23
© 2018 IBM Corporation Advanced Low Dielectric Constant Materials Learning and Perspectives Geraud Dubois IBM Almaden Research Center, San Jose, CA Department of Materials Science and Engineering, Stanford University, CA

Advanced Low Dielectric Constant Materials Learning and ... - Dubois.pdfOMCTS 2.7 Si O O O O Si Me O O O Si Me Me O O Si H O O O Si H Me O O Traditional Building Blocks Ultra low-k

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • © 2018 IBM Corporation

    Advanced Low Dielectric Constant MaterialsLearning and Perspectives

    Geraud Dubois

    IBM Almaden Research Center, San Jose, CA

    Department of Materials Science and Engineering, Stanford University, CA

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    2 4/26/2018

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    3 4/26/2018

    Outline

    FEOL, MEOL, BEOL & Packaging

    Low-k materials: why do we need them?

    Ultra low-k materials (ULK) mechanical properties

    Chip Package Interaction (CPI) – lessons learned

    Ultra low-k materials (ULK) – challenging our thinking

    Conclusion

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    4

    FEOL, BEOL and PACKAGING T. Wiggins

    T. Wiggins

    Cu Vias

    M1

    M2

    M3

    M4

    V1

    FET’s (gates)

    Cu Wires

    Tungsten Studs

    ILDBEOL

    FEOL

    MEOL

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    5

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45 Gate delay

    Interconnect delay, Al & SiO2

    Sum of delays, Al & SiO2

    100130180250350500

    De

    lay (

    ps)

    Technology node (nm)

    650

    Al 3.0 µm-cmSiO

    2 k = 4.0

    Al 0.8 µm thickAl line 43 µm long

    1997

    TransistorsInterconnect

    Calculated gate and interconnect delay vs technology node according to

    the National technology roadmap for semiconductor (NTRS) in 1997

    20% performance increase

    RCdelay

    Why did we introduce low-k materials?

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    6

    1997 2000 2002 2004 2006 2008

    250nm(6 Cu levels)

    180nm(7 Cu levels)

    130nm(9 Cu levels)

    90nm(10 cu levels)

    65nm(10 Cu levels)

    45nm(10 Cu levels)

    SiO2 F-SiO2 F-SiO2 SiCOH SiCOH SiCOH

    k= 4.3 k= 3.6 k= 3.0 k= 2.7 k= 2.4k= 3.8

    MICROPROCESSORS HISTORICAL EVOLUTION

    80 nm80 nm

    Cu ILD

    480 nm480 nm

    ILDCu

    W. Volksen, R. Miller, G. Dubois. Chem Rev 2010, 110, 56-110.

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    7 4/26/2018

    IBM Technology Roadmap

    SiO2 (250 nm)

    F-SiO2 (180 nm)

    F-SiO2 (130 nm)

    SiCOH (90 nm)

    SiCOH (65 nm)

    SiCOH (45 nm)

    SiCOH (32 nm)

    1996 2000 2004 2008 2012 20162.0

    2.5

    3.0

    3.5

    4.0

    4.5

    DIE

    LE

    CT

    RIC

    CO

    NS

    TA

    NT

    YEAR OF PRODUCTION (TECHNOLOGY NODE)

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    8

    Major Challenges for the Integration of ULK (k

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    9

    CPI and ULK MATERIALS

    BEOL PACKAGING

    ULK Young’s

    modulus

    ULK Cohesive strength

    ULK levels

    C4 Stiffness Substrate Flexibility

    Preferred ↑ ↑ ↓ ↓ ↓

    Reality ↓ ↓ ↑ ↑ ↑

    P. Brofman, ICEP 2009, Kyoto, Japan, April 14-16, p1-6.

    Packaging BEOL

    Technology node n

    Pro

    ce

    ss w

    ind

    ow

    Packaging BEOL

    Technology node n+1

    Pro

    cess w

    ind

    ow

    More thermo-mechanical stress is applied to the BEOL whereas theoverall fracture resistance of the BEOL has been reduced

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    10

    PSPI

    Oxide Low K

    Shear due to package applies moment to C4

    Tension due uplift of the solder bump edge

    Tension due to Stretching of upper levels of BEOL Films.

    Eoxide > EPSPI > ElowK

    WHITE BUMP ISSUES

    Acoustic microscopy image of white bumps Cross-section of white bump

    T. Wiggins

    R.A. Susko et al. ECS Trans 16 (19) 2009, 51-60.

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    11

    MODELING OF CHIP-PACKAGING INTERACTION

    C.J. Uchibori et al. AIP Proceedings, Stress-Induced Phenomena in Metallization, 10th Int Workshop, 2009, 185.G. Wang et al. Microelectronics Reliability 2005, 45, 1079-1093.

    ILD E (GPa)

    MSQ-A 2

    MSQ-B 5

    MSQ-C 10

    MSQ-D 15

    CVD-OSG 17

    ERR at crack 6 vs ILD moduli (CTE~10ppm/K)

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    12

    MODELING OF CHIP-PACKAGING INTERACTION

    E=23 GPa

    E=70 GPa

    Influence of higher levels material E

    observed

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    13

    Parameters Variables Effect on ERR Conclusion

    Solder materials - Traditional lead eutectic

    - Lead-free

    2-3 times higher forlead free solder

    Lower E and smaller CTEmismatch with underfill

    Underfill CTE: 28, 34 and 41 ppm Factor of 3 increasebetween 28 and41ppm

    Lower the underfill CTE

    Die attach process - Ceramic vs organic

    - With or without underfill

    Up to 8x

    Up to 3x

    Ceramic preferred

    OBAR type process

    Die size - 8 x 7 mm2

    - 14.4 x 13.4 mm215% increase for thebiggest one

    Not such a determining factor

    Interfaces in the interconnect structures parallel to the die surfaceare more prone to the packaging effect

    G Wang et al. Microelectronics Reliability 2005, 45, 1079-1093.

    MODELING OF CHIP-PACKAGING INTERACTION

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    14 4/26/2018

    Si

    C

    CC

    OQ

    T

    D

    M

    50 0 -50 -100 -150

    29Si Chemical Shift (ppm)

    DEMS/BCHD

    k = 2.2, 36SJA3Si

    C

    OC

    O

    Si

    O

    OC

    O

    Si

    O

    OO

    O

    DH TH

    OMCTS 2.7

    Si

    O

    O

    O

    O

    Si

    Me

    O

    O

    O Si

    Me

    Me

    O

    O

    Si

    H

    O

    O

    O Si

    H

    Me

    O

    O

    Traditional Building Blocks

    Ultra low-k Materials Chemistry ESAWS = 7 GPaPorosity (N2) = 17%

    The hybrid network connectivity dictates:

    A) thin-film mechanical properties

    B) mechanical response to the introduction

    of porosity

    Si

    Me

    Me

    O

    Me

    O

    Si

    O Si

    O

    Si

    OSi

    Me

    Me

    Me

    Me

    Me

    Me

    MeMe

    OMCTS

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    15 4/26/2018

    Si

    C

    CC

    OQ

    T

    D

    M

    50 0 -50 -100 -150

    29Si Chemical Shift (ppm)

    DEMS/BCHD

    k = 2.2, 36SJA3Si

    C

    OC

    O

    Si

    O

    OC

    O

    Si

    O

    OO

    O

    DH TH

    OMCTS 2.7

    Si

    O

    O

    O

    O

    Si

    Me

    O

    O

    O Si

    Me

    Me

    O

    O

    Si

    H

    O

    O

    O Si

    H

    Me

    O

    O

    Traditional Building Blocks

    Ultra low-k Materials Chemistry ESAWS = 7 GPaPorosity (N2) = 17%

    The hybrid network connectivity dictates:

    A) thin-film mechanical properties

    B) mechanical response to the introduction

    of porosity

    Si

    Me

    Me

    O

    Me

    Si Si

    O

    O

    O

    O

    O

    O

    1,2

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    16 4/26/2018

    HOI Mechanical Properties

    0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    y = 19.425ρ-11.381

    y = 19.52ρ-10.149

    y = 2.6633ρ3.3829

    MSSQ-SiO2

    Et-OCS Me-OCS

    ES

    AW

    S (

    GP

    a)

    Density (g.cm-3)

    Si

    Si

    O

    O

    O

    O

    O

    O

    CH3

    Si O

    O

    O O Si

    O

    O

    Ox y

    Si Si

    O

    O

    O

    O

    O

    O

    HOI

    0

    2

    4

    6

    8

    10

    12

    0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

    1.9 4.53.52.5 3 4Dielectric Constant, k

    Str

    ain

    En

    erg

    y R

    ele

    ase

    Ra

    te,

    G (

    J/m

    2)

    Density, ρ (g/cm3)

    2.2

    4 pt. bend Gc

    Dense SiO2

    k ~ 2.3

    2.0

    CDO (PECVD)

    MSSQ (SOD)

    15-17

    E.P. Guyer et al. J. Mater. Res. 2006, 21, 882.Dubois et al., Adv. Mat. 2007, 19, 3989.

    Dubois et al., Journal of Sol-gel Science and Technology, 2008, 48, 187.

    Dubois et al., US 7,229,943 (2007)

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    17 4/26/2018

    ULK Mechanical Properties Landscape

    o New Materials have emerged

    o Engineering solutions have been found

    - UV treatment has been implemented (1.5x improvement in E)

    - New designs have helped with chip packaging interaction (CPI)

    + BCHD – Si (OEt)2Me

    D. Edelstein et al. IITC 2012

    (EtO)3Si Si(OEt)3

    k=2.55

    Higher mechanical properties

    E ~ 10 GPa

    Spin-on

    Parameter POCS V2 POCS V2

    Porogen No Yes

    Dielectric constant ~ 2.4 ~ 2.2

    E (GPa) by SAWS 10.0 7.9

    Lowest k integrated until now is ~ 2.4

    PECVD

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    18 4/26/2018

    Major Challenges for the Integration of ULK k < 2.55

    SiO2 CDO p-SiCOH k < 2.4F-SiO2

    POROSITY

    AR

    BIT

    RA

    RY

    UN

    ITS

    Mechanical

    PropertiesPr

    oces

    s

    Dam

    age

    Mechanical properties: Young’s modulus, hardness, fracture resistance, and adhesion

    Process damage: plasma, wet chemistries

    SiO2 CDO p-SiCOH k < 2.4F-SiO2

    POROSITY

    AR

    BIT

    RA

    RY

    UN

    ITS

    Mechanical

    PropertiesPr

    oces

    s

    Dam

    age

    Mechanical properties: Young’s modulus, hardness, fracture resistance, and adhesion

    Process damage: plasma, wet chemistries

    Mechanical properties: Young’s modulus, hardness, fracture resistance, and adhesion

    Process damage: plasma, wet chemistriesW. Volksen and G. Dubois, Advanced Interconnects for ULSITechnology, M. Baklanov, P.S. Ho, E. Zschech, Eds., Wiley,2012, Chapter 1.

    Plasma Induced Damage (PID)(Ions, Radicals, VUV…)

    Si

    Me

    OO

    O

    Si

    O O

    O

    Si

    H

    O

    O

    Si

    OSi

    O

    O

    O

    SiO

    O

    Si

    Me Me

    O

    Si

    O Si

    O

    O

    OH

    O

    Si

    OO

    Me

    Si O

    Si

    HO

    Si

    O

    OSi

    O

    Si

    O

    OSi

    O

    O

    Si

    OO

    Me

    O

    Si

    O

    O

    O

    Si

    Si

    O

    O

    HSi

    MeO

    Si

    O

    Si

    OO

    OO

    Si

    O

    O

    O Si

    OO

    Me

    O

    Si

    H

    O O

    Me

    Me

    Me

    H

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    19 4/26/2018

    Major Challenges for the Integration of ULK k < 2.4

    SiO2 CDO p-SiCOH k < 2.4F-SiO2

    POROSITY

    AR

    BIT

    RA

    RY

    UN

    ITS

    Mechanical

    PropertiesPr

    oces

    s

    Dam

    age

    Mechanical properties: Young’s modulus, hardness, fracture resistance, and adhesion

    Process damage: plasma, wet chemistries

    SiO2 CDO p-SiCOH k < 2.4F-SiO2

    POROSITY

    AR

    BIT

    RA

    RY

    UN

    ITS

    Mechanical

    PropertiesPr

    oces

    s

    Dam

    age

    Mechanical properties: Young’s modulus, hardness, fracture resistance, and adhesion

    Process damage: plasma, wet chemistries

    Mechanical properties: Young’s modulus, hardness, fracture resistance, and adhesion

    Process damage: plasma, wet chemistriesW. Volksen and G. Dubois, Advanced Interconnects for ULSITechnology, M. Baklanov, P.S. Ho, E. Zschech, Eds., Wiley,2012, Chapter 1.

    Plasma Induced Damage (PID)(Ions, Radicals, VUV…)

    k increases

    Moisture absorption

    Electrical properties degraded

    Si

    OH

    OO

    O

    Si

    O O

    O

    Si

    H

    O

    O

    Si

    OSi

    O

    O

    O

    SiO

    O

    Si

    HO Me

    O

    Si

    O Si

    O

    O

    OH

    O

    Si

    OO

    Me

    Si O

    Si

    HO

    Si

    O

    OSi

    O

    Si

    O

    OSi

    O

    O

    Si

    OO

    Me

    O

    Si

    O

    O

    O

    Si

    Si

    O

    O

    HSi

    MeO

    Si

    O

    Si

    OO

    OO

    Si

    O

    O

    O Si

    OO

    OH

    O

    Si

    H

    O O

    HO

    Me

    Me

    H

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    20 4/26/2018

    ULK Dilemma

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    21 4/26/201821

    1.POREFILL

    2.OVERBURDEN

    REMOVAL

    6. BURN-OUT

    3. PATTERNING

    4. METALLIZATION

    5. CMP

    SUBSTRATE SUBSTRATE

    SUBSTRATESUBSTRATE

    CuCu Cu Cu

    US 8,314,005 , US 8,492,239, US 8,541,301

    T. Frot et al. Future Fab Int. 2011, 39, p.67T. Frot et al. Adv. Mater. 2011, 23, p.2828T. Frot et al. Adv. Funct. Mater. 2012, 22, 3043

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    22 4/26/201822

    Conclusion

    o Culture of Roadmap

    o Engineering Solution vs Materials Innovation

    o The syndrome of 1 “Material”, many properties

  • © 2018 IBM Corporation

    IBM Proprietary

    MEPTEC, New Generation Flexible Hybrid Electronics, April 26 2018

    23 4/26/201823

    Acknowledgements

    Willi Volksen Teddie Magbitang

    Theo Frot Krystelle Lionti

    Reinhold Dauskardt