28
Energy Storage & Conversion Material Laboratory Department of Energy Engineering, Hanyang University, Seoul, South Korea Yang-Kook Sun Advanced Materials for Sodium-Ion Battery

Advanced Materials for Sodium-Ion Battery Kook Sun...Advanced Materials for Sodium-Ion Battery Energy Storage & Conversion Material Laboratory Advanced Na[Ni 0.25 Fe 0.5 Mn 0.25]O

Embed Size (px)

Citation preview

  • Energy Storage & Conversion Material Laboratory

    Department of Energy Engineering, Hanyang University, Seoul, South Korea

    Yang-Kook Sun

    Advanced Materials for Sodium-Ion Battery

  • Energy Storage & Conversion Material Laboratory

    Advanced Na[Ni0.25Fe0.5Mn0.25]O2 / C-Fe3O4 Sodium-Ion Battery Using EMS Electrolyte for Energy Storage

    Nano Letters, 2014, 14, 1620

  • Energy Storage & Conversion Material Laboratory

    Introduction (Why sodium?)

    Ref. V. Palomares et al., Energy Environ. Sci., 2012, 5, 5884 Ref. http://www.theenergyreport.com Courtesy of Passerini, presentation in Hanyang University, Oct. 10. 2013

    SODIUM 0.07-0.37 euro kg-1

    LITHIUM 4.11-4.49 euro kg-1

    Vast reserves of lithium carbonate salts in Bolivia and South America

  • Energy Storage & Conversion Material Laboratory

    Introduction Characteristics of sodium-ion batteries

    Courtesy of J.-M. Tarascon

    Higher availability of precursors

    Na in the Earth: 103 ppm Na in the Sea : 105 ppm

    Lower performance than Lithium-ion

    Electrode potential (V) Electrode capacity mAh/g

    - 3.04 2.71 3860 1166

    Li Na

    Potentially cheaper than Lithium chemistry

  • Energy Storage & Conversion Material Laboratory

    Introduction

    Approaches Synthesis of micro-sized NFM cathode to increase tap density via co-precipitation method Enhancement of cycle performance and volumetric energy density using C-Fe3O4 anode Improvement of high potential stability using the 1M NaClO4 in ethyl methanesulfonate

    (EMS) + 2vol% fluoroethylene carbonate (FEC) electrolyte

    Low tap density Low volumetric energy density (tap density: hard carbon: 1.8 g cm-3, Fe3O4: 5.17 g cm-3)

    Limited operating voltage window

    Problems

    Typical Approaches Hard carbon anode Nano-sized cathode Modified carbonate electrolyte

  • Energy Storage & Conversion Material Laboratory

    Properties of EMS based electrolyte

    Linear sweep voltammetry (LSV)

    Arrhenius plot of conductivity

    The anodic stability of the electrolyte can be further increased to 5.6 V versus Na/Na+ by replacing the PC with EMS.

    Ionic conductivity of the EMS based electrolyte is slightly higher than PC electrolyte.

    EMS

    Cathodic sweep Anodic sweep

    3.0 3.2 3.4 3.6 3.8 4.03

    4

    5

    6

    7

    8T / oC

    1M NaClO4 in PC + 2 vol% FEC 1M NaClO4 in EMS + 2 vol% FEC

    Cond

    uctiv

    ity /

    mS

    cm-1

    1000 T-1 / K-1

    -3060 50 3040 20 10 0 -10 -20

  • Energy Storage & Conversion Material Laboratory

    M(SO4)xH2O (M=Ni,Fe,Mn) NH4OH

    Formation of M(OH)2xH2O

    M(OH)2

    Na[Ni0.25Fe0.5Mn0.25]O2

    CSTR

    Filtering & Drying

    Sodiation

    Particle Size and Tap Density

    pH Temperature Conc. of the solution Stirring speed

    NaOH

    Synthesis of Na[Ni0.25Fe0.5Mn0.25]O2 via Co-precipitation method

    Na2CO3

    Ni,Fe,Mnsoln

  • Energy Storage & Conversion Material Laboratory

    NFM oxide shows approximately 8 m particle size with spherical morphology (Tap density: 2.1 g cc-1) NFM powders show O3-type layer structue with a space group of R-3m

    SEM & XRD results of Na[Ni0.25Fe0.5Mn0.25]O2 cathode material Precursor hydroxide particle

    Calcined oxide particle 2 m

    2 m

    Lattice parameters a () c () Na[Ni0.25Fe0.5Mn0.25]O2 2.9907(1) 15.9889(5)

    NaFeO2 3.03 16.11

    Na[Ni0.5Mn0.5]O2 2.9901(1) 15.9329

    10 20 30 40 50 60 70 80 90 100

    0

    5000

    10000

    202

    Inte

    nsity

    / A

    .U.Cu K 2 / degree

    208

    02701

    1120

    111

    602

    111

    311

    010

    810

    7

    105

    104

    006/1

    0210

    1

    003

  • Energy Storage & Conversion Material Laboratory

    XANES results of pristine Na[Ni0.25Fe0.5Mn0.25]O2 cathode material

    8320 8340 8360 8380

    8328 8331 8334 8337

    Norm

    alize

    d ab

    sorp

    tion

    / A.U

    .

    Photon energy / eV

    NiO Na[Ni0.25Fe0.5Mn0.25]O2

    7100 7120 7140 7160 7180

    7112 7116 7120

    Norm

    alize

    d ab

    sorp

    tion

    / A.U

    .

    Photon energy / eV

    Fe2O3 Na[Ni0.25Fe0.5Mn0.25]O2

    6520 6540 6560 6580 6600

    6540 6544

    Norm

    alize

    d ab

    sorp

    tion

    / A.U

    .

    Photon energy / eV

    Mn2O3 Na[Ni0.25Fe0.5Mn0.25]O2

    As prepared Na[Ni0.25Fe0.5Mn0.25]O2

    Ni2+Fe3+ Mn4+

    Average oxidation state of Ni, Fe, and Mn are 2+, 3+, and 4+, respectively.

    Electric conductivity- 6.6 x 10-7 S cm-1 for Na[Ni0.25Fe0.5Mn0.25]O2 - 1.6 x 10-7 S cm-1 for Na[Ni0.5Mn0.5]O2

  • Energy Storage & Conversion Material Laboratory

    Structural changes of Na[Ni0.25Fe0.5Mn0.25]O2

    The electrode delivers a high capacity of 140 mAh g-1 with an efficiency of 93%

    On charge O3-type layer structure is transformed to the P3-type monoclinic structure andtransformed back into the O3-type structure on discharge.

    0 50 100 150

    2.0

    2.5

    3.0

    3.5

    4.00.0 0.1 0.2 0.3 0.4 0.5 0.6

    g

    e

    f

    dc

    a

    Volta

    ge

    / V

    Specific capacity / mAh g-1

    b

    in Na1-Ni0.25Fe0.5Mn0.25O2

    15 35 40 45 50 55 60 65 70

    P3

    O3

    NaFeO2 (PDF # 82-1495) Na0.5FeO2 (PDF # 82-1496)

    a, = 0, charge b, = 0.2, charge c, = 0.4, charge d, = 0.6, charge e, = 0.4, discharge f, = 0.2, discharge g, = 0.1, discharge

    Inte

    nsity

    /

    A.U

    .Cu K 2 / degree

    Al

    O3

    2.1-3.9V, 13 mA g-1 (0.1 C-rate)

  • Energy Storage & Conversion Material Laboratory

    XANES results of charge and discharge end electrode Charge & discharge end state of Na1-x[Ni0.25Fe0.5Mn0.25]O2 (x=0 or 0.62)

    8330 8340 8350 8360 8370

    8331 8334

    Photon energy / eV

    NiO Na[Ni0.25Fe0.5Mn0.25]O2 Charge end Discharge end LiNiO2

    Nor

    mal

    ized

    abs

    orpt

    ion

    / A.U

    .

    7110 7120 7130 7140

    7113 7116

    Nor

    mal

    ized

    abs

    orpt

    ion

    / a.u

    .

    Photon energy / eV

    Fe2O3 Na[Ni0.25Fe0.5Mn0.25]O2 Charge end Discharge end

    6540 6550 6560 6570

    6540 6543 6546

    Nor

    mal

    ized

    abs

    orpt

    ion

    / a.u

    .

    Photon energy / eV

    Mn2O3 Na[Ni0.25Fe0.5Mn0.25]O2 Charge end Discharge end Li[Ni0.5Mn0.5]O2

    Mn4+

    Average oxidation state of Ni, Fe varies as the desodiation proceeds with Ni2+ to Ni4+ and Fe3+ toFe4+ at the end of charge, while Mn ions keeps its original oxidation state of Mn4+

    On discharge, the average oxidation states of the transition metals are recovered to theiroriginal values

  • Energy Storage & Conversion Material Laboratory

    Electrochemical Properties of Na[Ni0.25Fe0.5Mn0.25]O2 1st charge/discharge profilesCut-off: 2.1 3.9V (0.1C = 13 mA g-1)

    Na-NFM cathod shows good capacity retention: 90.4% at 25oC (1C), 86% at 55oC (1C), 80%at 0oC (0.5C), and 80% at 0oC (1C) after 50th cycles.

    High rate capability was attributed to the weak electrostatic interaction of the NFM cathodethat favors an easy Na+ diffusion across its structure.

    Electrolyte: 1M NaClO4 in EMS + 2vol% FEC

    0 10 20 30 40 5060

    90

    120

    150 0.5 C, 25 oC 1 C, 25 oC 1 C, 55 oC

    10C

    7C5C

    3C

    2C1C0.5C

    0.2C

    0.5 C, 0 oC 1 C, 0 oC C-rate, 25 oC

    Disc

    harg

    e ca

    paci

    ty /

    mAh

    g-1

    Number of Cycle

    0.1C

    0

    20

    40

    60

    80

    100

    Effic

    ienc

    y / %

    0 20 40 60 80 100 120 140 1601.5

    2.0

    2.5

    3.0

    3.5

    4.0

    10C

    Volta

    ge /

    VSpecific capacity / mAh g-1

    0.1C

  • Energy Storage & Conversion Material Laboratory

    Ar atmosphere

    Feed Stoichiometric ratio of FeCl36H2O, sucrose dissolved into ethylene glycol

    Hydrothermal treatment (200oC-48h)

    Washing, filtering

    Calcination & grinding Temperature : 700oC-1h

    Sodium acetate, PEG400 also dissolved into

    solution

    stirring

    C-Fe3O4 composite

    Dried in an oven at 80oC-24h DI water and ethanol washing

    2g Fe3O4 + 0.2g pitch in NMP solution

    Synthesis of C-Fe3O4 composite via hydrothermal

  • Energy Storage & Conversion Material Laboratory

    XRD patterns & SEM, TEM images of prepared C-Fe3O4 particles

    C-Fe3O4 consists of agglomerates of primary particles having a size of about 50-70nm with uniformly distributed and coated by carbon layer.

    XRD patterns shows a crystalline Fe3O4 inverse spinel structure with Fd3m space group.

    200 nm

    Electronic conductivity: 2.3 x 10-3 S cm-1

    a = 8.3923

    x y

    z

  • Energy Storage & Conversion Material Laboratory

    Electrochemical Properties of presodiated C-NaxFe3O4

    C-NaxFe3O4 electrode show a very stable capacity delivery over 50 cycles at each rates.

    In tests to rates as high as 10 C-rate (2,000 mA g-1), the anode still exhibited a high capacity of157 mAh g-1, which is much better compared to that of hard carbon.

    charge/discharge profiles Cut-off: 0 2.0V (20 mA g-1)

    0 10 20 30 40 50

    120

    160

    200

    240

    10C 0.1 C 0.5 C 1 C C-rateCa

    paci

    ty

    / m

    Ah g

    -1

    Number of Cycle

    7C5C3C

    2C1C

    0.5C0.2C0.1C

    0

    20

    40

    60

    80

    100

    Effic

    ienc

    y / %

    0 50 100 150 200-0.50.00.51.01.52.02.53.0

    10C

    Volta

    ge /

    VSpecific capacity / mAh g-1

    0.1C

    Electrolyte: 1M NaClO4 in EMS + 2vol% FEC

  • Energy Storage & Conversion Material Laboratory

    a b

    100 nm

    Fe metal

    c

    100 nm

    As prepared C-Fe3O4

    TEM images of C-Fe3O4 with charge and discharge end state

    Charging to 0V After 50th cycle discharge end

    The presence of Fe metal nanoparticles at the end of the charge state indicated the conversion process.

    The cycled electrode didnt show such a morphological change, assuring electrode stability.

  • Energy Storage & Conversion Material Laboratory

    Scheme image of Na[Ni0.25Fe0.5Mn0.25]O2 / C-Fe3O4 full cell

    V

    Na[Ni0.25Fe0.5Mn0.25]O2 + Fe3O4 Charge

    Discharge

    e- e- + -

    NaFe3O4 + Na1-[Ni0.25Fe0.5Mn0.25]O2

    Na[Ni0.25Fe0.5Mn0.25]O2 C-NaxFe3O4

    Intercalation Conversion

    E M S

    Na+ Na+

    Na+ Na+

    Na+

    Na+

    Na[Ni0.25Fe0.5Mn0.25]O2+NaxFe3O4 Na1-[Ni0.25Fe0.5Mn0.25]O2+Na+xFe3O4(Na2O+Fe+Fe3O4)

  • Energy Storage & Conversion Material Laboratory

    Electrochemical Properties of Na[Ni0.25Fe0.5Mn0.25]O2/C-NaxFe3O4 full cell

    cycle properties profilesCut-off: 0.5 3.6V (0.1C = 13 mA g-1)N/P ratio: 1.2

    The full cell shows a good capacity retention for extensive cycling with high Coulombicefficiency approaching almost 100% ; 76.1% at the 150th cycle

    The full cell also show an excellent rate capability (130 mAh g-1 at 0.1C, 72 mAh g-1 at 10C-rate)

    0 30 60 90 120 1500.00.51.01.52.02.53.03.54.04.5

    1st cycle (activation) 2nd cycle

    Volta

    ge /

    V

    Specific capacity / mAh g-1 3 6 9 12 15 1860

    90

    120

    150

    Fe3O4/NFM full cell

    10C7C

    3C5C

    2C1C

    0.5C0.1C

    Dis

    char

    ge c

    apac

    ity /

    mA

    h g-

    1Number of Cycle

    0.2C

    0 30 60 90 120 1500

    30

    60

    90

    120

    150

    180

    Fe3O4/NFM full cell, 0.5 C cycle discharge capacity Fe3O4/NFM full cell, 0.5 C cycle charge capacity

    Disc

    harg

    e ca

    paci

    ty /

    mAh

    g-1

    Number of Cycle0

    20

    40

    60

    80

    100

    Efficiency

    Effic

    ienc

    y / %

  • Energy Storage & Conversion Material Laboratory

    Conclusions

    EMS based electrolyte show a higher voltage window and ionic conductivity compared with PC based electrolyte

    O3-type layered Na[Ni0.25Fe0.5Mn0.25]O2 cathode with spherical morphology were successfully synthesized via co-precipitation method.

    The Na[Ni0.25Fe0.5Mn0.25]O2 cathode shows the high capacity (140 mAh g-1), good cycle retention, and rate capability.

    C-Fe3O4 nano composite anode was synthesized via hydrothermal process.

    The C-NaxFe3O4 anode exhibits stable capacity of 200 mAh g-1 with an excellent rate capability

    Na[Ni0.25Fe0.5Mn0.25]O2/NaClO4 in EMS/C-NaxFe3O4 full cell delivered a rechargeable capacity of 130 mAh g-1 with good cycle retention and outstanding rate capability.

  • Energy Storage & Conversion Material Laboratory

    Nat. Commun., 2015, 7865

    FCG Na[Ni0.60Co0.05Mn0.35]O2 as a cathode material for high energy density sodium-ion batteries

  • Energy Storage & Conversion Material Laboratory

    Schematic diagram of the FCG Na[Ni0.6Co0.05Mn0.35]O2

    Advantages Reduction of surface area of secondary micron particles by rod-shaped primary particles Increase of Li+ or Na+ diffusion rate along with the direction of nano-rod Increase of tap density of micron spherical morphology (energy density) Increase of discharge capacity through the inner high Ni composition Increase of thermal stability and cycle retention through the outer high Mn composition

  • Energy Storage & Conversion Material Laboratory

    5m0 2 4 6

    0

    20

    40

    60

    80

    Ni Co Mn

    A

    tom

    ic ra

    tio /

    %

    Distance / m

    Hydroxide Precursor

    Cross-sectional TEM and EPMA Results

    Hydroxide Precursor Sodiated Oxide

    0 2 4 60

    20

    40

    60

    80

    Ni Co Mn

    Atom

    ic ra

    tio /

    %

    Distance / m

    Sodiated Oxide

  • Energy Storage & Conversion Material Laboratory

    XPS spectra of Ni for FCG Na[Ni0.6Co0.05Mn0.35]O2 particle

    Ni2+:Ni3+ = 61:39

    Inte

    nsity / A

    .U.

    Ni2+:Ni3+ = 37:63

    859 858 857 856 855 854 853 852 851

    Center

    As-measured Ni2+

    Ni3+ Baseline

    Binding energy / eV

    Surface

  • Energy Storage & Conversion Material Laboratory

    0 40 80 120 160

    2

    3

    4

    Specific capacity / mAh (g-oxide)-1

    Volta

    ge

    / V

    2

    3

    4

    145 mAh g-1C.C.

    FCG157 mAh g-1

    0 10 20 30 40 50 60 70 80 90 1000

    30

    60

    90

    120

    150

    180

    62.4%

    C.C. FCG

    Specific capacity / mAh (g-oxide)-1

    Volta

    ge

    / V

    4.2%

    30

    60

    90

    120

    150

    180

    45.0%

    83.3%

    55oC

    30oC

    Electrochemical Performances of the FCG & C.C.

    0.1 C-rate0.5 C-rate

    C.C.: Conventional Cathode with same composition Na[Ni0.6Co0.05Mn0.35]O2

  • Energy Storage & Conversion Material Laboratory

    100 150 200 250 300 350 400

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    293.5oC

    FCG, Na0.36[Ni0.60Co0.05Mn0.35]O2: 172 J g-1

    C.C., Na0.44[Ni0.60Co0.05Mn0.35]O2: 322 J g-1

    Heat

    flow

    /

    W g

    -1

    Temperature / oC

    266.5oC

    DSC, TGA, and In-situ XRD of FCG & C.C.

    0 100 200 300 400 500 6006065707580859095

    100105110

    FCG, Na0.36[Ni0.60Co0.05Mn0.35]O2 C.C., Na0.44[Ni0.60Co0.05Mn0.35]O2

    2.2 %4.8 %6.0 %

    8.8 %

    11.9 %

    Wei

    ght

    / %

    Temperature / oC

    9.1 %

    15 16 30 40 50 60 70

    600 oC500 oC400 oC300 oC200 oC

    RT

    SC SS

    2 (=1.54) / Degree

    S

    SS

    C

    P: Monoclinic P3S: Spinel Fd3m M3O4C: Cubic Fm3m MO

    100 oC

    PPPPPPPPP

    PP

    C.C.

    15 16 30 40 50 60 70

    S SSS

    C

    PPPPPPPP

    P: Monoclinic P3S: Spinel Fd3m M3O4C: Cubic Fm3m MO

    Inte

    nsity

    /

    A.U

    .

    2 (=1.54) / Degree

    PPP

    600 oC500 oC400 oC300 oC200 oC

    RT100 oC

    FCG

    400, 300 oC

    280, 240 oC

  • Energy Storage & Conversion Material Laboratory

    Long-term cycling behavior & rate capability of C/Na[Ni0.60Co0.05Mn0.35]O2FCG & C.C.

    0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 3000

    40

    80

    120

    160

    200

    C.C. : 49.2% FCG : 80%

    D

    isch

    arge

    capac

    ity

    / mA

    h (g-o

    xide)

    -1

    Number of Cycle

    0.5 C-rate between 1.5-3.9 V

    6065707580859095100105

    Eff

    icie

    ncy

    / %

    0 40 80 120 160 2001

    2

    3

    4

    0.1C 0.2C 0.5C 1C 2C 3C 5C 7C 10C

    Specific capacity / mAh (g-oxide)-1

    Volta

    ge

    / V

    2

    3

    4

    82 mAh g-1

    Bulk

    FCG

    127 mAh g-1

    0 40 80 120 160 2001

    2

    3

    4

    82 mAh g-1

    0.1C 0.2C 0.5C 1C 2C 3C 5C 7C 10C

    Specific capacity / mAh (g-oxide)-1

    Volta

    ge /

    V

    127 mAh g-12

    3

    4

    C.C.

    FCG

    BET : 0.77 m2 g-1 for FCG1.17 m2 g-1 for C.C.

  • Energy Storage & Conversion Material Laboratory

    Conclusions The FCG spheres with long rod-shaped primary particles was

    successfully synthesized via a coprecipitation process. The FCG cathode material delivered very high reversible capacity,

    157 mAh g-1; 80% capacity retention after 300 cycles and outstanding safety.

    The high capacity mainly derived from the Ni2+/3+/4+ redox reaction. Additionally, the lower surface area provided by the nanorod-shaped morphology is beneficial for reducing the contact area with the electrolyte.

    These excellent properties were not ever achieved in previous sodium related papers, especially high-Ni systems.

    These batteries should be able to compete with lithium batteries in terms of cost, battery performance, and safety.

  • Energy Storage & Conversion Material Laboratory

    Thank you or your attention !

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23Slide Number 24Slide Number 25Slide Number 26Slide Number 27Slide Number 28