

ps

2 / graus

#

+

SnO

Sn

XRD: SnO only

Sensor Response to NO2 – Tin Oxides

Tin oxide nanobelts (SnO2, SnO and Sn3O4).

Suman P.H. et al, manuscript in preparation.

High Selectivity– Tin Oxides

Tin oxide nanobelts (SnO2, SnO and Sn3O4)

Sensor Signal – SnO

SnO nanobelt vs SnO disks

Disks presents Giant Chemo-response (GCR)

Sensor Signal – SnO Disks

Sensor signal and selectivity of SnO disks.

Over 1000x increase in resistance even with

relatively low surface area !!

CaCu3Ti4O12 (CCTO)

Ca+2

Cu+2

O-2

•TiO6

Non ohmic property Chung, 2004 Dielectric property Subramanian,

2000

• Intrinsic: electronic states

• Extrinsic: point, linear and planar defects, electrode/sample interface effects, microstructural and general morphology (domains).

467 466 465 464 463 462 461 460 459 458 457 456 455

CCTO 72h

CCTO 20h

2p1/2

2p3/2

CCTO 3h

458

458.4

457.6

458.9

457.9

Inte

ns

ity

(a

.u.)

459.1

Ti 2p

Binding Energy (eV)

946 944 942 940 938 936 934 932 930 928

Binding Energy (eV)

Inte

ns

ity

(a

.u.)

933.2

934.8

934.5

933.3

CCTO 72h

CCTO 20h

CCTO 3h

2p1/2

2p3/2

931.5

931.6

935.2

933.4

931.7

Cu 2p

Samples TiO5. /TiO6 Cu+1/Cu+2 Dielectric constant (1KHz)

CCTO 3 h 0.21 0.80 k3h= 13134

CCTO 20 h 0.27 0.85 k20h = 27268

CCTO 72 h 0.52 0.92 k72h = 380760

OV

Cu+2

Cu+1

TiO5.

OV

TiO6

Area ratio of the

components

detected by

XPS

X-RAY PHOTOELECTRON SPECTROSCOPY (XPS)

TiO5.

OV CuuC e-

Creation of polarons electronic defects

AFM and EFM of CCTO after sintering at 1100 °C for different times

Breakdown electrical field (Eb), leakage

current (Il) calculated at 20 % of the

breakdown electrical field and nonlinear

coefficient () obtained for the CCTO

system

J (current density) versus E

(electric field) plot obtained for

the CCTO polycrystalline system

-50 -40 -30 -20 -10 0 10 20 30 40 50

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

compliance: 10 mA

E (V.cm-1)

CCTO 72 h

= 3Il = 260 A

Eb = 14 V.cm

-1

J (

A.c

m-2

)

1 mA.cm-2

-2500 -2000 -1500 -1000 -500 0 500 1000 1500 2000 2500

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

E (V.cm-1)

J (

A.c

m-2

)

= 5

Compliance: 10 mA

Eb = 1181 V.cm

-1

1 mA.cm-2

Il = 177 A

CCTO 3 h

-1600 -1200 -800 -400 0 400 800 1200 1600

-0,03

-0,02

-0,01

0,00

0,01

0,02

0,03

Compliance: 10 mA

CCTO 20 h

E (V.cm-1)

J (

A.c

m-2

)

= 3I

l = 250 A

Eb = 600 V.cm

-1

1 mA.cm-2

CURRENT–VOLTAGE CURVES

I–V hysteresis curve – Effect of Ca excess

stoichiometric

non-stoichiometric

CCTO thin films

Cross-section and surface FE-SEM images showing the CCTO morphology of the nanostructured film obtained at 300oC deposition temperature for 120 minutes.

CCTO Thin films

J.A. Varela et al, J. Am. Ceram. Soc, 93(1)51-54 (2010)

Image illustrating the Pt/CCTO/Pt MOM configuration used for the electrical characterization of CCTO sputtered nanostructures grown at 300°C for 120 minutes. (compliance current = 1.0 µA)

I-V curve showing the hysteresis behavior of an individual CCTO nanorod

FE-SEM (left) and AFM (right) images showing the cross-section and the surface, respectively, of the nanostructured film deposited at room temperature for 15 minutes.

Image illustrating the configuration of a micro-capacitor based on MOM

configuration

Characteristic I-V curve for the micro-capacitors based on CCTO sputtered nanorods deposited at room temperature for 15 minutes.(compliance current = 10 µA)

Hysteretic current - voltage curves Micro-capacitors display a resistive

memory phenomenon.

R Tararam et al, ACS Appl. Materials & Interfaces 3(2), 500 (2011)

Muchas Gracias