28
2067-1b Joint ICTP/IAEA Workshop on Irradiation-induced Embrittlement of Pressure Vessel Steels Enrico Lucon 23 - 27 November 2009 Italy* Advanced use of fracture toughness information for RPV integrity assesssments

Advanced use of fracture toughness information for RPV …indico.ictp.it/event/a08189/session/23/contribution/15/material/0/... · Advanced use of fracture toughness information for

Embed Size (px)

Citation preview

2067-1b

Joint ICTP/IAEA Workshop on Irradiation-induced Embrittlement ofPressure Vessel Steels

Enrico Lucon

23 - 27 November 2009

Italy*

Advanced use of fracture toughness information for RPV integrity assesssments

Enrico Lucon

Joint ICTP/IAEA Workshop Trieste, 23‐27 November 2009

Outline

ASME C d C N 629 d N 631ASME Code Cases N‐629 and N‐631Background and approach followedM t C li d t i i l d tMaster Curve applied to original dataAlternative definition of RTNDT (RTTo)

C i b t Ch b d d M t C b dComparison between Charpy‐based and Master Curve‐based approaches

“Conventional” approach (RT )Conventional  approach (RTNDT)“Advanced” approach (RTTo)Application to Belgian surveillance database (19 materials)Application to Belgian surveillance database (19 materials)Implications for utilities/regulators/engineers

Pressure Temperature (P T) operating limitsPressure‐Temperature (P‐T) operating limits

The Master Curve: underlying conceptsThe Master Curve: underlying concepts 

Ferritic steels suffer significant toughness loss withFerritic steels suffer significant toughness loss with decreasing temperature → fracture mode changes from ductile to brittle (ductile‐to‐brittle transition region)ductile to brittle (ductile‐to‐brittle transition region)

A transition temperature is needed to characterize the steel behavior in the transition regimesteel behavior in the transition regime

Data scatter is due to randomly sized and distributed cleavage initiators and can be modeled by a 3 parametercleavage initiators, and can be modeled by a 3‐parameter Weibull cumulative probability statistical model

Smaller specimens tends to display a higher apparentSmaller specimens tends to display a higher apparent toughness (weakest link assumption)

Most ferritic steels tend to conform to one universalMost ferritic steels tend to conform to one universal toughness vs. temperature curve (“Master Curve”)

The Master Curve approach (ASTM E1921)*The Master Curve approach (ASTM E1921)

( )[ ]01907030 TTK ( ) ( )[ ]0019.0exp7030 TTK medJc −+=

Treatment of size effectsReference temperature

(median KJc for 1T specimenis 100 MPa√m)

Treatment of size effects

( ) ( ) 41

min)4251(min4.25 ⎞

⎜⎛

−+= KKKK TJcxBJc is 100 MPa√m)( ) ( )min)4.251(min⎠

⎜⎝

+ == XKKKK TJcxBJc

Data from any specimensize (ex. precracked Charpy)can be normalized to the

reference thickness (1T = 25.4 mm)

* First edition: E1921‐97; current version: E1921‐09

BackgroundBackground

The ASME reference toughness curves (K and K ) areThe ASME reference toughness curves (KIc and KIR) are based upon a material normalizing and indexing parameter RTparameter, RTNDTIn many cases, this parameter is overly conservative 

f frelative to the real toughness of ferritic RPV steels, and a more direct measure of the fracture toughness is 

d dneeded

The Master Curve method can provide a directly measured fracture toughness temperature index, as well as statistically‐derived tolerance bounds for both unirradiated and irradiated materials

Approach

In the late 90’s, a task group under the Pressure Vessel Research Council (PVRC) has evaluated the application of the Master Curve methodology to the ASME Code using international databasesmethodology to the ASME Code, using international databases collected for this purpose

The final recommendations of the task group have allowed this approach to be applied within the ASME Code through two “Code Cases”:

Code Case N 631 (Section III Division 1)Code Case N‐631 (Section III, Division 1)

Code Case N‐629 (Section XI, Division 1)

The application is foreseen as a two‐step process:The application is foreseen as a two step process:first, a new temperature index (RTTo) has replaced RTNDT for the existing ASME lower bound curves [ACHIEVED]

later, new statistically‐defined lower bound tolerance bounds will replace the ASME lower bound curves

Derivation of the ASME K and K lower bound curvesDerivation of the ASME KIc and KIR lower bound curves

KIR curve: 3σ lower confidenceKIR curve: 3σ lower confidence bound to existing dynamic and crack arrest data

K curve: approximate 2σKIc curve: approximate 2σlower confidence bound

The Master Curve is also able to bound the original KIc data

The philosophy of the current ASME Code Cases N‐631 and N‐629

h i l b d fThe equivalent, Master Curve‐based reference temperature used for indexing the ASME KIc and KIR lower bound curves and appropriately bounding the data is defined asand appropriately bounding the data is defined as:

To o oRT T 35 °F = T 19.4 °C= + +

The definition of RTTo uses a 5% Master Curve tolerance 

To o o

bound

This alternative reference temperature can be calculated by direct toughness measurements (without using Charpyinformation) for pressure‐retaining materials, in both the 

i di d d d d dunirradiated and irradiated conditions

Applicability of the new curve to the original KIc database

Excellent results for irradiated materials (851 base/weld)Excellent results for irradiated materials (851 base/weld)

Full references forthe ASME Code Cases

ASME Boiler and Pressure Vessel Code Case N‐629

Use of Fracture Toughness Test Data to EstablishUse of Fracture Toughness Test Data to Establish 

Reference Temperature for Pressure Retaining 

lMaterials, Section XI, Division 1

ASME Boiler and Pressure Vessel Code Case N‐631

Use of Fracture Toughness Test Data to Establish 

Reference Temperature for Pressure RetainingReference Temperature for Pressure Retaining 

Materials Other Than Bolting for Class 1 Vessels, 

Section III, Division 1

Comparison between Charpy‐based (RTNDT) and Master Curve‐based (RTTo) approaches

Source: E. Lucon, M. Scibetta, R. Chaouadi, E. van Walle and R. Gérard, Improved Safety Margins for , p f y g fBelgian Nuclear Power Plants by the Application of the Master Curve Approach to RPV Surveillance MaterialsMaster Curve Approach to RPV Surveillance Materials

Presented at the Advanced Fracture Methods for Light Water Reactor Components Workshop  –Baltimore, MD (US), July 2006 

Published in International Journal for Pressure Vessel and Piping 84 (9), p.536‐544, Sep 2007Vessel and Piping 84 (9), p.536 544, Sep 2007

Intrinsic drawbacks of the“conventional” RTNDT approach

Empirical in nature

Couples dynamic (Charpy) test data with a staticCouples dynamic (Charpy) test data with a static fracture toughness curve

Uncertainties are accounted for through imposition of conservative bounds

This can penalize plant operation and life management decisions (premature shut‐downs of plants)

The obvious solution: using direct fracture toughness measurements

The “advanced” MC‐based approach: reconstitution + toughness tests

h l d dFracture toughness specimens included in some surveillance capsules are too few for a Master Curve 

l ianalysis

Charpy specimens have to be tested within the regulatory framework

New fracture toughness (PCC) specimens can be fabricated from broken Cv’s using reconstitution

Test results are analyzed according to the Master Curve approach  To is obtainedA revised reference temperature is obtained for indexing p gthe ASME curve: RTTo = To + 35°F

“Conventional” vs “advanced”: results for 19 

180

Belgian surveillance materials 160

120

PTS screening criterion = 148.9 °C

PT

WELD METALS120

PTS screening criterion = 132.2 °C

PT

BASE METALS

60

T To

(°C)

TS screening crit

40

80

T To

(°C)

TS screening cri

-60

0

RT terion =

148.9 °

0

RT terion =

132.2 °

-120

60

-120 -60 0 60 120 180

UnirradiatedIrradiated

°C

-80

-40

80 40 0 40 80 120 160

UnirradiatedIrradiated

°C

-120 -60 0 60 120 180

RTNDT (°C)

Large margins with respect to PTS screening criteria, especially when using RTTo

-80 -40 0 40 80 120 160

RTNDT (°C)

and for highly irradiated materials

RTTo is lower than RTNDT in all cases except one

RTNDT and RTTo are not correlated, but their shifts ∆RTNDT and ∆RTTo are correlated

2001:1

2001:1

150

175BASE METAL

∆RTTo = 1.16 ∆RTNDT

(≈ ± 36 °C)

1:1

150

175WELD METAL∆RTTo = 1.0 ∆RTNDT

(≈ ± 26 °C)

1:1

100

125

∆T o

(°C

)

100

125

∆T o

(°C

)

50

75

100

∆ RT T

o =

95% CI on mean95% CI on pred. value

50

75

100

∆RT T

o =

95% CI on mean95% CI on pred value

25

50

Belgian NPP's

NUREG/CR-660925

50

Belgian NPP's

NUREG/CR-6609

95% CI on pred. value

00 25 50 75 100 125 150 175 200

∆RTNDT = ∆T41J (°C)

00 25 50 75 100 125 150 175 200

∆RTNDT = ∆T41J (°C)

Source: Sokolov/Nanstad, ASTM STP 1325, 1999 & NUREG/CR‐6609, Nov 2001 

Large safety margins and tendency to underestimate the “real” toughness

“Improved margins” of RTTo approach seem to depend on irradiation sensitivity (Cu content)

100

120 Tendency is particularly pronounced for welds

Scatter depends on the weakcorrelation between RT and RT

80

100 correlation between RTNDT and RTTo

60

- RT T

o (°

C)

20

40

RT N

DT

-

Base materials

0

20

0 0 02 0 04 0 06 0 08 0 1 0 12 0 14 0 16 0 18

Weld materials

-20

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Cu (weight %)

“Improved margins” of RTTo approach seem to depend on baseline properties (unirr RTNDT)

Scatter depends on the weak correlation between RT and RT

100

120

Base materials

Weld materials

Scatter depends on the weak correlation between RTNDT and RTTo

80

C)

Weld materials

Tendency is morevisible for welds

40

60

ND

T -

RT T

o (°

C visible for welds

20

RT N

20

0

-20-60 -55 -50 -45 -40 -35 -30 -25 -20 -15 -10

RTNDT(unirr) (°C)

“Advanced” approach seems more beneficial for older plants

120

100

120

Base materials

Weld materials

For weld metals of “newer”plants, the two approaches

b i l

80

)

appear to be equivalent

40

60

DT

- RT T

o (°

C

20

40

RT N

D

0

-20 "1st generation"plants (1970's)

"2nd generation"plants (1980's)

Conclusions of the studyConclusions of the study

The additional margins entailed by the use of RTTo over RTNDTti l l i ifi t i fappear particularly significant in case of:

highly irradiated materials (40 years of reactor operation and beyond)beyond)

materials with high irradiation sensitivity (Cu > 0.1‐0.15%)

materials with low reference toughness (RT > 30°C)materials with low reference toughness (RTNDT,unirr > ‐30°C)

first‐generation NPP’s

T h b d h b fi i l f ld thToughness‐based approach seems more beneficial for weld than base metals

In Belgium the advanced approach is used in a “defense in depth”In Belgium, the advanced approach is used in a  defense in depth  perspective:

to demonstrate the existence of important safety marginsto demonstrate the existence of important safety margins

to give increased confidence on RPV integrity at high doses

Data presented can be considered favourable from three different viewpoints

For the utilities which manage the plants:For the utilities which manage the plants:using fracture toughness‐based approach instead of Ch b d h id bl i thCharpy‐based approach can considerably increase the life margins with respect to the PTS screening criteria

F h f h i iFor the safety authorities:legislative approach is significantly conservative, particularly for the older plants and for the most highly irradiated conditions

For the engineer:fracture toughness is used to assess … fracture toughness!

Directions for future researchDirections for future research

Relationship between Master Curve fractureRelationship between Master Curve fracture toughness and CVN dataEff f i di i h h f h M CEffect of irradiation on the shape of the Master Curve at high T0 shift levels (for ex. sensitive high‐Ni steels)Enhanced constraint loss following irradiation due to reduction in strain hardeningConstraint limits for the Master Curve method and PCC specimens; specimen bias effectsMaster Curve applicability for specimens failing by intergranular fracture (irradiation + thermal annealing)intergranular fracture (irradiation thermal annealing)

Pressure‐Temperature Operating LimitsPressure‐Temperature Operating Limits

Key features to be defined for developing operatingKey features to be defined for developing operating limit curves for normal plant operations:

Si d h f th d f flSize and shape of the assumed reference flawSafety factors on pressure and thermal stressesReference fracture toughness curve and safety factor to be used

Reference codes:US – ASME Code Section III, Appendix G and Section XIJapan – JEAC 4206‐2000France – RCC‐M Code, chapter B.3260 (two methods)Russia – PNAE‐G‐7‐002‐86Russia  PNAE G 7 002 86Germany – KTA 3201.2, Paragraph 7.9 (two methods)

Assumed reference flawReference flaws are generally quite large compared to current non‐destructive inspection capabilitiesFl di iFlaw dimensions:

US, Japan, Germany (method 2), France (method 1): depth¼‐thickness, width 1.5 × thicknessRussia: depth ¼‐thickness, width ¾‐thicknessFrance (method 1): depth 15 mm, length 90 mm (smaller, more realisticflaw)flaw)

Safety factors on stressesFor most methodologies:• factor 2 on pressure stress (1.5 for leak and hydrostatic tests)

f h l• factor 1 on thermal stress

Russian approach and French method 2: factor 1 on pressure stress but fracture toughness curves have additional safetystress, but fracture toughness curves have additional safety factors included

Reference fracture toughness curveUS (similar approach in Japan)

ASME Code: KIc lower bound curveASME Code Case N‐641: use of KIa lower bound curve allowed

France (method 1) and Germany: only KIa curve alloweda

Russia: specific KIc curve with safety factorFrance (method 2): combination of KIa and KIc curves( ) Ia Ic

Damage attenuation into RPV wallValues of toughness are needed at ¼‐thickness and ¾‐thickness location in the RPV wallFlux/fluence attenuates from inside surface of RPV into the walldpa is used as measure of fluence change (e.g. Reg. Guide 1.99, Rev 2 and ASTM E900 02)Rev. 2 and ASTM E900‐02)dpa is used to adjust the parameter Ø in the correlation