17
Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap ' TECHNISCHE " INFORMATION3BIELIOTHEK UNIVERSITATSB1BLIOTHEK HANNOVER API ASIATECH PUBLISHERS, INC. New Delhi

Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Advances in

Fermentation

Technology

Editors

Ashok PandeyChristian Larroche

Carlos Rlcardo Soccol

Claude-Gilles Dussap

'TECHNISCHE

"

INFORMATION3BIELIOTHEK

UNIVERSITATSB1BLIOTHEKHANNOVER

API

ASIATECH PUBLISHERS, INC.

New Delhi

Page 2: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents

Preface

Contributing Authors xxiu

v

1. New tools for isolation and identification ofmicro-organismsCecile Militon, Corinne Petit-Biderre and Pierre Peyret 3

1. Microbial Diversity and evolution 4

1.1. Phenotypic and genetic microbial classification 4

1.2. Microbial diversity in complex environments 7

1.3. Origin of the eukaryotic cell 10

2. Isolation and microbial cultivation methods 12

2.1. Standard methods for micro-organisms cultivation 12

2.2. New cultural strategies for micro-organism isolation 12

2.3. High-throughput micro-organism cultivation 13

2.4. Single cell isolation 14

3. PCR-based methods formicrobial identification 14

3.1. Nucleic acids extraction 14

3.2. Extracellular DNA and dead cells 16

3.3. PCR artefacts 16

3.4. rDNA markers and other biomarkers 17

3.5. Molecular fingerprinting methods 19

3.5.1. Amplified ribosomal DNA restriction analysis (ARDRA) 19

3.5.2. Terminal-restriction fragment length polymorphism (T-RFLP) and Lengthheterogeneity polymerase chain reaction (LH-PCR) 19

3.5.3. Denaturing gradient gel electrophoresis (DGGE) and Temperature gradient gelelectrophoresis (TGGE) 20

3.5.4. Ribosomal intergenic spacer analysis (RISA) 20

3.5.5. Single-strand conformation polymorphism (SSCP) 21

3.5.6. Randomly amplified polymorphic DNA (RAPD), Variable number of tandem repeats

(VNTR), and Pulsed field gel electrophoresis (PFGE) 21

Page 3: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

viii Contents

4. Hybridization methods and Isotope probing 22

4.1. DNA reassociation 22

4.2. Fluorescence in situ hybridization (FISH) 22

4.3. DNA microarrays 25

4.4. Stable isotope probing (SIP) 28

5. Metagenomics 30

6. New high-throughput sequencing developments 32

7. Conclusions and perspectives 33

References 34

2. Immobilization-Microencapsulation

P. Femandes and J.M.S. Cabral 45

1. Immobilized cell systems 45

1.1. Cell attachment to a surface 45

1.2. Aggregation 49

1.3. Entrapment 50

1.3.1. Conventional entrapment methods 50

1.3.2. Cell encapsulation in silica networks 52

1.4.

Containment 53

1.4.1. Preformed synthetic membranes 53

1.4.2. Liquid-liquid interfaces 54

1.4.3. Microencapsulation 54

1.4.3.1. Coacervation 55

1.4.3.2. In-situ polymerization 58

1.4.3.3. Interfacial polymerization 59

2. Engineering aspects 60

3.1. Large-scale cell immobilization 46

3.1.1. Bead/capsule production 60

3.2. Mass transfer 62

3. Conclusion and perspectives 67

References 68

3. Nanobiotechnology and bioprocesses

Amp Mukherjee1. Overview 74

2. Biomolecular motors in environment 75

3. S. Layers 76

4. Microbial production of nanoparticles 77

5. Bacteriorodopsin in technical application 79

6. Conclusions and perspectives 97

References 81

74

Part H: llioproct'ss optimization, design oihioieactois and downstream processing

4. Biosensors

Beatriz Lopez-Ruiz, Marta Sdnchez- Paniagua Ldpez, Arturo Josi Miranda-Ordieres and

Noemi Santos-Alvarez 87

1. General description 89

1.1. Field of applications 90

1.2. Classification 91

Page 4: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents ix

2. Transducers 91

2.1. Electrochemical biosensors 91

2.1.1. Voltammetric 92

2.1.2. Potentiometric 92

2.1.3. Conductometric/impedimetric2.1.4. Chemical-sensitive Field Effect Transistors (CHEMFET) 93

2.2. Optical biosensors 93

2.2.1. Absorbance 93

2.2.2. Fluorescence 94

2.2.3. Chemo/electrobioluminescence 94

2.2.4. Evanescent wave biosensors 94

2.2.5. Surface-Enhanced Raman Spectroscopy (SERS) 95

2.3. Mass-sensitive (piezoelectric) biosensors 95

2.3.1. Thickness-shear-mode acoustic wave sensors or bulk acoustic wave (BAW) sensors 95

2.3.2. Surface acoustic wave (SAW) sensors 99

2.4. Thermometric sensors 96

3. Biological components 96

3.1. Catalytic biosensors 96

3.2. Affinity biosensors 97

3.2.1. Immunosensors 97

3.2.2. Nucleic acid-sensors 98

3.2.3. Aptasensors 99

3.2.4. Artificial ion-channel biosensors 100

4. Methods of immobilization 100

4.1. Physical adsorption 101

4.2. Chemisorption 101

4.3. Covalentbinding 101

4.4. Entrapment into polymeric films 101

4.5. Cross-linking 102

4.6. Inclusion into the transducer material 102

5. State-of-art in fermentation technology 102

5.1. Electrochemical biosensors 103

5.1.1. Voltammetric 103

5.1.1.1. Glucose biosensors 104

5.1.1.2. Glycerol biosensors 106

5.1.1.3. Ethanol biosensors 108

5.1.1.4. Malolactic fermentation (MLF) 108

5.1.1.5. Other amperometric biosensors 110

5.1.2. Potentiometric Ill

5.1.3. CHEMFET 112

5.2. Optical biosensors 112

5.3. Thermometric biosensors 114

5.4. Pressure biosensors 114

6. Conclusions 115

References 116

5. Metabolic engineering and other methodsfor strain improvementAnne Ruffing and Rachel Ruizhen Chen 119

1. Classical strain improvement 120

1.1. Adaptive mutation 120

1.2. Mutator strains 121

Page 5: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

x Contents

1.3. Mutagen-induced mutation 122

2. Metabolic engineering 123

2.1. Optimization of natural product synthesis 124

2.2. Non-native and novel product synthesis 127

2.3. Enhancement of cellular physiology 129

2.4. Metabolic flux analysis 132

3. Other methods of strain improvement 136

3.1. Directed enzyme evolution 136

3.2. Genome shuffling 137

4. The future of strain development 139

References 142

6. Fermentation media: design and propertiesJean-Bernard Gros 145

1. Microorganism classification and elemental composition 147

2. Fermentation media 149

3. Macro-element design 149

4. Trace elements design 156

5. Physical properties of media 160

5.1. Water activity and osmotic pressure 160

5.2. Activity coefficient calculation 161

5.3. Calculation of pH 163

5.4. Solubility of gases 165

6. Conclusions 168

References 169

7. Bioreactors: Functions in fermentation processesBimal Chandra Bhattacharyya, Soumitra Banerjee and Tapan Kumar Ghosh 172

1. Types of bioreactors 174

1.1. Stirred Tank Bioreactors (STB) 174

1.2. Packed Bed Bioreactor (PBB) 174

1.3. Fluidized Bed Bioreactor (FBB) 174

1.4. Bubble Column Bioreactor (BCB) 175

1.5. Airlift Bioreactor (ALB) 175

2. Design aspects of the bioreactors 175

2.1. Stirred Tank Bioreactor 175

2.2. Batch Stirred Tank Bioreactor (BSTB) 175

2.3. Continuous Stirred Tank Bioreactor (CSTB) 178

2.3.1. CSTB with cell recycle system 182

2.4. Plug Flow Bioreactor (PFB) 184

2.5. Packed Bed Bioreactor 184

2.5.1. Pressure Drop In Packed Bed Bioreactor 186

2.6. Fluidized Bed Bioreactor 186

2.6.1. Comparing fluidized bed and fixed bed bioreactors 187

2.7. Flocculated Cell Culture 187

2.8. Multi Phase Bioreactors & Trickling Bed Bioreactor 188

2.8.1. Advantage of thin film reaction 188

2.9. Bubble columnbioreactor 188

2.9.1. Mass transfer 189

2.9.2. Two film theory 190

2.9.3. Determination ofKLa by axial dispersion model 190

Page 6: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents xi

2.9.4. Mass transfer measurement in BCB 190

2.9.5 Mass transfer coefficient based on ADM 191

2.9.6. Liquid phase mass transfer coefficient KL 191

2.9.7. Gas hold-up 192

2.9.7.1. Flow regime 192

2.9.8. Bubble dynamics 193

2.9.9. Inherent problems associated with the BCB 193

2.10. Airlift bioreactor 194

3. Bubble column vs airlift bioreactors 195

4. Modification in design of airlift bioreactor 195

4.1. Different modifications to improve mass transfer 195

5. Mass Transfer Study for CDT-ALF and UT-ALF 196

6. Growth Kinetics 198

References 200

8. Statistical design for the optimization offermentation processesChristophe Vial 202

1. Prerequisites 205

1.1. Objectives ofDOE 205

1.2. DOE terminology 207

1.3. Guidelines of DOE strategy 209

2. Applied statistics in DOE 211

2.1. Descriptive statistics for DOE 211

2.2. Hypothesis testing for DOE 216

3. Statistical modeling inDOE 218

3.1. Guidelines for ANOVA in DOE 220

3.2. Guidelines for regression analysis in DOE 223

3.3. Guidelines for ANCOVA in DOE 228

3.4. Model validation and improvement 229

3.5. Guidelines for process optimization strategy with statistical modeling 233

4. Most common statistical designs 235

4.1. Completely randomized designs, randomized block designs and split-plot designs 236

4.2. Hierarchical designs 238

4.3. Factorial designs in twolevels and derived designs 240

4.4.Common response surface designs 243

4.5. Other orthogonal designs 245

4.6. Other uniform designs 247

4.7. Optimal designs 248

4.8 . Mixture designs 249

5. Conclusions 252

References 253

9. Downstream processing ofbiologicals: a strategic approachTapati Bhanja, Mithu Das and Rintu Banerjee 256

1. Steps involved in the purification of biologicals 257

1.1. Capture 257

1.2. Intermediate 257

1.3. Polishing 257

2. Cell Disruption (lysis) methods 258

2.1. Chemical methods 258

2.2. Mechanical methods 259

Page 7: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents

2.2.1. Sonication 259

2.2.2. Freeze-thaw 259

2.2.3. Concussion device 259

2.2.4. Liquid shear 259

2.2.5. Colloid mill 259

2.2.6. French press 259

Clarification of disrupted cellular materials 260

3.1. Centrifugation 260

3.1.1. Swinging-bucket rotors 261

3.1.2. Fixed-angle rotors 261

3.1.2. Vertical rotors 261

3.2. Flocculation and coagulation 261

3.3. Filtration 262

3.3.1. Microfiltration 263

3.3.2. Ultrafiltration 263

3.3.3. Nanofiltration 263

3.3.4. Reverse osmosis or hyperfiltration 263

Product concentration 263

4.1. Salting out 263

4.2. Ultrafiltration 264

4.3. Organic solvent fractionation 264

Extraction 264

Chromatography 264

6.1. Size exclusion chromatography 265

6.2. Ion-exchange chromatography (IEC) 265

6.2.1. Binding 265

6.2.1.1. Anion exchangers 267

6.2.1.2. Cation exchangers 267

6.2.2. Elution 267

6.3. Affinity chromatography 268

6.4. Hydrophobic interaction chromatography (HIC) 270

6.4.1. Major parameters affecting the separation of HIC media.

6.4.1.1. Ligand type and degree of substitution 271

6.4.1.2. Type of base matrix 271

6.4.1.3. Type and concentration of salt 271

6.4.2. Effect of pH 271

6.4.3. Additives 271

6.5. Immobilized metal ion affinity chromatography (IMAC) 272

6.6. High performance liquid chromatography (HPLC) 273

6.6.1. Separation mechanisms 274

6.6.1.1. Polarity 274

6.6.1.2. Electric charge 276

6.6.1.3. Molecular size 276

6.7. Gas chromatography 276

6.7.1. Columns used in GC 277

6.7.1.1. Packed columns 277

6.7.1.2. Capillary or open tubular columns 277

6.7.2. Detectors 277

6.7.3. Factors affecting GC separations 278

6.7.3.1. Volatility of compound 278

6.7.3.2. Polarity of compounds 278

Page 8: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents xiii

6.7.3.3. Column temperature 278

6.7.3.4. Column packing polarity 278

6.7.3.5. Flow rate of the gas 278

6.7.3.6. Length of the column 278

6.8. Supercritical fluid chromatography 278

7. Electrophoresis 279

7.1. Separation mechanism 279

7.1.1. Nucleic acids separation 280

7.1.2. Separation of the proteins 281

7.2. Molecular weight determination 281

7.3. Isoelectric focusing 281

7.4. Two-dimensional electrophoresis 282

7.5. Capillary electrophoresis 282

7.5.1. Capillary zone electrophoresis 283

7.5.2. Capillary gel electrophoresis 283

7.5.3. Capillary isoelectric focusing 283

7.5.4. Isotachophoresis 284

7.5.5. Electrokinetic chromatography 284

7.5.6. Micellar electrokinetic capillary chromatography 284

7.5.7. Micro emulsion electrokinetic chromatography 284

7.5.8. Non-aqueous capillary electrophoresis 284

7.5.9. Capillary electrochromatography 286

8. Mass spectrometry 286

9. Conclusions 286

References 287

Part (': Industrial products and hioproccsses

10. Industrial enzymes

Parameswaran Binod, Reeta Rani Singhania, Carlos Ricardo Soccol and Ashok Pandey 291

1. Selection of enzyme source 293

2. Production methodology 296

2.1. Submerged fermentation 297

2.2. Solid-state fermentation 297

3. Improving enzyme fitness 298

3.1. RecombinantDNA technology 299

3.2. Protein Engineering 300

3.2.1. Rational Methods of Protein Engineering 300

3.2.1.1. Site-directed mutagenesis 301

3.2.2. Directed evolution 301

3.2.2.1. Mutagenesis 302

3.2.2.2. Gene shuffling 303

3.2.2.3. StEP DNA Recombination 304

3.2.2.4. The Incremental Truncation for the Creation of Hybrid Enzymes 304

3.2.2.5. Synthetic shuffling 305

3.2.2.6. Random Chimeragenesis on Transient Templates (RACHITT) 305

3.3 Chemical modification of enzymes 306

3.3.1. Atom Replacement 306

3.3.2. SegmentReassembly ..... 306

3.3.3. Specificity Modification 307

3.3.4. Covalent Cofactor Attachment 307

Page 9: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

xlv Contents

3.4. Metagenomics 308

4. Downstream processing 308

5. Applications 309

5.1. Food Industry 309

5.2. Textile industry 311

5.3. Detergent industry 312

5.4. Animal feed 312

5.5. Pulp and Paper 313

5.6. Leather 313

5.7. Biofuels 314

5.8. Enzymes in the Petroleum Industry 314

5.9. Enzyme applications in the chemistry and pharma sectors 314

5.10. Enzymes in personal care products 314

5.11. Enzymes in bioremediation 315

6. Future trends in industrial enzymology 315

7. Conclusions 316

References 317

11. Fermented beverages: the example ofwinemakingJean-Marie Sablayrolles 321

1. Wine 321

1.1 The importance and complexity of wine 322

1.1.1. Economic importance 322

1.1.2. A wide variety of wines 323

1.1.3. Defining wine quality: a difficult challenge 323

1.2. Winemaking process 324

1.2.1. The grape 324

1.2.2. Table wine production 324

1.2.3. Other wines 326

2. Winemaking fermentation 327

2.1. Wine yeasts 327

2.1.1. Yeast diversity 327

2.1.2. Impact of yeasts on wine quality 328

2.1.2.1. Beneficial aspects 328

2.1.2.2. Detrimental aspects 328

2.1.3. Metabolism 329

2.1.3.1. Nutrition - inhibition 329

2.1.3.2. Formation of by-products 330

2.2. Fermentation 330

2.1. The must 330

2.2. Description of a standard fermentation 332

2.3. Effect of the must composition 332

2.4. Red winemaking 333

3. Control of winemaking fermentation 333

3.1. Yeast strain 335

3.1. Impact on fermentation 335

3.2. Impact on wine 335

3.3 Temperature 336

3.2.1. Technologicalimpact 336

3.2.2. Impact on wine 336

3.3. Nutrient addition 337

Page 10: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents xv

3.3.1. Importance ofthe addition of ammoniacal nitrogen addition and oxygenation ..... 337

3.3.1.1. Effect on fermentation kinetics and stuck fermentations 337

3.3.1.2. Effect on wine 338

3.3.2. Other nutrients 338

4. Future trends 338

4.1. Wine yeasts 338

4.1.1. Improvement of wlmprovement of S. cerevisiae strains 339

4.1.2. Improvement of wUse of mixed cultures 340

4.2. Optimised fermentation control 340

4.2.1. Onl-Line fermentation monitoring and control 340

4.2.1.1. Fermentation monitoring 340

4.2.1.2. Fermentation control 341

4.2.1.3. Fermentation modelling 341

4.2.2. New processes and methodologies 341

References 343

12. Production oforganic acids: citric, gluconic and lactic acids

Hwa-Won Ryu, Young-Jung Wee, Jin-Nam Kim andLV.A. Reddy 348

1. Citric acid 351

1.1. Properties and uses 351

1.2. Production technologies 353

1.2.1. Microorganisms and metabolism 353

1.2.2. Fermentation conditions 355

1.2.2.1. Inoculum preparations 355

1.2.2.2. Carbon and nitrogen sources 355

1.2.2.3. Trace elements 356

1.2.2.4. Lower alcohols and oils 356

1.2.2.5. pH and temperature 357

1.2.2.6. Aeration and agitation 357

1.3. Commercialprocesses 357

1.3.1. Surface fermentation process 358

1.3.2. Submerged fermentation process 358

1.3.3. Solid-state fermentation process 359

2. Gluconic acid 359

2.1 Uses and properties 359

2.2. Production technologies 361

2.2.1. Microorganisms and metabolism 361

2.2.2. Production by fungi 362

2.2.3. Production by bacteria 362

3. Lactic acid 363

3.1. Uses and properties 363

3.1.1. Food industry 363

3.1.2. Cosmetic industry 364

3.1.3. Pharmaceutical industry 364

3.1.4. Chemical industry 364

3.2. Production technologies 366

3.2.1. Microorganisms and metabolism 366

3.2.2. Raw materials 368

3.2.3. Fermentation processes 369

4. Recovery processes 370

5. Future perspectives 371

Page 11: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

xvi Contents

6. Conclusions 372

References 373

13. Production ofvaccines and antibodies

Lopa Adhikary, Subhra R. Chakrabarti and Raman Rao 378

1. Anchorage dependent cell line and vaccine production 379

1.1. Parameters influencing cell culture in large-scale 380

1.1.1. Medium 380

1.1.2. pH 380

1.1.3. Agitation 380

1.1.4. Aeration 380

1.2. Anchorage dependent cell culture 380

1.2.1. Conventional method 380

1.2.2. Multiple surface tissue culture propagator 382

1.2.2.1. Cell factory 382

1.2.3. Plastic bag 382

1.2.4. Fermenter/bioreactor 382

1.2.5. Glass bead reactor 383

1.2.6. Stacked plate reactors 383

1.2.7. Microcarriers 383

2. Suspension dependent cell line and antibody production 385

3. Safety issues 387

4. Conclusions and perspectives 390

References 391

14. Production of amino acids: L-lysine and glutamic acid

Marta A. Longo and M"Angeles Sanromdn 392

1. Historical developments 392

2. Manufacturing methods 393

2.1. Extractive isolation 394

2.2. Chemical synthesis 394

2.3. Enzymatic catalysis 394

2.4. Fermentative production 394

3. L-Glutamic acid 396

4. L-Lysine 400

5. Conclusions 402

References 403

15. Production offermented dairy productsMaria Kanellaki, Loulouda A. Bosnea and Athanasios A. Koutinas 406

1. Yoghurt 406

1.1. Ingredients 407

1.1.1. Milk 407

1.1.2. Dry matter content 407

1.1.3. Sweetening agents 407

1.1.4. Stabilizing agents 407

1.1.5. Flavours 408

1.1.6. Starter culture 408

1.2. Manufacturing method 408

1.3. Nutritional value of the yoghurt 410

1.4. Yoghurt as probiotic carrier food 410

1.5. New trends in yoghurt 411

Page 12: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents xvii

2. Probiotic cheese 413

3. Kefir 415

3.1. Kefir yeast technology 417

4. Conclusions 420

References 421

16. Production ofmushrooms

Leifa Fan, Carlos Ric'ardo Soccol, Ashok Pandey and Huijuan Pan 429

1. Species explored in the production ofthe mushrooms 429

2. Classification of the mushrooms 430

2.1. Parasitic mushrooms 430

2.2. Mycorrhizal mushrooms 430

2.3. Saprophytic mushrooms 432

3. Substrates explored in the production of the mushrooms 432

4. Physiological control for the production of the mushrooms 434

5. Environmental control for the production of the mushrooms 436

6. Enzymes involved in the production of the mushrooms 437

7. Enzyme production using the mushroom strains 438

8. Ration for the animals using the mushroom strains 438

9. Bioremediation and detoxification by the mushroom strains 440

10. Conclusions and perspectives 442

References 443

17. Production ofbioflavours

Tom Desmet, An Cerdobbel, Wim Soetaert and Erick Vandamme 448

1. Natural and nature-identical flavours 449

2. Chemical classification of flavours 449

2.1. Alcohol aromas 449

2.2. Aldehyde aromas 449

2.3. Ketone aromas 450

2.4. Carboxylic acid aromas 450

2.5. Ester aromas 450

2.6. Terpene aromas 450

2.7. Pyrazine aromas 450

3. Chemical synthesis versus bio-production 450

4. Flavour biosynthesis via fermentation 452

4.1. De novo biosynthesis 452

4.1.1. Fungi 452

4.1.2. Yeast 452

4.1.3. Bacteria 454

4.2. Conversion of precursors 455

4.2.1. Aromatic phenols as vanillin precursors 455

4.2.2. Fatty acids as flavour precursors 457

4.2.3. Fatty acids and alkanes as precursors of musk fragrances 459

4.2.4. Terpenes as precursors of Ambroxd- fragrance 459

4.2.5. Hydroxy fatty acids and unsaturated lactones as precursors of flavour-lactones 459

5. Flavour synthesis via enzymatic conversion 461

6. Flavour biosynthesis via solid-state fermentation 463

7. Flavour biosynthesis via plant cell cultures 464

8. Conclusions and perspectives 464

References 466

Page 13: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

xviii Contents

18. Production of bacterial andfungal polysaccharidesCedric Delattre, Celine Laroche and Philippe Michaud 469

1. Fermentation process 470

1.1. Presentation 470

1.2. Industrial microbial fermentation: culture techniques and bioreactors 471

1.2.1. Some generalities about industrial bioreactors 471

1.2.2. Fermentation parameters 472

1.2.2.1. Agitation/aeration 472

1.2.2.2. pH 473

1.2.2.3. Culture medium 474

1.2.3. Immobilized microorganisms 474

1.2.4. Solid-state fermentation 475

2. Why to produce the polysaccharides? 476

2.1. Comparison between the microbial and non-microbialpolysaccharides 476

2.2 Bacterial polysaccharides 476

2.2.1. General presentation 476

2.2.2. Localisation and description 477

2.2.3. Xanthan 477

2.2.4. Gellan 477

2.2.5. Curdlan 480

2.2.6. Exopolysaccharides from lactic acid bacteria: Example of dextran 480

2.2.7. Exopolysaccharides and Rhizobiaceae 483

2.2.8. Exopolysaccharides from extremophilic bacteria 485

2.2.9. Fungal polysaccharides 488

2.2.9.1. Fungal and lichen cell walls polysaccharides 488

2.2.9.2. Fungal exopolysaccharides 491

3. Main Applications of the polysaccharides 491

3.1. Polysaccharides as food additives 491

3.2. Pharmaceutical applications ofpolysaccharides 492

3.3. Oligosaccharides derivates from the polysaccharides and their applications 493

4. Conclusions and perspectives 494

References 495

19. Production of biofertilizers

Mani N Jha and Kumari Sonia 508

1. Types of biofertilizer 510

1.1. Bionutrient/product-nitrogen 510

1.2. Bionutrient/product-phosphorus 510

1.3. Product-growth regulators 510

1.3.1. Delivery System-Direct/Indirect 510

2. Nitrogenous biofertilizer 511

2.1. Cyanobacteria 511

2.1.1. Product formulation 511

2.1.1.1. Open-air soil culture or rural oriented mass multiplication technology for

Cyanobacterial biofertilizer 512

2.1.1.2. Straw-based cyanobacterial biofertilizer production technology 512

2.1.1.3. Tobacco waste/neem powder/bel powder based cyanobacterial biofertilizer

production technology 513

2.1.2. Product application 514

2.1.3. Product utility 514

2.2. Azolla 515

Page 14: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents xix

2.2.1. Product formulation 515

2.2.2. Product application 516

2.2.3. Product utility 516

2.3. Azotobacter 517

2.3.1 Product formulation 517

2.3.2. Product application 518

2.3.3. Product utility 518

2.4. Azospirillum 519

2.4.1. Product formulation 519

2.4.2. Product application 519

2.4.3. Product utility 520

2.5. Rhizobium 520

2.5.1. Product formulation 521

2.5.1.1. Selection of rhiozobial strain for inoculant production 521

2.5.1.2. Preparation of broth culture 521

2.5.1.3. Selection of suitable carriers 522

2.5.1.4. Blending 522

2.5.1.5. Packing and labeling 523

2.5.2. Product application 523

2.5.3. Production utility 523

3. Phosphatic biofertilizer 523

3.1. Mycorrhiza 523

3.1.1. Product formulation 524

3.1.1.1. Soil based inoculum/soil pot culture 524

3.1.1.2. Soil-less pot culture 525

3.1.1.3. Surface disinfected AM spores 525

3.1.1.4. Hydroponic culture 525

3.1.1.5. Root organ culture 525

3.1.2. Product application 526

3.1.2.1. Inoculum placement in layers 526

3.1.2.2. Banding or side dressing 526

3.1.2.3. Mixing inoculum with soil 526

3.1.2.4. Seed pelleting 526

3.1.2.5. Pre-inoculation of transplanted seedlings 526

3.1.3. Product utility 526

3.2. Phosphate solubilising microorganism (Microphos) 527

3.2.1 Product formulation 527

3.2.2 Product application 527

3.2.3. Product utility 528

4. Plant growth promoting rhizobacteria (PGPR) 528

4.1 Product formulation and application 529

4.2 Product utility 529

5. Conclusions and perspectives 529

References 532

20. Solid-state fermentation

Jose A. Rodriguez Leon, Carlos R. Soccol, Reeta Rani Singhania, Ashok Pandey, Wilerson Sturm,

Luiz Alberto Junior Letti, Luciana P.S. Vandenberghe and Daniel E, Rodriguez Fernandez 539

1. Historical developments 540

2. Advantages and disadvantages of SSF 540

3. Factors affecting SSF 541

Page 15: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

xx Contents

3.1. Temperature and pH 542

3.2. Aeration 543

3.3. Moisture and water activity (aj 543

3.4. Bed properties 544

3.5. Process kinetics and modeling 545

3.5.1. Respiration quotient 548

3.5.2. Modeling 548

4. Fermenters in SSF 549

5. Process instrumental and controls 550

6. Conclusions and perspectives 551

References 552

21. Biotransformations

Licia M. Pern, Mario D. Baigori and Guillermo R. Castro 555

1. Brief history of biotransformations 555

2. General considerations about enzymes 556

3. The biotransformation market 559

4. Biocatalysts 562

4.1. Crude extracts 563

4.2. Whole cell biotransformation 563

4.2.1. Naturally immobilized biocatalyst 563

4.2.2. Morphology and biotransformation 564

4.2.3. Cell surface engineering 565

4.3. Immobilized biocatalyst 566

4.3.1. Adsorbed biocatalyst 566

4.3.2. Entrapped biocatalyst 568

4.4. Protein engineering 569

5. Reaction media 569

6. Web sites 572

7. Conclusions and perspectives 572

References 573

22. Bioremediation

Valentina Umrania, Cedric Vachelard and Christian Larroche 578

1. Major pollutants and typical polluted sites 579

1.1 Soil pollution 579

1.1.1. Adsorbed contaminant 580

1.1.2. Liquid or semi-fluid coating of particles 580

1.1.3. Coating of particles in the form of chemical precipitate 580

1.1.4. Included particles 580

1.1.5. Parts of individual grains 580

1.1.6. Internal contamination within the pores 580

1.2. Pollution sources and encountered pollutants 580

1.3. Associated risks 581

1.4. Insight on PAH pollution 582

2. Organic pollutants biodegradation 583

2.1. Microbial aspects 583

2.2. Metabolism aspects 586

2.3. Environmental requirements..... 5872.3.1. Oxygen 587

2.3.2. Chemotaxis 587

Page 16: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

Contents xxi

2.3.3. Temperature 588

2.3.4. pH 588

2.3.5. Redox potential 588

2.4. PAH and bioavailability 589

3. Bioremediation strategies 591

3.1. General concepts 591

3.2. In situ processes 594

3.2.1. Bio-venting/biosparging 594

3.2.2. Pump & treat 596

3.3. Ex situ processes 597

3.3.1. Land farming 597

3.3.2. Biopile treatments 597

3.3.3. Bioslurry 598

3.4. Ex situ vs. in situ treatments 599

4. Recent developments 600

4.1. CombinedUV-biological method 600

4.2. Pre-treatment with vegetable oil, Fenton's reagent 601

4.3. Bioaugmentation with bio-surfactant producing organisms 601

4.4. Use of spent mushroom compost for bioremediation of PAHs 602

4.5 Bioaugmentation with genetically engineered organisms 602

5. Conclusions and perspectives 603

References 604

23. Aerobic environmental processes

Veeriah Jegatheesan, Li Shu, Chettiyappan Visvanathan and Bui Xuan Thanh 607

1. Microbial types involved in aerobic and anaerobic processes and the process pathways 607

2. Aerobic and anaerobic processes in natural environment 609

3. Applications of aerobic environmental processes 612

3.1. Water treatment 612

3.1.1. Dissolved gases, iron and manganese removal 612

3.1.2. Total organic carbon removal 613

3.1.2.1. Slow sand filter 614

3.1.2.2. Activated carbon filter as biological filter for water and tertiary wastewater

treatment 614

3.2. Wastewater treatment 615

3.2.1. Secondary wastewater treatment 615

3.2.2. Membrane bioreactors (MBR) for wastewater reclamation 618

3.2.3. Aquaculture effluent treatment 623

3.2.4. Landfill Ieachate treatment 624

3.2.5. Aerobic granular sludge 627

3.3. Aerobic digestion 629

3.3.1. Sludge pre-treatment methods - Ultrasonic pre-treatment 631

3.4. Composting of solid wastes 632

3.5. Treatment of organic pollutants 633

4. Conclusions and perspectives 633

References 635

24. Anaerobic environmental processes

Dilip Ramchandra Ranade, Kalluri Krishna Meher, Devyani Vijay Savant and

Ashok Dattatmya Patwardhan 640

1. Anaerobic digestion 641

Page 17: Advances in fermentation technology - GBV · Advances in Fermentation Technology Editors Ashok Pandey Christian Larroche Carlos Rlcardo Soccol Claude-Gilles Dussap TECHNISCHE " INFORMATION3BIELIOTHEK

xxii Contents

1.1. Methane formation 643

1.2. Important factors in the methanogenic fermentations 644

2. Dissimilative sulphate reduction 645

3. Dissimilatory nitrate reduction 646

3.1. Anamtnox process 647

4. Iron reduction 648

5. Methane oxidation 650

6. Hydrocarbon degradation 651

7. Reductive dechlorination 652

8. Nitroaromatic compound degradation 654

9. Anaerobic digester designs 655

9.1. Batch digesters 656

9.2. Continuously stirred tank reactors (CSTR) 657

9.3. Completely stirred reactors with solids recycle or contact process 657

9.4. Plug-flow reactor 657

9.5. TWo-phase digesters 658

9.6. Up-flow anaerobic sludge blanket reactor (USBR) 658

9.7. Up-flow solids reactor (USR) 658

9.8. Anaerobic filter reactors 659

9.9. Fluidized- and expanded-bed reactor 660

10. Positive and negative features of anaerobic process 660

11. Conclusions and perspectives 661

References 662

Index 667