Advanced Modal Seminar - Siemens PLM Community · PDF fileAdvanced Modal Seminar Brasil, Februari 2017 ... Experimental Modal Analysis vs. Finite Element Modal Analysis •Experimental

  • Upload
    vohanh

  • View
    235

  • Download
    11

Embed Size (px)

Citation preview

  • Advanced Modal Seminar

    Brasil, Februari 2017Tom Knechten & Mostapha Choukri

    Realize innovation.Unrestricted Siemens AG 20XX

  • Agenda

    Day 1 Duration

    08:30 Registration 30mins

    09:00 Introdution to SIMCENTER 30mins

    09:30 Modal Analysis Theory overview Modal Parameters

    SDOF

    MDOF

    2hrs

    11:30 Tips & Tricks accurate FRF measurements

    Modal Validation techniques

    1hr 30mins

    13:00 Lunch 1hr

    14:00 Modal Testing Techniques Impulse Excitation

    Random Excitation

    Stepped/Swept sine Excitation

    1hr 30mins

    15:30 Interactive section Questions and answers

    Demonstrations

    1hr 30mins

    Day 2 Duration

    08:30 Advanced Modal Analysis Techniques

    Operational Modal Analysis

    Rigid Body Properties

    Modification Prediction

    1hr 30mins

    10:00 Coffee break 15mins

    10:15 New developments in Modal Analysis

    Order Based Modal Analysis

    Strain Based Modal Analysis

    Acoustic Modal Analysis

    1hr 15mins

    11:30 Plant tour 1hr 30 min

    13:00 Lunch 1hr

    14:00 Pre-test, correlation and updating 1hr 30 mins

  • Modal Testing Theory

    recap

    Advanced Modal Seminar Brasil, Februari 2017

    Tom Knechten, Mostapha Choukri

    Realize innovation.Restricted Siemens AG 2016

  • Unrestricted Siemens AG 2016

    Siemens PLM Software

    Agenda

    Modal Analysis Theory overview

    Structural dynamics and modal analysis

    Use of modal parameters

    Modal Validation techniques

    Tips & Tricks accurate FRF measurements

    Excitation and response

    FRF measurements

    Parameter estimation

  • Introduction

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Why is this happening?

    Wind interaction

    Aero Elastic interaction

    People interaction

    Collapsing bridge

    Flutter

    Wobbling bridge

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Receiver

    Road

    Wheel & TireSteering Wheel

    Shake

    Seat Vibration

    Rearview mirror

    vibration

    Engine

    Experimental Modal Analysis

    Understanding the Dynamic Properties of Structures

    X =

    Gearbox and

    Transmission

    Turbomachinery

    Accessories

    RotorCockpit vibration &

    noise

    Cabin comfort

    Noise at Drivers &

    Passengers Ears

    Structural Integrity

    Environmental

    sources

    Source System Transfer

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Systematic approach to noise & vibration testing

    The source transfer - receiver approach

    Receiver

    Source

    Response:

    noise

    vibrations=

    X

    critical

    dynamics

    =

    X

    critical

    loads

    =

    X

    worst case

    scenario

    Operating loads:

    structural

    acoustic

    System Transfer

    System characteristics:

    structural

    acoustic

    !

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    9

    Why identify structural resonance?

    Define your pains

    Low

    throughput

    Pa

    ins

    Wh

    y ?

    Low quality of

    the final

    product

    Increasing speed causes

    Component breakdown

    Machine failure

    Poor precision

    Inconsistent product quality

    Excessive vibration issues

    Too low machinary performance

    Noise & vibration problem

    Steerling wheel shake

    Driver seat vibration

    Noise at Drivers & Passengers

    Ears

    Drive and ride comfort

    Certify a plane

    Structural integrity

    Ground vibration testing

    Flight test

    Flutter phenomena

    Safety

  • Structural Dynamics

    and Modal Analysis

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Structural Dynamics Modelling

    Structural dynamics modelling

    Relating force inputs to displacement-velocity

    acceleration outputs

    Modal Analysis

    Structural dynamics modelling using modal parameters

    Single Degree of Freedom System

    ground

    m

    ck

    x(t)

    f(t) ( )mx cx kx f t

    nk

    m

    2 n

    c

    m

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Structural Dynamics Modelling

    SDOF (Single degree of freedom) system

    0 2 4 6 8 10 12 14 16 18 2010

    -2

    10-1

    100 Frequency Response Function

    Frequency Hz

    Lo

    g-M

    agnit

    ud

    e

    0 2 4 6 8 10 12 14 16 18 20-200

    -150

    -100

    -50

    0

    Frequency Hz

    Phas

    e

    damping controlled region

    stiffness controlled region

    mass controlled region

    xf H

    2

    ( ) 1( )

    ( )

    xH

    f m cj k

    System Transfer ReceiverX =Source

    ground

    m

    ck

    x(t)

    f(t)

    The simplest dynamic system

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    2 1

    ( ) ( ) ( )

    ( ) [ ]

    X H F

    H M j C K

    2( ) ( ) ( )M j C K X F

    How to identify structural resonance?

    Structural Dynamics Modelling

    Multiple Degree of Freedom System

    Time-domain equation of motion

    Fourier transform

    Frequency Response Function

    ( ) ( ) ( ) ( )M x t C x t K x t f t

    gro

    un

    d

    m1c1

    k1

    f1(t)

    m2 mn gro

    un

    d

    kn+1k2

    c2 cn+1

    f2(t)fn(t)

    x1(t)x2(t)

    xn(t)

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Modal Analysis

    The Formulas

    Frequency Response Function

    Residues and poles

    Modal parameters

    Eigenfrequencies

    Damping ratios

    Mode shapes

    Modal scaling factors

    *

    *1

    ( )n

    ii

    i i i

    AAH

    j j

    { } Ti i i iA Q

    HF X

    Input System Output

    2 1

    ( ) ( ) ( )

    ( ) [ ]

    X H F

    H M j C K

    i

    i

    { }i

    iQ

    No

    ntr

    ivia

    l m

    ath

    em

    ati

    cs

    iiiiii j 2* 1,

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    15

    *

    *1

    ( )n

    ii

    i i i

    AAH

    j j

    Frequency Response Functions (FRF) &

    Impulse Response Functions (IRF)

    FRF matrix

    1 element

    IRF matrix

    1 element*

    , ,

    *1

    ( )n

    pq i pq i

    pq

    i i i

    A AH

    j j

    ( )pqH j

    ( )pqH j

    *

    *

    1

    ( ) e en

    i ii i

    i

    t th t A A

    **

    , ,

    1

    ( ) e en

    i ipq pq i pq i

    i

    t th t A A

    0.00 80.00 Hz

    10.0e-6

    0.10

    Log

    (g/N

    )

    0.00 80.00 LinearHz

    0.00 80.00 Hz

    -180.00

    180.00

    Phase

    0.00 6.00 s

    -1.07

    0.91

    Real

    (g/N

    )

    Inverse

    Fourier

    transform

    Frequency

    domain

    Time

    domain

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Modal Analysis

    The Physics

    Deformation at certain moment =

    linear combination of mode shapes

    Linear combination factors depend

    on input forces, frequency, damping

    and mode shape at input locations

    Vibration

    Response

    Mode shapes

    + + ++ ...

    a1x x x x

    a2 a3 a4

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Modal Analysis

    Mode of Vibration = Resonance of the Structure

    Mode shape

    Not only rigid body movements...

    Frequency Response Function

    0.00 50.00 Linear

    Hz

    0.00

    1.20e-3

    Am

    plit

    ude

    (g/N

    )0.00 50.00 Linear

    Hz

    0.00 50.00 Hz

    -180.00

    180.00 P

    hase

    0.00 50.00 Linear

    Hz

    0.00

    1.20e-3

    Am

    plit

    ude

    (g/N

    )

    0.00 50.00 Linear

    Hz

    0.00 50.00 Hz

    -180.00

    180.00

    Phase

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Experimental Modal Analysis vs.

    Finite Element Modal Analysis

    Experimental

    Requires prototype

    Very fast (1-5 days)

    Very accurate for frequency

    More reliable for damping

    Limited number of points

    Numerical

    Requires FE model

    Many days/weeks

    Fast alternative evaluation

    A lot of model uncertainties

    (joints, damping, )

    High number of points

    ( )H , ,{ },i i i iQ , ,M C K , ,{ },i i i iQ

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Correlation with and Updating of

    Finite Element Models

    FEM

    GVT

    FEM

    GVT

    GVT

    FEM

    Eigenfrequency correlation

    + 5%

    - 5%

    Airbus A330 MRTT

  • Restricted Siemens AG 2013 All rights reserved.

    Siemens PLM Software

    Experimental Modal Analysis

    5. Use modal parameters

    Troubleshooting

    Simulation and prediction

    Design optimisation

    Diagnostics and health monitoring

    Finite Element model

    verification/improvement

    Hybrid system model building