23
Solutions for Today | Options for Tomorrow Advanced Regulatory Control of a 10 MWe Supercritical CO 2 Recompression Brayton Cycle towards Improving Power Ramp Rates P. Mahapatra , J.T. Albright , S.E. Zitney , and E.A. Liese NETL, Pittsburgh, PA | NETL, Morgantown, WV 6th International Supercritical CO 2 Power Cycles Symposium, Pittsburgh, PA, Mar 27–29, 2018

Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

Solutions for Today | Options for Tomorrow

Advanced Regulatory Control of a 10 MWe Supercritical CO2 Recompression Brayton Cycle towards Improving Power Ramp RatesP. Mahapatra†, J.T. Albright‡, S.E. Zitney‡, and E.A. Liese‡

† NETL, Pittsburgh, PA | ‡ NETL, Morgantown, WV

6th International Supercritical CO2 Power Cycles Symposium, Pittsburgh, PA, Mar 27–29, 2018

Page 2: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

2

• Introduction• Control Methodology

• Steady-State and Dynamic Simulation Framework• Control Objectives• Control Architecture

• Control Response Results• Ramp down and up in MW demand

• Conclusions and Future Work

Presentation Overview

Page 3: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

3

• Motivation• Understand control-related challenges of a MW scale sCO2 Recompression Closed

Brayton Cycle (RCBC). Limited previous studies (see paper for references)• Load changes, Startup, Shutdown, Trips• Maintain turbine inlet temperature during load changes (high efficiency)• Maintain main compressor inlet temperature close to sCO2 critical point• Other operational constraints, e.g. surge/stonewall limits

• Applicable to 10 MWe RCBC facility within Supercritical Transformational Electric Power (STEP) program

• Rigorous simulation-based pressure-driven dynamic model†

Introduction

† Zitney, S.E. and Liese, E.A., “Dynamic Modeling and Simulation of a 10MWe Supercritical CO2 Recompression Closed Brayton Cycle for Off‐design, Part‐Load, and Control Analysis,” 6th International sCO2 Power Cycles Symposium, Pittsburgh PA, Mar 27‐29, 2018. 

Page 4: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

4

• Introduction• Control Methodology

• Steady-State and Dynamic Simulation Framework• Control Objectives• Control Architecture

• Control Response Results• Ramp down and up in MW demand

• Conclusions and Future Work

Presentation Overview

Page 5: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

5

• Software Tools • Aspen Plus/Dynamics v8.8

• Property Method• NIST REFPROP

• Unit Operation Models†

• Turbomachinery• Piping• Heat Exchangers†† - custom microtube-based recuperator models

• Dynamic Model of 10 MWe sCO2 RCBC Pilot Plant†††

Control MethodologySteady-State and Dynamic Simulation Framework

† Zitney, S.E. and Liese, E.A., “Design and Operation of a 10MWe Supercritical CO2 Recompression Brayton Cycle,” 2016 AIChE Annual Meeting, San Francisco, CA, Nov 13‐18, 2018.†† Jiang, Y., Liese, E.L., Zitney, S.E., and Bhattacharyya, D., “Optimal design of microtube recuperators for an indirect supercritical CO2 recompression closed Brayton cycle,” Applied Energy, 216, 634‐648, 2018.††† Zitney, S.E. and Liese, E.A., “Dynamic Modeling and Simulation of a 10MWe Supercritical CO2 Recompression Closed Brayton Cycle for Off‐design, Part‐Load, and Control Analysis,” 6th International sCO2 Power Cycles Symposium, Pittsburgh PA, Mar 27‐29, 2018. 

973.2 K

306.6 KȠ=0.85

Ƞ=0.78

Ƞ=0.82

Page 6: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

6

Process Flowsheet10 MWe sCO2 RCBC

Page 7: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

7

Maintain NG-Furnace Combustion Temperature (1088 K) 1

Maintain Turbine Inlet Temperature @design (973°K) | Upper Constraint of 988°K

2

Maintain Main Compressor Inlet Temperature @design (306.6 K) | Lower Constraint of 304.1 K

3

Cooling Water Exit Temperature | Upper Constraint of 323°K

4

Control Objectives

Maintain Main-Bypass Flow Split (design: 0.653) †

5

BC Surge-Margin Lower Constraint of 10% above Surge Limit

6

Meet Net-Work Demand (for Load-Following scenarios)

7

† Zitney, S.E. and Liese, E.A., “Dynamic Modeling and Simulation of a 10MWe Supercritical CO2 Recompression Closed Brayton Cycle for Off‐design, Part‐Load, and Control Analysis,” 6th International sCO2 Power Cycles Symposium, Pittsburgh PA, Mar 27‐29, 2018.

Flow-Control of various feed and intermediate streams

0

Page 8: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

8

Controller DesignProcess Modifications

Page 9: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

9

Controller DesignProcess Modifications – Inventory-based Control

Inlet Valve – Used to divert sCO2 from cycle toward inventory tank

Outlet Valve – Used to extract sCO2 back into cycle from inventory tank

Page 10: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

10

Controller DesignProcess Modifications – CW Temperature Control CW Recycle – Provides DOF

for controlling CW exit T

Page 11: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

11

How to correlate inventory tank inlet-outlet valve actuations with TIT?

Controller DesignInventory-based Control for Turbine Inlet Temperature

CO2InventoryTank

Cycle Low-SidePressure

Cycle High-SidePressure

TC

Turbine InletTemperature

?

Page 12: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

12

Controller DesignInventory-based Control for Turbine Inlet Temperature

• Inventory Tank Pressure• Monotonic relationship with TIT

• Control challenges• For a given P both valves may remain

open – unnecessary recycle and efficiency loss

• May involve jittering effect – inlet/outlet valves may open/close at high frequency

CO2InventoryTank

Cycle Low-SidePressure

Cycle High-SidePressure

TC

Turbine InletTemperature

PC

Psp

Page 13: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

13

Controller DesignInventory-based Control for Turbine Inlet Temperature

• Split Range Control (SRC)• Pressure dead-band to prevent

jittering

SRC Control Logic

CO2InventoryTank

Cycle Low-SidePressure

Cycle High-SidePressure

TC

Turbine InletTemperature

P(Tank Pressure)

Psp

Δ

SRC

Page 14: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

14

Controller DesignWork Controller (Ratio control augmented w/ feedback trim)

• FNG/MW ratio block acts as a fast feedforward-type control

• WC controller provides feedback from actual net MW measurement – offset-free load following

Note: Combustion TC utilizes similar Ratio/FB-trim Control

Page 15: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

15

Controller DesignBypass-Compressor Surge Avoidance

• Disable FSC once BC Surge approaches 10%• Aggressive controller tuning for SrgC

Page 16: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

16

Controller DesignOverall Control Architecture

Page 17: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

17

• Introduction• Control Methodology

• Steady-State and Dynamic Simulation Framework• Control Objectives• Control Architecture

• Control Response Results• Ramp down and up in MW demand

• Conclusions and Future Work

Presentation Overview

Page 18: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

18

Control Response – ResultsLarge-ramps in MW demand (72% turn-down @3%/min)

• Actual Net-Work closely following MW Demand throughout ramp• TIT well controlled (± 15K) within limits• Minor offshoots in efficiency adherent to TIT response• Main-Bypass flow-split tightly controlled

Page 19: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

19

Control Response – ResultsLarge-ramps in MW demand (72% turn-down @3%/min)

• Bypass Compressor remains above 10% surge-limit• BC Shaft Speed decreases to maintain flow-split

Page 20: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

20

• Introduction• Control Methodology

• Steady-State and Dynamic Simulation Framework• Control Objectives• Control Architecture

• Control Response Results• Ramp down and up in MW demand

• Conclusions and Future Work

Presentation Overview

Page 21: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

21

• Identified primary control objectives for “fast” and efficient control performance during rapid transients

• Developed advanced regulatory control-strategies to meet control objectives

Conclusions

Page 22: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

22

• Numerous scenarios to investigate• Startup, Shutdown, Trips…• Simple cycle

• Numerous control approaches to try• E.g., Switch TIT and load control signals• More advanced control approaches

• Dedicated compressor surge-control for complete shutdown• Spill-back streams on main & bypass controllers

• Non-grid connected operation• Agent-based control compared to PID control for turbine speed control

• Improve simulation robustness

Future Work10MWe sCO2 Recompression Brayton Cycle

Page 23: Advanced Regulatory Control of a 10 MWe Supercritical CO2 ...sco2symposium.com/papers2018/modeling-control/025_Pres.pdf · Advanced Regulatory Control of a 10 MWe Supercritical CO

23

Websites and Contact InformationOffice of Fossil Energy: www.energy.gov/fe/office‐fossil‐energy

NETL: www.netl.doe.gov/

sCO2 Technology Program: www.netl.doe.gov/research/coal/energy‐systems/sco2‐technology

Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.