148
US Army Corps of Engineers Construction Engineering Research Laboratories USACERL Technical Report 99/24 January 1999 Advanced Gas Cooling Study for the Hospital at Davis-Monthan AFB, AZ by Michael A. Caponegro William T. Brown III Timothy W. Pedersen 40OT 122 213 517 620 836 384 479 467 379 263 116 18 2 l+s per Ton Range Based on its experience with a cogeneration project at Tyndall AFB, the Air Force Civil Engineering Support Agency (AFCESA) tasked the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform an analysis to see if such a concept, or some other cooling options, could be of economic benefit at the Air Force medical facility at Davis-Monthan AFB, AZ, where the cost of purchased electrical power is relatively high compared to that of natural gas. USACERL researchers developed a cooling load profile for the facility by reviewing plant •pm QUALITY ESJSPECTED 1 Approved for public release; distribution is unlimited. records and interviewing plant operators. Boiler logs (daily and monthly) were consulted to determine heating loads, and a spreadsheet was developed to analyze nine options. Savings and first costs were input into the Life Cycle Cost in Design (LCCID) computer program to determine simple paybacks and savings-to-investment ratios for all options. Based on the results of the investigation, preferred options were recommended for meeting the facility cooling load.

Advanced Gas Cooling Study for the Hospital at Davis ... · Advanced Gas Cooling Study for the Hospital at Davis-Monthan ... -Ton Capacity Natural Gas Engine-Driven Chiller With Heat

Embed Size (px)

Citation preview

US Army Corps of Engineers Construction Engineering Research Laboratories

USACERL Technical Report 99/24 January 1999

Advanced Gas Cooling Study for the Hospital at Davis-Monthan AFB, AZ by Michael A. Caponegro William T. Brown III Timothy W. Pedersen

40OT

122 213 517 620 836 384 479 467 379 263 116 18 2

l+s per Ton Range

Based on its experience with a cogeneration project at Tyndall AFB, the Air Force Civil Engineering Support Agency (AFCESA) tasked the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform an analysis to see if such a concept, or some other cooling options, could be of economic benefit at the Air Force medical facility at Davis-Monthan AFB, AZ, where the cost of purchased electrical power is relatively high compared to that of natural gas.

USACERL researchers developed a cooling load profile for the facility by reviewing plant

•pm QUALITY ESJSPECTED 1

Approved for public release; distribution is unlimited.

records and interviewing plant operators. Boiler logs (daily and monthly) were consulted to determine heating loads, and a spreadsheet was developed to analyze nine options. Savings and first costs were input into the Life Cycle Cost in Design (LCCID) computer program to determine simple paybacks and savings-to-investment ratios for all options. Based on the results of the investigation, preferred options were recommended for meeting the facility cooling load.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

USER EVALUATION OF REPORT

REFERENCE: USACERL Technical Report 99/24, Advanced Gas Cooling Study for the Hospital at Davis-Monthan AFB, AZ

Please take a few minutes to answer the questions below, tear out this sheet, and return it to USACERL. As user of this report, your customer comments will provide USACERL with information essential for improving future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following areas?

a. Presentation:

b. Completeness:

c. Easy to Understand:

d. Easy to Implement:

e. Adequate Reference Material:

f. Relates to Area of Interest: .

g. Did the report meet your expectations?

h. Does the report raise unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.

Name:

Telephone Number:

Organization Address:

6. Please mail the completed form to:

Department of the Army CONSTRUCTION ENGINEERING RESEARCH LABORATORIES ATTN: CECER-TR-I P.O. Box 9005 Champaign, IL 61826-9005

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE January 1999

3. REPORT TYPE AND DATES COVERED Final

4. TITLE AND SUBTITLE

Advanced Gas Cooling Study for the Hospital at Davis-Monthan AFB, AZ

6. AUTHOR(S)

Michael A. Caponegro, William T. Brown III, and Timothy W. Pedersen

5. FUNDING NUMBERS

MIPR N94-92

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Construction Engineering Research Laboratories (USACERL) P.O. Box 9005 Champaign, IL 61826-9005

8. PERFORMING ORGANIZATION REPORT NUMBER

TR 99/24

l. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Tyndall AFB ATTN: HQAFCESA/CESE 139 Barnes Drive, Suite 1 Tyndall AFB, FL 32403-5319

10. SPONSORING / MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Based on its experience with a cogeneration project at Tyndall AFB, the Air Force Civil Engineering Support Agency (AFCESA) tasked the U.S. Army Construction Engineering Research Laboratories (USACERL) to perform an analysis to see if such a concept, or some other cooling options, could be of economic benefit at the Air Force medical facility at Davis-Monthan AFB, AZ, where the cost of purchased electrical power is relatively high compared to that of natural gas.

USACERL researchers developed a cooling load profile for the facility by reviewing plant records and interviewing plant operators. Boiler logs (daily and monthly) were consulted to determine heating loads, and a spreadsheet was developed to analyze nine options. Savings and first costs were input into the Life Cycle Cost in Design (LCCID) computer program to determine simple paybacks and savings-to-investment ratios for all options. Based on the results of the investigation, preferred options were recommended for meeting the facility cooling load.

14. SUBJECT TERMS

Davis-Monthan AFB, AZ gas cooling technologies life cycle costs

cogeneration

17. SECURITY CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT

Unclassified NSN 7540-01-280-5500

15. NUMBER OF PAGES 148

1.6. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std 239-18 298-102

USACERL TR 99/24

Foreword

This study was conducted for the Air Force Civil Engineering Support Agency (AFCESA) under Military Interdepartmental Purchase Request (MIPR) No. N94-92, Work Unit WL4, "Evaluation and Application of Gas Cooling Technologies." The technical monitor was Rich Bauman, AFCESA.

The work was performed by the Utilities Division (UL-U) of the Utilities and Industrial Operations Laboratory (UL), U.S. Army Construction Engineering Research Laboratories (CERL). The CERL Principal Investigator was Timothy W. Pedersen. Martin J. Savoie is Chief, CECER-UL-U, and Dr. John Bandy is Operations Chief, CECER-UL. The responsible Technical Director was Gary W. Schanche, CECER-TD. The CERL technical editor was William J. Wolfe, Technical Information Team.

Dr. Michael J. O'Connor is Director of CERL.

Preceding Page BSank

USACERLTR-99/24

Contents

SF298 1

Foreword 2

1 Introduction 7

Background 7

Objectives 7 Approach 7

Scope 10

Mode of Technology Transfer 11

Metric Conversion Factors 11

2 Cooling Options ....12

Status Quo 12

Two Hundred Fifty (250)-Ton Capacity Natural Gas Engine-Driven Chiller With Heat Recovery (Option #1) 12

Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit 13

Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit and Satisfy Facility Thermal Requirements 15

3 Boiler Load and Heating Requirements 17

Space Heating Requirements 17

Direct Steam Requirements 17

Domestic Hot Water Heating Requirements 17

4 Heat Recovery 19

Option #1 19

Remaining Options (Heat Recovery from Engine-Generator Sets) 19

5 Utility Rate Structures 21

Electrical Rates 21

Natural Gas Rates 22

6 Methodology for Analysis :. .:....23

Option #2a 24

Option #2b 24

Option #2c (also applicable to Option #3a) 25

USACERL TR 99/24

Option #2d (also applicable to Option #3c) 25

Option #3b • 25

Option #3d 25

First Costs 25

Life Cycle Cost Analysis • 26

7 Results 27

8 Conclusions and Recommendations 28

Appendix A: Notes Regarding Interviews and Discussions for Chiller Study at Davis-MonthanAFB 30

Appendix B: Equipment Selections and Capitol Costs 35

Appendix C: Recent Electric Bills for Davis-Monthan AFB 39

Appendix D: Spreadsheet Calculation Based on Option #2a 53

Appendix E: Spreadsheet Calculation Based on Option #2b 54

Appendix F: Spreadsheet Calculation Based on Options #2c and 3a 55

Appendix G: Spreadsheet Calculation Based on Options #2d and 3c 56

Appendix H: Spreadsheet Calculation Based on Option #3b 57

Appendix I: Spreadsheet Calculation Based on Option #3d 58

Appendix J: Construction Cost Estimates for Each Option 59

Appendix K: Energy Cost Estimates for Each Option 69

Appendix L: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 1 129

Appendix M: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2a 130

Appendix N: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2b 132

Appendix O: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2c 134

Appendix P: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2d 136

Appendix Q: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3a 138

Appendix R: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3b 140

USACERLTR-99/24

Appendix S: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3c 142

Appendix T: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3d 144

Distribution

USACERLTR-99/24

1 Introduction

Background

The Air Force Civil Engineering Support Agency (AFCESA) has been actively involved with a cogeneration project at Tyndall AFB hospital. The project uses an absorption chiller to satisfy the hospital's base cooling load. The steam for activating the absorption chiller is obtained from waste heat, which is derived from an engine driving a generator to produce electrical power — which is also used by the hospital. Based on this experience, AFCESA funded USACERL to perform an analysis to see if such a concept, or some other cooling options, could be of economic benefit at the Air Force medical faculty at Davis-Monthan AFB, AZ, where the cost of purchased electrical power is relatively high compared to that of natural gas. USACERL researchers evaluated the case of power generation providing sufficient waste heat to meet the facility base cooling load, and also considered options under which sufficient waste heat could be derived from power production so that a 250-ton absorption chiller could replace an existing motor-driven centrifugal chiller of equal capacity. (The centrifugal chiller uses a chlorofluorocarbon [CFC] refrigerant, R-ll.) Heat produced as a result of power generation can be used to satisfy facility thermal, as well as cooling, loads.

Objectives

The objective of the study was to determine the approach that will minimize the cost of meeting the cooling requirements of the medical facility at Davis- Monthan AFB.

Approach

Cooling Load Profile

Considerable time was spent developing a cooling load profile for the facility. This was done by meticulously reviewing plant records and discussing plant operation with the operators (Appendix A). Where data appeared inconsistent or

USACERL TR 99/24

erroneous, or was missing, trends were examined and reasonable estimates made for the actual cooling loads. Figures 1 and 2 show the results of the data

analysis.

Avg Total Chill Load vs Hrs per Ton Range at Davis- Monthan AFB: May - October

450

400

350

c« 300 c o *- 250 O

2 200 0)

< 150

100

50

0 122 213 517 620 836 384 479 467 379 263 116 18 2

Hrs per Ton Range

Figure 1. Cooling load estimate, May-October 1996.

Avg Total Chill Load vs Hrs per Ton Range at Davis- Monthan AFB: November 1996 - April 1997

I400S

482 986 1225 857 330 150 123 86 84 21 0 0

Hrs per Ton Range

Figure 2. Cooling load estimate, November 1996-April 1997.

USACERLTR-99/24

Boiler Load Profile

Boiler logs (daily and monthly) were consulted to determine heating loads. The hospital cooling and heating plant was visited a number of times to obtain information on the plant equipment, including water chillers, cooling towers, boilers, pumps, and heat exchangers. It became obvious that the plant's boilers are grossly oversized for the load and, based on the pressure of the steam produced (50 psig>15 psig), that the boilers require onsite plant operators. Consequently, it became clear that waste heat from power generation could be used not only to meet facility cooling loads through absorption water chilling, but also to meet facility thermal loads, and in the process to possibly reduce manpower requirements and increase utility cost savings.

Analysis

An EXCEL® spreadsheet was developed to analyze the numerous options that were considered. The options considered were:

• (Option #1) Natural gas engine-driven chiller to replace existing 250-ton motor-driven centrifugal chiller, with waste heat used to offset facility thermal requirements

• (Option #2a) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to meet facility base cooling load (100 tons) with residual heat used for thermal requirement

• (Option #2b) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to meet facility base cooling load (100 tons), with residual heat used for thermal requirements

• (Option #2c) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat used for thermal requirements

• (Option #2d) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat used for thermal requirements

• (Option #3a) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only)

• (Option #3b) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only)

10 USACERL TR 99/24

• (Option #3c) Natural gas-fired engine-generator set, waste heat used to provide steam for single-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only)

• (Option #3d) Natural gas-fired engine-generator set, waste heat used to provide steam for double-effect absorption water chiller to replace existing 250-ton motor-driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only).

In essence, Option #1 did not entail the use of an engine-generator set, only a

replacement of the existing 250-ton electric motor-driven centrifugal chiller with a natural gas engine-driven chiller, waste heat from which would partially offset facility thermal loads. Options #2a, 2b, 2c, and 2d entailed use of an engine- generator set, with the waste heat providing sufficient energy to activate the absorption chiller and also to meet a portion of the facility thermal load. Options #3a, 3b, 3c, and 3d entailed use of an engine-generator set sized so that the waste heat would not only be sufficient to activate the absorption water chiller, but also to meet the entire thermal load of the facility. Note that, at one time, another option was considered for analysis: use of a 250-ton capacity, direct- fired, double-effect, absorption chiller. This option was discarded prior to more in-depth analysis because the coefficient-of-performance would be less than for the engine-driven option, particularly when heat is recovered from the engine.

Once the spreadsheet calculated the operating cost savings for each option, the savings and first costs were input into the Life Cycle Cost in Design (LCCID) computer program to determine simple paybacks and savings-to-investment ratios for all options. Based on the results of the investigation, recommendations were made as to the preferred option for meeting the facility cooling load.

Scope

The scope of the project was to investigate feasible options for meeting the facility's cooling loads, with emphasis on using waste heat from electrical power generation for absorption cooling. An ancillary benefit was that waste heat could be used not only for absorption cooling, but also for partially or totally meeting the medical facility thermal loads.

USACERLTR-99/24 11

Mode of Technology Transfer

This report documents the opportunities available and financial resources required for reducing cooling and overall utility costs for the Davis-Monthan AFB medical facility. USACERL would be amenable to developing a scope of work for architect-engineer (A-E) services to design the installation of the equipment for whatever option USAF management desires to pursue to reduce the medical facility's utility costs. Additionally, USACERL would be amenable to reviewing the design and participating in technical oversight during construc- tion, as well as monitoring equipment performance to verify estimated savings. Additionally, the technologies considered here for possible application at the medical facility at Davis-Monthan AFB have the potential to benefit other DOD medical facilities. Consequently, it is recommended that this document be circulated to the larger DOD medical community for its consideration in applying the technologies at other sites.

Metric Conversion Factors

The following metric conversion factors are provided for standard units of measure used throughout this report:

1 in. 25.4 mm 1 lb = 0.453 kg

1 gal = 3.78 L 1 psi = 6.89 kPa

1 ton (refrigeration) = 3.516 kW 1 Btu = 1.055 kJ

12 USACERL TR 99/24

2 Cooling Options

Status Quo

At present, three electric motor-driven chillers in the Davis-Monthan AFB cooling plant meet the cooling requirements of the medical facility: a York centrifugal chiller nominally of 250-tons capacity, and two Dunham-Bush screw machines of nominal 75-tons capacity each. Performance characteristics of the York chiller were obtained for part load operation and for condenser water return temperatures coincident with load as determined from analyzing cooling logs provided by the base. An earlier analysis contained information as to the full- load performance of the screw machines. Part-load performance was estimated using Figure 14 of Chapter 42,1994 ASHRAE Refrigeration Handbook.

Two Hundred Fifty (250)-Ton Capacity Natural Gas Engine-Driven Chiller With Heat Recovery (Option #1)

This option did not involve electrical power generation, but offered a potentially economical approach for meeting the facility's cooling loads. This hypothesis was based on the fact that previous analyses indicated this technology should be economically viable at other sites on the base. Under this option, the existing 250-ton capacity York motor-driven centrifugal chiller would be replaced by a natural gas engine-driven chiller using HCFC-22. The engine would be capable of delivering jacket water at temperatures varying between 183 and 201 °F, depending on load, for heat exchange to produce water for space and domestic hot water heating. Return jacket water temperature would be 180 °F. Chiller performance took into account part load efficiencies and the return condenser water temperatures coincident with load as determined from analyzing cooling

logs provided by the base.

USACERLTR-99/24 13

Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit

Option #2a: One Hundred (WO)-Ton Capacity Single-Effect Indirect-Fired Absorption Chiller

Analysis of the hospital's cooling loads indicated a year-round base load of 100 tons. Under this option, that base load would be met by a single-effect absorp- tion chiller. The heat input would be provided by 15 psig steam produced from heat as the byproduct of power generation from a Caterpillar G3512 (600 kW) engine-generator set. Although the intent was to match, as far as possible, the estimated amount of "waste" heat to the chiller heat input required, some residual waste heat will result, which will be used to satisfy part of the facility's thermal load. Chiller performance was based on the assumption that the chiller would continuously provide 100 tons of cooling, but under variable condenser water return temperatures (as determined from logs provided by the base). Under this option (and for all [four] options involving a new base-loaded 100-ton capacity absorption chiller), the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller would leave the plant short of capacity. (The data indicates there are periods when the total load on the plant exceeds 250 tons.) For this option and the next, the analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity absorption chiller would be located in the vicinity of the engine- generator set and heat recovery equipment.

Option #2b: One Hundred (WO)-Ton Capacity Double-Effect Indirect- Fired Absorption Chiller

As stated above, analysis of the hospital's cooling loads indicated a year-round base load of 100 tons. Under this option, that base load would be met by a double-effect absorption chiller; the engine-generator set is a Caterpillar G-3516 (820 kW). The double-effect absorption chiller is about 50 percent more efficient than the single-effect unit. However, the double-effect requires a steam input at higher temperature - at the temperature of 115 psig versus the 15 psig of the single-effect unit. Also, the first cost of the double-effect unit is higher than-that of the single-effect chiller. The performance at reduced condenser water temper- atures was assumed to be the same as that of the single-effect unit. Under this option, the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller

14 USACERL TR 99/24

would leave the plant short of capacity. (The data indicates there are periods when the total load on the plant exceeds 250 tons.) The analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity absorption chiller would be located in the vicinity of the engine-generator set and heat recovery equipment.

Option #2c: Two Hundred Fifty (250)-Ton Capacity Single-Effect Indirect- Fired Absorption Chiller

Under this option, two 820 kW Caterpillar G-3516s would be selected so that the waste heat matches the heat input requirement for the chiller as closely as possible. All residual heat over what the chiller requires will be used to at least partially meet the faculty's thermal requirements (also like the two preceding options). However, the new indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. Under this option (and for all [four] options involving a new 250-ton capacity absorption chiller), the existing centrifugal chiller will be physically replaced by the new absorption unit. Chiller performance character- istics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw

machines would operate.

Option #2d: Two Hundred Fifty (250)-Ton Capacity Double-Effect Indirect-Fired Absorption Chiller

For this option, the engine-generator set (three 820 kW Caterpillar G-3516s) would be selected so that its waste heat matches the heat input requirement for the chiller as closely as possible. Any residual heat over what the chiller requires will be used to at least partially meet the facility's thermal require- ments. However, the new double-effect indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. Under this option, the existing centrifugal chiller will be physically replaced by the new double-effect mdirect-fired absorption unit. Chiller performance characteristics were based not only on return condenser water temperature, but also on load since the intent is for "the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would operate. This option is similar in all respects to that immediately preceding it except that a more

USACERLTR-99/24 15

efficient double-effect absorption chiller would be installed, requiring 115 psig steam instead of 15 psig.

Power Generation With Sufficient Waste Heat To Operate a Water Chilling Unit and Satisfy Facility Thermal Requirements

Option #3a

This option is identical to Option #2a, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. Under this option, that base load would be met by a single-effect indirect-fired absorption chiller. The heat input would be provided by 15 psig steam produced from heat as the byproduct of power generation from two Caterpillar G3516 (820 kW) engine-generator sets. The intent was to match the estimated amount of "waste" heat to the chiller heat input required and satisfy the facility's thermal load. Chiller performance was based on the assumption that the chiller would continuously provide 100 tons of cooling, but under variable condenser water return temperatures (as determined from logs provided by the base). Under this option, the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller would leave the plant short of capacity. For this option, the analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity single-effect indirect-fired absorption chiller would be located in the vicinity of the engine- generator set and heat recovery equipment.

Option #3b

This option is identical to Option #2b, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. Analysis of the hospital's cooling loads indicated a year-round base load of 100 tons. Under this option, that base load would be met by a 100 ton, double-effect, indirect-fired absorption chiller; the engine-generator sets are four Caterpillar G-3516s (820 kW). The double-effect absorption chiller is about 50 percent more efficient than the single-effect unit. However,- the double-effect requires a steam input at higher temperature - at the temperature of 115 psig versus the 15 psig of the single-effect unit. Also, the first cost of the double-effect unit is higher than that of the single-effect chiller. The perform- ance at reduced condenser water temperatures was assumed to be the same as

16 USACERL TR 99/24

that of the single-effect unit. Under this option, the existing 250-ton capacity centrifugal chiller would not be removed. Replacing the existing chiller with only a 100-ton capacity absorption chiller would leave the plant short of capacity. The analysis is based on the assumption that, beyond 100 tons, screw machines will operate until the plant load reaches approximately 175 tons, at which point the operating screw machine will shut off and the 250-ton capacity centrifugal chiller will come on. The new 100-ton capacity absorption chiller would be located in the vicinity of the engine-generator set and heat recovery equipment.

Option #3c

This option is identical to Option #2c, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. Under this option, three 820 kW Caterpillar G-3516s would be selected so that the waste heat matches the heat input requirement for the chiller and will meet the thermal requirements of the facility. The new single-effect indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. Under this option, the existing centrifugal chiller will be physically replaced by the new absorption unit. Chiller performance characteristics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would

operate.

Option »3d

This option is identical to Option #2d, except the engine-generator capacity is sized to meet the thermal requirements of the facility in addition to the energy requirements of the chiller. For this option, the engine-generator set, six 820 kW Caterpillar G-3516s, would be selected so that its waste heat matches the heat input requirement for the chiller and meets the thermal requirements of the facility. However, the new double-effect indirect-fired absorption chiller under this option would be able to produce 250 tons of cooling, matching the capacity of the existing centrifugal chiller. The existing centrifugal chiller will be physically replaced by the new double-effect indirect-fired absorption unit. Chiller perform- ance characteristics were based not only on return condenser water temperature, but also on load since the intent is for the absorption chiller to meet all cooling loads up to the initial 250 tons. Above that threshold, one or both of the existing screw machines would operate. This option is similar in all respects to that immediately preceding it except a more efficient double-effect absorption chiller would be installed, requiring 115 psig steam instead of 15 psig.

USACERLTR-99/24 17

3 Boiler Load and Heating Requirements

The maximum hourly boiler load was found from the daily boiler logs to be 3,491 pounds per hour (#/hr) of steam at 0800 on 1 February 94. With the steam produced at 50 psig, this equates approximately to 3,491 #/hr x 912 Btu/# = 3,184 MBH. The steam was used indirectly for space heating and domestic hot water production, and directly for humidification, dining hall requirements, and medical equipment sterilization.

Space Heating Requirements

Based on the time of day and year, the space heating requirement was probably very close to that of the basis of design. Schedules on the design drawings were used to calculate design space heating loads, as follows: (13,400 + 4,570) gal/hr x hr/60 min x 500 x (150 -130) °F = 2,995 MBH.

Direct Steam Requirements

Previous analysis estimated that direct steam usage constitutes some 5 percent of the boiler output. On that basis, the direct steam used was about 0.05 x 3,184 MBH = 159 MBH. Requirements for direct steam usage will be substantially reduced as the dining portion of the hospital will be eliminated. Further, local sterilizers are now being used in some instances instead of imported steam from the central heat plant. Clearly, local humidifiers are also readily available that can be used for humidification, without use of imported steam.

Domestic Hot Water Heating Requirements

The remainder of the boiler output is attributed to domestic hot water production, or:

3,184 MBH - 2,995 MBH -159 MBH = 30 MBH

18 USACERL TR 99/24

This figure is in line with an estimate found in an earlier analysis, but is small compared to the domestic hot water heating capacity determined from the schedule on the design drawings, which is:

640 gal/hr x 62.4 #/cu ft/7.48 gal/cu ft x 1 Btu/#- °F x 80 °F = 427 MBH

It may well be that the domestic hot water load was grossly overestimated, similar to the required boiler capacity, or there may have actually been, at one time, that much load. Mr. Domako of the Base Civil Engineering (BCE) staff has indicated that he anticipates domestic hot water load will decrease in the future as the hospital is converted to an outpatient facility.

The maximum thermal load for the purposes of this analysis will be considered to be the sum of the space heating and domestic hot water load, above, or 3,025 MBH. The direct steam requirements will not be provided by way of waste heat. Those requirements should be met by continuing the trend toward local sterilization and installation of grid (or other type) humidifiers at the air handling units. This will permit the plant to be unmanned. The thermal space and domestic hot water heating loads will still be met as they are already satisfied by 15 psig steam from a pressure reducing valve station from the central heat plant boilers. The thermal energy requirements will be determined from the monthly boiler logs for Summer and for Winter (Table 1), and will be compared against the Btus of waste heat energy generated for those seasons to see if there will be an overall surplus or shortfall of energy.

Table 1. Identification of energy requirements from monthly boiler logs for 1995.

Summer (May - Oct): Energy Requirements (# of Steam) May 1,551,000 June 1,163,100 July 902,500

August 703,600 September 841,800 October 1,200,800

Summer Total = 6,362,800 (x 912 Btu/# = 5,802.874 Mbtu)

Winter (Nov • Apr): November 1,200,800 December 1,559,800 January 1,622,700 February 1,334,200 March 1,369,200 April 1,766,200

Winter Total = 8,852,900 = (x 912 Btu/# = 8,073.845 Mbtu)

* Indicates data that was averE iged using September and December data

USACERLTR-99/24 19

4 Heat Recovery

Heat recovery is a feature of all options considered except (of course) the base option.

Option #1

Under this option, heat is potentially recoverable from both the engine and the exhaust. Due to the fact there would be light load conditions experienced during the year, USACERL was advised that heat should be extracted from the engine only. Extracting heat at low load will lower the temperature of the exhaust gas to the point where some condensation will occur with resulting corrosion. Consequently, only heat recovery from the engine was considered.

Remaining Options (Heat Recovery from Engine-Generator Sets)

Remaining options considered heat recovery from the engine and/or the exhaust, depending on whether high (115 psig) or low (15 psig) pressure steam was required (i.e., depending on whether a double or single-effect absorption chiller was under consideration). Low load that would promote corrosion is not a problem - the engine-generator sets, when operating, would be running at full load, generating the maximum amount of electricity possible. As pointed out earlier in the discussion regarding options, the amount of heat recovery considered was either that necessary to operate the absorption chiller at full load, with any excess used to offset facility thermal requirements, or was that required to operate the absorption chiller at full load and to meet the facility thermal load as well. The analysis does not allow more heat energy to be recovered than required. This limitation is imposed seasonally (Winter, Summer) and thus is somewhat broad. For cases where equipment is sized to produce waste heat to operate the chiller and meet the facility thermal load, the seasonal excess of energy available over required is sufficiently large that short duration thermal requirements should still be met for the vast majority of the time. The excess heat would be "dumped" to the generously sized existing cooling tower that currently cools the condenser water for the existing 250-ton capacity motor-driven centrifugal chiller. USACERL acknowledges and appreci-

20 USACERL TR 99/24

ates the assistance of Mr. Warner Bauer of Engineering Controls, Inc., St. Louis, MO, in selecting the engine-generator models and quantities, and heat recovery equipment that would meet the performance criteria under each option considered. Capital costs for the equipment were also provided by Engineering Controls. The equipment selections and capital costs as provided by Engineering Controls, Inc. appear in Appendix B. Note that Waukesha and Caterpillar selections were made so that sole source procurement would not be required and to ensure that performance should be comparable.

USACERLTR-99/24 21

5 Utility Rate Structures

Electrical Rates

Appendix C contains recent monthly electric bills for Davis-Monthan AFB for a year (with the exception of September, for which interpolated data was used). Using the electric bills, the rates were determined for use in the spreadsheet. The basic demand charge of $10.28/billable kW (bkW) is applicable for the entire year. The demand charge is apparently subject to 5 percent Arizona state sales tax, applied to 92 percent of the total (demand plus energy charges) due to a hospital exemption. Power factor adjustment and the Arizona Corporation Commission Assessment were not considered as individually they are well within the "noise" level of the total monthly electric charge and their difference (the former is typically a credit, the latter a debit) is even more so. Conse- quently, the basic demand cost was figured as:

$10.28ftkW x bkW = demand cost (DC)

upon which the sales tax is levied, subject to the allowable exemption, or:

DC = $10.28 x bkW + $10.28 x bkW x 0.92 x 0.05

so that the actual demand cost would be:

DC = $10.28 x bkW x (1 + 0.92 x 0.05) = $10.75 x bkW.

The electrical energy rate is subject to the same levy. The basic Summer rate is $0.047457/kWh and the basic Winter rate is $0.045084/kWh. Adjusted for the same levy as applied to the demand charge, the rates become, respectively:

1.046 x $0.047457/kWh = $0.0496/kWh

and

1.046 x $0.045084/kWh = $0.0472/kWh.

22 USACERL TR 99/24

Additionally, the electrical rate schedule includes a 0.667 ratchet applied to the peak KW demand experienced over the previous 11 months. The contract with Tucson Electric Power Company includes a minimum monthly buy of 3,000 kW. None of the options regarding power generation will penetrate this floor, based

on the data in Appendix C.

Natural Gas Rates

Information received from Mr. Weleck of the BCE staff indicated the gas rates are now $2.75/MBtu in Summer and $3.90 in Winter.

USACERLTR-99/24 23

6 Methodology for Analysis

Based on the cooling load profile, hours at various loads were determined. The spreadsheet then modeled how these loads would be met, either using the existing cooling equipment or the equipment described above under the various options considered. Note that the hours at the various loads do not total the entire hours of the year (8,760), although there is apparently a requirement for year-round cooling. This simplification was introduced since, once a load over 250 tons is experienced, the equipment that will operate to meet that additional load will be the same under any of the options, considered. However, for options involving onsite electrical power generation, all hours of the year were considered, except for the estimated periods of time when the equipment would be inoperative for maintenance (95 and 98 percent availability on average in Summer and Winter, respectively). The hours of operation are divided between Summer (May through October, inclusive) and Winter (November through April) due to the variation in utility rates between the two seasons. The engine- generator sets have been derated to account for altitude (Tucson's elevation is 2,654 feet above sea level) and outdoor temperature.

Maintenance costs for the Caterpillar G3516 were based on a previous analysis by Empire Power Systems, Phoenix, AZ. This included all parts and labor for oil changes, makeup oil, scheduled preventive maintenance, overhauls, unscheduled stoppages due to out-of-tolerance conditions, etc. The maintenance required for the G3512 was assumed to be essentially equal to that of the G3516. An interruption for over 15 minutes in the monthly operation of a given generator will render demand savings from that generator moot for the month (although savings in billable demand may still be possible where operation has reduced peak and the month is one in which billable demand would exceed actual demand). This would be the case regardless of the estimated overall Summer 95 percent or Winter 98 percent availability rates. If units must be down, clearly the preference is to take them down during periods of months when demand is relatively low, keeping the units in service during months when peak demands are typically experienced. Preference should be given to pulling operationally interruptive maintenance during months when billable demand typically exceeds actual demand. It is, of course, recognized that this isn't always possible. The operational assumptions made in the spreadsheet are based on operating the equipment according to the recommendations above, but allowing for the

24 USACERL TR 99/24

possibility that unscheduled events will occur. Operating scenarios were developed for all options based on the practices recommended above and are

indicated in the following.

Option #2a

With only one Caterpillar G3512 engine-generator set, it was assumed that there

would be totally uninterrupted service for 3 of the 6 summer months. It is assumed that, of the 3 months, due diligence has been taken to ensure uninter-

rupted operation for 2 of the 3 months with the highest actual demand, but the unit went down for the month with the third-highest demand. For Winter, it is assumed that there will be uninterrupted service for 3 months, and interrupted service for 3 months. (Actually, it really does not matter from a demand reduction viewpoint whether the engine-generator does or does not operate during months in which the minimum billable amount is determined by the ratchet; i.e., November to February, inclusive.) Appendix D indicates the situation, incorporating the data from Appendix E. Table 2 lists the projected demand reductions by month.

For input to the spreadsheet, there would be 3 months in Summer when the demand reduction would be 555 kW, and for Winter, there would be 4 months for which the reduction would be 370 kW and 1 month for which the reduction

would be 555 kW.

Option #2b

This option is considered identical to Option #2a from an operational standpoint. How- ever, the power production is greater for the Caterpillar G3516 engine-generator that would be installed under this option. Appendix E shows the results. Note again that, in Winter, for the 4 months when the ratchet is in effect, it does not matter from a demand reduction perspective whether any unit does or does not operate. This pattern is characteristic for all the options involving onsite power production.

Table 2. Projected demand reductions, by month.

Jul 555 kW Aug 555 kW Sep OkW Oct 555 kW Nov 370 kW(= 12,543 12,173) Dec 370 kW Jan 370 kW Feb 370 kW Mar OkW Apr 555 kW May OkW -"

Jun OkW

USACERLTR-99/24 25

Option #2c (also applicable to Option #3a)

Under this option, it is assumed that in Summer, one Caterpillar G3516 unit will

be available to achieve demand reductions for 3 months and two such units will be available to achieve reductions for the remaining 3 months. It is assumed that Winter operation will replicate Summer. Appendix F shows operation for the year. Since two Caterpillar G3516 engine-generators are being considered for Option #3a, the same results apply for that option.

Option #2d (also applicable to Option #3c)

This option involves three Caterpillar G3516 engine-generator sets. It is assumed that in Summer, all three will be available for 2 months and two will be continuously available for 4 months. In Winter, the same assumption is made. Appendix G shows the results. The same results also apply to Option #3c.

Option #3b

This option involves four Caterpillar G3516 engine-generator sets. It is assumed that in Summer all four will be available for 2 months and three will be available for the remaining 4 months. In Winter, the same availability is assumed. Appendix H shows the results.

Option #3d

Six Caterpillar G3516 engine-generator sets were considered for installation under this option. For operation in Summer, it is assumed that all six units will operate for 2 months, five units will operate continuously for 2 months, and four units will be maintained in continuous operation for 2 months. Winter operation will be assumed to be identical. Appendix I shows the results.

First Costs

Appendix J contains the construction cost estimates for each option. The cost estimates for the heat recovery equipment and associated engine-generator sets

26 USACERL TR 99/24

were those provided by Engineering Controls, Inc., as previously discussed. All other costs were based on Means Mechanical Cost Data 1997.

The cost estimates do not include the construction of an enclosure for equipment located exterior to the central energy plant building. Estimating the cost of such a structure would be difficult since the architectural requirements vary for each base. However, it does include the cost of a concrete pad on which to install the

equipment.

Life Cycle Cost Analysis

The life cycle cost analysis for each option was calculated using Life Cycle Cost In Design (LCCID) software.* The life cycle cost analysis accounts for the construction, overhead, and design costs associated with each option. The sum of these values is the total investment. The economic life is taken over a 20-year period and accounts for all scheduled maintenance activities as detailed by the manufacturer. No service contracts were considered as part of this study.

* Linda K. Lawrie, Technical Report (TR) E-85/07/ADA162522, Development and Use of the Life Cycle Cost in

Design Computer Program (LCCID) (U.S. Army Construction Engineering Research Laboratories [USACERL],

November 1985).

USACERLTR-99/24 27

7 Results

Appendix K shows the EXCEL® spreadsheet that contains the raw energy data. Appendixes L to T and Table 3 contain calculated payback and savings-to- investment ratio for each option. The table below summarizes the economic results. These results form the basis for the recommendations in the next para- graph. This report does not include potential savings that may be achievable under Options #3a, 3b, 3c, and 3d by having an unmanned plant. Under these options, there would be initial first cost incurred due to installation of humidi- fication units at the air handling units and use of sterilizers where the energy input for sterilization would be at the point of use. Estimating overall savings through removing the plant manning requirement was beyond the scope of a cooling study. However, in addition to the considerable utility savings identified for Options #3a through 3d, inclusive, there would likely be considerable savings from eliminating the requirement for a manned plant.

Table 3. Calculated payback and savings-to-investment ratios for options. Option Payback (years) SIR Total Investment Recommendation

3a 1.01 9.29 $269,507 implement 3b 1.21 6.61 $536,817 implement 3c 1.49 5.83 $538,392 3d 1.43 5.44 $934,974 2c 1.65 5.96 $476,529 2d 1.75 4.96 $639,087 2b 2.51 2.77 $235,412 2a 2.87 2.32 $196,252

1 9.35 1.32 $290,974 do not implement

28 USACERL TR 99/24

8 Conclusions and Recommendations

The medical facility at Davis-Monthan AFB can realize considerable utility cost savings by implementing any of several options analyzed in this study. It is likely such savings can be replicated at other DOD medical facilities where there are year-round air conditioning requirements, large thermal energy require-

ments, and utility rates where the unit cost of purchased electricity is high

compared to that of natural gas.

Based on these results, this study recommends the projects be prioritized for implementation, from most to least highly recommended, as follows:

1. Option 3a: Two natural gas-fired Caterpillar G-3516 (820 kW) engine- generator sets, waste heat used to provide steam for a 100 ton single-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only). This option is recommended for

implementation.

2. Option 3b: Four natural gas-fired Caterpillar G-3516 (820 kW) engine- generator sets, waste heat used to provide steam for a 100 ton double-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only). This option is recommended for

implementation.

3. Option 3c: Three natural gas-fired Caterpillar G-3516 (820 kW) engine- generator sets, waste heat used to provide steam for 250 ton single-effect indirect-fired absorption water chiller to replace existing 250-ton motor- driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only).

4. Option 3d: Six natural gas-fired Caterpillar G-3516 (820 iW) engine- generator sets, waste heat used to provide steam for a 250 ton double-effect indirect-fired absorption water chiller to replace existing 250-ton motor- driven centrifugal chiller, with residual heat adequate to satisfy facility thermal requirements (existing boilers as backup only).

USACERLTR-99/24 29

5. Option 2c: Two natural gas-fired Caterpillar G-3516 (820 kW) engine- generator sets, waste heat used to provide steam for a 250 ton single-effect indirect-fired absorption water chiller to replace existing 250-ton motor- driven centrifugal chiller, with residual heat used for thermal requirements.

6. Option 2d: Three natural gas-fired Caterpillar G-3516 (820 kW) engine-

generator sets, waste heat used to provide steam for a 250 ton double-effect indirect-fired absorption water chiller to replace existing 250-ton motor- driven centrifugal chiller, with residual heat used for thermal requirements.

7. Option 2b: One natural gas-fired Caterpillar G-3516 (820 kW) engine- generator set, waste heat used to provide steam for a 100 ton double-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat used for thermal requirements.

8. Option 2a: One natural gas-fired Caterpillar G-3512 (600 kW) engine- generator set, waste heat used to provide steam for a 100 ton single-effect indirect-fired absorption water chiller to meet facility base cooling load (100 tons) with residual heat used for thermal requirement.

9. Option 1: A 250 ton natural gas engine-driven chiller to replace existing 250- ton motor-driven centrifugal chiller, with waste heat used to offset facility thermal requirements. Note that this option is not recommended for implementation.

30 USACERL TR 99/24

Appendix A: Notes Regarding Interviews and Discussions for Chiller Study at Davis-Monthan AFB

SSgt Rinn, TSgt Farmer, Central Plant Operators -

A. As of 1 Apr 97, the foregoing operators have been on temporary assignment pending award of a contract for private sector O&M for the hospital, including the central plant. The operators provided chilled water logs for the previous year (to be returned to Steve Weleck). They also furnished monthly boiler logs for the months (Jan - Jun 97, logs to be returned to Weleck) and referred us to Lt. Doolittle for the balance of the previous year's monthly boiler logs. Lt. Doolittle furnished CERL with monthly logs from Jan 94 - Sep 95. In an attempt to determine peak plant thermal load, CERL went back to boiler log data for Feb 94 (records to be returned to Weleck).

B. Upon initial arrival, CERL was appraised that a cogeneration study had already been completed, Dec 95, with design drawings based on the study results also provided. The study and drawings were loaned to CERL for review, and CERL will return same to Weleck. While meeting with Weleck, CERL learned that two significant projects are planned for the hospital, a 6,000 SF addition and a follow-on 30,000 SF addition (both projects discussed in greater detail below). Additionally, Weleck furnished a document "FY88 MCP ECIP Facility Energy Improvements" for CERL's perusal to see if it might contain helpful information. Mr. Weleck also provided utility rate schedules and sample billings.

C. SSgt Rinn and TSgt Farmer retrieved plant drawings on file for CERL's review, particularly drawings containing schedules for space heating and domestic hot water equipment. Inquiry verified there is no separate metering of steam usage - some is used for space heating, some for domestic hot water production, and the remainder is direct steam usage. Therefore, the schedule sheets were used with other

USACERLTR-99/24 31

input to determine the relative uses for the steam produced. Of prime concern was the amount of steam used directly for various applica- tions (dining facility, humidification, and medical sterilizers). The requirement for high pressure steam (> 15 psig [the plant operates at 50 psig]) drives the requirement for 24-hour manning of the plant.

D. Lt. Chicotah, facility manager at the hospital, was contacted by phone in an attempt to find out about future projects planned for the hospital. She Faxed a Prehminary Statement of Work for design of a FY00 30,000 SF addition (Ambulatory Health Care Center) to the existing medical facility. This is in addition to the 6,000 SF Aerospace Medicine Clinic programmed for FY98. Neither this document nor the DD Form 1391 or the Requirements and Management Plan (the latter two provided by SMSgt Mortenson) provided insight as to the mechanical equipment that is anticipated for use in heating and cooling either the planned 6,000 SF addition or the 30,000 SF addi- tion. In a final attempt to get this information, CERL called Horace Hopper of AFCEE. The information Hopper currently has basically leaves the issue of the mechanical equipment to be used for the facility additions at the discretion of the designer. At this time, per Mr. Hopper, the designer has not been selected (contrary to information provided by Lt. Chicotah who indicated an A-E contract is to be awarded by the end of July 97). Numerous references were made to a Capt Reinhardt in San Francisco as the prime source of information regarding future plans for the hospital. Attempts to reach Reinhardt to date have been unsuccessful; however, CERL's plan is to use his information to resolve any conflicting or missing information. Mr. Ken Domako indicated he would attempt to resolve the issue of future requirements for direct steam use. He also indicated his estimate that domestic hot water usage at this time has been reduced significantly from what was the original basis of design, and that future requirements will likely be only about half that of the original basis of design. This is due to removal of the dining facility and ehmination of showers for patients. Mr. Domako stated that the two planned hospital projects will be undertaken.

32 USACERL TR 99/24

Approach

A. Contact Capt Reinhardt regarding future hospital requirements.

B. Compute heating loads (process steam, space heating, and domestic hot water).

C. Plot cooling load profiles.

D. Consider the following options:

1. gas fired dual-effect absorption unit

2. gas engine-driven chiller

3. cogen system made up of a generator and indirect fired absorption unit

E. Analyze data and produce report.

Determination of Heating Loads

A. The existing boilers in the hospital central plant are greatly over- sized. They are products of Nebraska Boiler, each rated at 7.5 million British Thermal Units per hour (MBH) with a mass flow of 7,000 pounds per hour (#/hr) of 50 pounds per square inch gauge (psig) saturated steam. Examination of the boiler logs available indicated that the maximum boiler load experienced over the last 5 years (on 4 Feb 94) was 3,500 #/hr, which translates into a heating load of

3,500 #/hr x 7,500,000 Btu/7,000 #/hr = 3,750,000 Btu/hr

This indicates a peak load of only 25 percent of the existing plant boiler capacity (3.75 MBH/[2 x 7.5 MBH]). Most of the time, the load is significantly less. The load will decrease even more due to the factors described in the following paragraphs.

B. Domestic Hot Water Loads

Mr. Domako indicated that hospital care is going to be limited basically to outpatient care, including outpatient surgery. Showers for patients will be significantly reduced compared to that antici- pated when the plant was constructed. Mr. Domako's estimate of the reduction is 50 percent. There are currently two domestic hot water generators in the plant, the original design intent being that either

USACERLTR-99/24 33

one could provide 100 percent redundancy. The schedule on the design drawings indicates the generators are capable of heating 640 gal of water from 60 to 120 °F in 1 hour. The design also provided for what appears to be a booster heater to heat the water initially from 60 to 90 °F, with the 90 °F water then heated to 120 °F by the hot water generators. Since the heating from the booster actually supplants (although it also accelerates) the heating that would other- wise be required by the domestic hot water generators (increasing the domestic hot water temperature from 60 to 90 °F), only the full capacity of the hot water generators need be calculated, which is

640 gal/hour x 8.34 lb/gal x 1 Btu/lb °F x (120-60) °F

= 320,256 Btu/hr

Assuming a 50 percent reduction in load, the estimated domestic hot water heating requirement would be 320,256 Btu/hr/2 = 160,128 Btu/hr.

C. Space Preheating, Heating, and Reheating Loads

Drawings that contained schedules indicating the required capacities for preheat, heating, and reheat coils were reviewed. Rather than add these all up and then assume some diversity factor, the schedule for the converters was checked. Based on those schedules, the design heating water requirement was determined from

Converter #1: 500 x 13,400 gal/hr/60 min/hr x (150-128) °F

= 2,456,667 Btu/hr

where operators indicated that the temperature of the supply hot water is 150 °F and the return is typically the 128 °F indicated.

Converter #2: 500 x 4,570 gal/hr/60 min/hr x (150-128) °F

= 837,333 Btu/hr

Since both converters operate simultaneously, the capacities are summed to produce a joint capacity of (2,456,667 + 837,333) Btu/hr = 3,294,500 Btu/hr.

34 USACERL TR 99/24

D. Process Steam Loads

Boiler plant steam is used directly for a number of purposes/ applications: sterilization, dining hall requirements, and humidifi- cation. Unfortunately, this steam (nor the domestic hot water or heating water used for space conditioning) has been metered. Therefore, the quantity of steam used directly (as opposed to heat exchange within the plant to produce domestic hot water and heating water for space conditioning) was calculated by subtracting the quantities in subparagraphs b) and c) from the peak steam load identified in subparagraph a). The quantity was calculated as:

3,750,000 Btu/hr -160,171 Btu/hr - 3,294,500 Btu/hr = 295,329 Btu/hr

Based on discussions with Mr. Domako and TSgt Mortenson, the dining hall will be eliminated and the space used for an alternative function. This will eliminate a portion of the present direct steam usage. Additionally, discussion with plant operators indicated that in a number of instances, steam from the plant is not being used for sterilization. Rather, portable units are being used for sterilization. Mr. Domako expects use of this type of sterilization to be expanded. He indicated he will check with medical personnel to try to ascertain future steam requirements.

USACERLTR-99/24 35

Appendix B: Equipment Selections and Capitol Costs

. August 12, 1997 Budget #2917 Page 1 of 2

BUDGET COST FOR __ U.S. ARMY CONSTRUCTION ENGINEERING

RESEARCH LABORATORIES

REF 2A: 1, 714,300 BTU/HR required at 15 PSIG.

Opt,»« *■>*, CaterDillar G3512, 600 KWe, 2,091,650 BJU/HR: One Waukesha VHP-2900GSL 425 KWe, 2,201,942

BTU/HR: Feedwater un.it adds:

REF2B: Op-hew.» 2e

4/507,750 BTU/HR required at 15 PSIG.

Two Caterpillar G-3516, 820 KWe, 2,886,660

Two Waukesha9VHP:2900GSI, 425 KWe, 2,201,942 BTU/HR/Engine:

' Feedwater unit adds:

REF 2C: 1,000,000 BTU/HR required at 115 PSIG. Option *zj> 0ne CaterplUar 5.35^^ 820 «we, 1,010,000

BTU/HR" One Waukesha VHP-3600GSI, 550 KWe, 1,063,000

BTU/HR: Feedwater unit adds:

REF 2D: 2,500,000 BTU/HR required at 115 PSIG. Op,t.W*^ ^^ Caterpipar £-3516j 820 KWe, 1,010,000

Two^aukesha^OOGSI, 1100 KWe, 2,212,000 BTU/HR/Enoine:

Feedwater unit adds:

$ 54,560.00

$ 53,780.00 $ 13,560.00

$108,430.00

$101,240.00 $ 19,340.00

$ 80,660.00

$ 68,620.00 $ 18,540.00

$232,920.00

$183,500.00 $ 23,920.00

The 15 PSIG systems include the heat recovery unit, back pressure control valve, excess steam control valve and excess steam condenser.

The 115 PSIG systems include the heat recovery unit, back pressure control valve and external by-pass tee.

ENGINEERING CONTROLS, INC. SAINT LOUIS, MISSOURI

36 USACERL TR 99/24

August 12, 1997 Budget #2917 Page 2 of 2

BUDGET COST FOR U.S. ARMY CONSTRUCTION ENGINEERING

RESEARCH LABORATORIES

REF 4A: 4,739,300 BTU/HR required at 15 PSIG. p - Two Caterpillar G351& 820 KWe, 2,886,660

BTU/HR/Engine: $106,920.00 Two Waukesha VHP-7100GSI, 1100 KWe, 5,487,129

BTU/HR/Engine: • $ ?|'i?8-28 Feedwater unit adds: $ 19,340.00 ■ .

REF 4B: 7,532,750 BTU/HR required at-15 PSIG. __ptüm »3c ^^ cateroiuar G-3516, 820 KWe, 2,886,660

BTU/HR/Engine: n w rr„ $154,080.00 Two Waukesha VHP-5900GSI, 900 KWe, 4,352,552 ^ nn ,

BTU/HR/Engine: f^'iM Feedwater unit adds: . $ 22,840.00

REF 4C: 4,025,000 BTU/HR required at 115 PSIG. Optio* *Zb Caterpillar G-3516, 820 KWe, 1,010,000 .

BTU/HR: $312,620.00 Two Waukesha VHP-7100GSI, 1100 KWe, 2,212,000

BTU/HR: $183,820.00 Feedwater unit adds: $ 25,800.00

REF 4D: 5,525,000 BTU/HR required at 115 PSIG.

=£===Six Caterpillar G-3516, 820 KWe, 1,010,000 BTU/HR/Engine: „ AM ,„„ $46L220.00

Two Waukesha VHP-9500GSI, 1475 KWe, 3,058,312 ^n nn BTU/HR/Engine: $224,6o0.00 Feedwater unit adds: $ 30,460.00

The 15 PSIG systems include the heat recovery unit, back pressure control valve, excess steam control valve and excess steam condenser.

The 115 PSIG systems include the heat recovery unit, back pressure control valve and external by-pass tee.

ENGINEERING CONTROLS, INC. SAINT LOUIS, MISSOURI

USACERLTR-99/24 37

13 Aug 97 phone discussion with Teny Hurley, Engineering Controls, St Louis, MO

Mr. Hurley provided the following natural gas flow rates for the Caterpillar engines, as follows:

3512TA,600KWe 100.431 Btu/minute 3516 TA 90,820 KWe 132,221 Btu/minute

USACERLTR-99/24 39

Appendix C: Recent Electric Bills for Davis-Monthan AFB

40 USACERL TR 99/24

TUCSON ELECTRIC POWER COMPANY P. 0.30x711 ■

Tucson, Arizona 85702

Dear Customer

AtyourrequestwesuomitourUgeUghtancPowef Rate No. 14 showing current adjustments

I ARSr LIGHT ANn POWER RATE NO. 14

nFMAND CHARGE: Per kW of Büng Demand per month

ENERGY CHARGE: AD kWh per month §.

Bfllmo Months Summer Winter Mav-Oct Nov.-Aor.

S1028

4.7457?

S10.28

4i084?

S^dshaOb.spe^h.heconmbutsh^notbe^toa.OOOkW.

of law, the fbfowing tax and;

FRANCHISE TAX (Tucson, South Tucson)

r.m SALES TAX" (Tucson, South Tucson, Marana)

STATE SALES TAX (Applicable to all sales)

ARI7HNA CORPORATION COMM1SS!DN ASSESSMENT: (Applicable to all sales)

RESIDENTIAL tmUTY CONSUMER ASSESSMENT: (Residential Customers Only)

sernmt percentages are applied where appropriate to catailafions on the above rates:

zo%-.

2.0% (Tucson); 15% (Soum Tucson); and 4.0% (Marana) (also, applied to Arizona CorporaSen Commission Assessment and Residential UBty Consumer Assessment amounts)

5 0% (also applied to City Franchise Tax amount and Arizona Corporation Commission Assessment and Residential Utffity Consumer Assessment amounts)

.14% (also appfied to City Franchise Tax amount City Sales Tax amount and State Sales Tax amount)

.05% (also appSed to City Franchise Tax amount City Sates Tax amount and State Sales Tax amount) •

Very truly yours,

TUCSON ELECTRIC POWER COMPANY

EffecSve August 1996 Sings (Change due to revision of ACC and RUCO Assessments)

USACERLTR-99/24 41

ACCOUNT 2325-2001-1 CONTRACT NO. F026O1-79-0OO23

DEMAND CHARGE 18.099 KW

DATE OF BIO: June 26,1997 DATE DELINQUENT: July 10,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A, F. DAVIS MONTHAN AIR FORCE BASE MAY 27,1997 TO JUNE 24,1997

$10.28 PERKW $186,057.72

ENERGY CHARGE 7,962,400 KWH

18,099.1 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 12.542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS 18.805 KW —AUGUST 1996 18,099 KW BILLING DEMAND

0.047457 KWH $377,871.62

POWER FACTOR ADJUSTMENT 93.96 -90.00 = 3.96 3.96 X 0.013 = -0.05148

-0.05148 X 18,099 KW BILLING DEMAND ($931.74)

SUBTOTAL SUBTOTAL HOSPITAL EXEMPTION ( STATE SALES TAX ON 92% OF TOTAL)

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

$517,957.79

$562,997.60

$827.61 S25.934.15

TOTAL AMOUNT DUE ■5589,759.36

Page 1

42 USACERL TR 99/24

ACCOUNT 2325-2001-1 CONTRACT NO. F02601-79-D0023

DEMAND CHARGE 17.026 KW

DATE OF BILL: May 29,1997 DATE DELINQUENT: June 11,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U.S.A.F. DAVIS MONTHAN AIR FORCE BASE APRIL 25,1997 TO MAY 27,1997

$10.28 PERKW $175,027.28

17,025.0 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7.1987 1Z542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS m 80S KW-AUGUST 1996 17,026 KW BILLING DEMAND

ENERGY CHARGE 8.119,360 KWH 0.047457 KWH $385,320.47

POWER FACTOR ADJUSTMENT 94.83 -90.00 = 4.83 4 83 X 0.013 = -0.06279

-0.06279 X 17.026 KW BILLING DEMAND ($1,069.06)

SUBTOTAL $559.278.69

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

$822.14 $28,003.08

CURRENT AMOUNT DUE PREVIOUS BALANCE

TOTAL AMOUNT DUE

$588.103.91 •$457,844.38

$1,045,948.29

Paoa 1

USACERLTR-99/24 43

:COUNT .125-2001-1 3NTRACTNO. 32601-79-D0023

EMAND CHARGE 14.142 KW

DATE OF BILL: April 30,1997 DATE DELINQUENT: May 13,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE MARCH 24,1997 TO APRIL 25,1997

$1028 PERKW $145,379.76

14,141.7 KW ACTUAL DEMAND 9.250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7.1987 12.542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS 18.805 KW —AUGUST 1996 14142 KW BILLING DEMAND

YERGY CHARGE 6.447.240 KWH 0.045084 PER KWH $290.667.37

3WER FACTOR ADJUSTMENT 92.50' -90.00

3.50 X ■0.0455 X

= 3.50 0;0t3 = -0.0455 14.142 KW BILLING DEMAND ($643.46)

JBTOTAL $435.403.67

SEONA CORPORATION COMMISSION ASSESSMENT TÄTE SALES TAX

$640.05 $21.800.66

URRENT AMOUNT DUE 3EVIOUS BALANCE

3TAL AMOUNT DUE

$457.844.38

$457.844.38

Page 1

44 USACERL TR 99/24

ACCOUNT 2325-2001-1 "CONTRACT NO. F02601-79-D0023

DEMAND CHARGE 12.613 KW

DATE OF BILL: March 26,1997 DATE DELINQUENT: April 8,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE FEBRUARY 25,1997 TO MARCH 24,1997

$10.28 PERKW $129,661.64

12,612.9 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18;500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS -j« MS KW-AUGUST 1936 12,613 KWBILUNG DEMAND

ENERGY. CHARGE 5,321,080 KWH 0.045084 PER KWH $239,895.57

POWER FACTOR ADJUSTMENT 91.14 -90.00 =. 1.14

1.14 X 0.013 = -0.01482 -0.01482 X 12,613 KW BILLING DEMAND (S186.92)

SUBTOTAL $369,370.29

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

$542.98 $18.494.37

CURRENT AMOUNT DUE PREVIOUS BALANCE

TOTAL AMOUNT DUE

$388,407.64 . $4,553.58

$392,961.22

Page 1

USACERL TR-99/24 45

VCCOUNT B25-2001-1 MMTRACTNO. =02601-79-00023

DEMAND CHARGE 12,543 KW

DATE OF BILL: February 27,1997 DATE DELINQUENT: March 12,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U.S.A.F. DAVIS MONTHAN AIR FORCE BASE JANUARY 24,1997 TO FEBRUARY 25,1997

$10.28 PERKW $128,94204

10.6962 KW ACTUAL DEMAND 9^50.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

.ELEVEN (11) MONTHS . ta, ans KW-AUGUST 1996 12543 KW BILLING DEMAND

ENERGY CHARGE 5,953.040 KWH 0.045084" PER KWH $268,386.86

POWER FACTOR ADJUSTMENT 91.68 -90.00 * 1.68

1.68 X 0.013 = -0.02184 -0 02184 X 12,543 KW BILLING DEMAND ($273.94)

SUBTOTAL $397,054.96

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

$583.67 "$19,880.54

TOTAL AMOUNT DUE 5417,519.17

Page 1

46 USACERL TR 99/24

ACCOUNT 2325-2001-1 "CONTRACT NO. F02601-79-00023

DEMAND CHARGE 12,543 KW

DATE OF BILL: January 28,1997 DATE DELINQUENT: February 10,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED •

U.S.A.F. DAVIS MONTHAN AIR FORCE BASE DECEMBER 26,1996 TO JANUARY 24,1997 .

$10.28 PERKW 5128.94Z04

11,141.3 KW ACTUAL DEMAND 9.250.0 KW MINiMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 12,542.9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS . IfrflpSKW -AUGUST

12,543 KW BILLING DEMAND

ENERGY CHARGE 5,313,640 KWH. 0.045084 PER KWH $239,560.15

POWER FACTOR ADJUSTMENT . 91.86 -90.00 = 1.86

1 86 X 0.013 = . -0.02418 -0 02418 X 12,543 KW BILLING DEMAND

($303.29

SUBTOTAL $368,198.90

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

S541.2S $18,435.72

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE

$387.175.87

S403.754.44 S790.930.31

Page 1

USACERLTR-99/24 47

ACCOUNT.. 2325-2001-1 CONTRACT NO. F02601-73-D0023

DEMAND CHARGE 12,543 KW

DATE OF BILL: December 30,1996 DATE DELINQUENT: January 10,1997

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED .

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE NOVEMBER 25,1996 TO DECEMBER 26,1996

$10.28 PERKW $128,94Z04

ENERGY CHARGE 5,662.800 KWH

10,787.2 KW ACTUAL DEMAND ~ 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 12,54±9 KW 66.7% OF THE HIGHEST BIUJNG DEMAND IN THE PAST

ELEVEN (11) MONTHS 18.805 KW —AUGUST 1996 12,543 KW BILLING DEMAND

0.045084 PER KWH $255,301.68

POWER FACTOR ADJUSTMENT 91.71 -90.00 a 1.71

1.71 X 0.013 = -0.02223 -0.02223 X 12,543 KW BILLING DEMAND ($278.83)

SUBTOTAL $383,964.89

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

$564.43 $19,225.12

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE

$403,754.44

$417,054.18 $820,808.62

Page 1

48 USACERL TR 99/24

ACCOUNT 2325-Z001-T CONTRACT NO. F02601-79-D0023

DEMAND CHARGE 12,543 KW

DATE OF BILL: November 27,1996 DATE DELINQUENT: December 12,1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U.S.A.F. DAVIS MONTHAN AIR FORCE BASE OCTOBER 24,1996 TO NOVEMBER 25,1996 .

$10.28 PERKW $128.942.04

11 605.7 KW ACTUAL DEMAND" <r

9^50.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND) EFFECTIVE APRIL 7,1987

1Z54Z9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST aEVEN (11) MONTHS _ 13,805 KW. .--*' ,ftl k<rl

12,543 KW BILUNG DEMAND

ENERGY CHARGE 5,963,160 KWH 0.045084 PER KWH

$268,843.11

POWER FACTOR ADJUSTMENT 97.19 -90.00 = 7-19

719 X 0.013 = -0.09347 -0 09347 X 12.543 KW BILUNG DEMAND

(S1.17Z39;

SUBTOTAL

ARIZONA CORPORATION COMMISSION ASSESSMENT

STATE SALES TAX •

$396;61Z76

$583.02 $19,858.40

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE

$417.054.18

S534.627.34 $951.681.52

Page 1

USACERLTR-99/24 49

ACCOUNT .2325-2001-1 CONTRACT NO. F02601-79-00023

DEMAND CHARGE 16,947 KW

DATE OF BILL: October 28,1996 DATE DELINQUENT: November 8,1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE SEPTEMBER 25,1996 TO OCTOBER 24,1996 .

$10.28 PERKW 5174,215.16

18,947.4 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7.1987 12.54Z9 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS . 18.805 KW-AUGUST 1996 16,947.0 KW BILLING DEMAND

ENERGY CHARGE 7.065,360 KWH 0.047457 PER KWH $335,300.79

POWER FACTOR ADJUSTMENT 94.96 -90.00 = 4.96 4.96 X 0.013 = -0.06448

-0 06448 X 16,947 KW BILLING DEMAND (S1.0SZ74)

SUBTOTAL $508,423.21

ARGKJNA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

$747.38 $25,456.75

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE

S534.627.34

$589.803.27 51,124,430.61

Page 1

50 USACERL TR 99/24

ACCOUNT 2325-2001-1 CONTRACT NO. FO26O1-79-0O023

DEMAND CHARGE 18,805 KW

DATE OF BILL: August 28,1996 DATE DELINQUENT: September 11,1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A F. DAVIS MONTHAN AIR FORCE BASE JULY 25,1996 TO AUGUST 26,1996

$10.28 PERKW $193.315.40

18.804.7 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 12,560.3 KW 66.7% OF THE HIGHEST BILUNG DEMAND IN THE PAST

ELEVEN (11) MONTHS ,. i f'/?«,ff" KW -SEPTEMBER J995 r BILUNG DEMAND l\* ' 18,805.0 KW I

ENERGY CHARGE 9,816,480 KWH 0.047457 PER KWH S46S.860.69

POWER FACTOR ADJUSTMENT '92.72 ' -90.00 = 2.72

2.72 X 0.013 = -0.03536 '-0.03536 X 18.805 KW BILLING DEMAND

(S664.94)

SUBTOTAL

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE

S658.511.15

6Ls S968.02 $32,971.66

io.ntä^ /

Jf /^S692,4S0.83

S661.960.08

•AT*/. . S1,354.410.31

Page 1

USACERLTR-99/24 51

ACCOUNT 2325-2001-1 CONTRACT NO. F02601-79-D0023

DEMAND CHARGE 18,659 KW

DATE OF BILL: July 29,1996 DATE DELINQUENT: August 9,1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED .

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE JUNE 25,1996 TO JULY 25,199S

$10.28 PERKW 5191,814.5:

18,659.4 KW ACTUAL DEMAND 9,250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7,1987 13 278.0 KW 68.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS 19.907KW —AUGUST 1995 18,659.0 KW BILLING DEMAND

ENERGY CHARGE 9,237.720 KWH 0.0474S7 PER KWH $438.394.4

POWER FACTOR ADJUSTMENT 92.59 -90.00 = 2.59 2.59 X 0.013 = -0.03367

-0.03367 X 18,659 KW BILLING DEMAND (S628.2

SUBTOTAL SB29.580.:

ARIZONA CORPORATION COMMISSION ASSESSMENT STATE SALES TAX

S859.; 531,519.«

TOTAL CURRENT AMOUNT

ARREARS AMOUNT TOTAL AMOUNT DUE

S661..960.C

S647.774.J S1,309.734.!

Page 1

52 USACERL TR 99/24

ACCOUNT 2325-2001-1 CONTRACT NO. F02601-79-D0023

DEMAND CHARGE 18,344 KW

DATE OF BILL: June 27,1996' DATE DELINQUENT: July 11,1996

TUCSON ELECTRIC POWER COMPANY SERVICES RENDERED

U. S. A. F. DAVIS MONTHAN AIR FORCE BASE MAY 24,199S TO JUNE 25,1996

$10.28 PERKW $188,576.32

18,344.0 KW ACTUAL DEMAND " 9.250.0 KW MINIMUM DEMAND (18,500 KW MAXIMUM DEMAND)

EFFECTIVE APRIL 7.1987 13^78.0 KW 66.7% OF THE HIGHEST BILLING DEMAND IN THE PAST

ELEVEN (11) MONTHS 19.907 KW —AUGUST 1995 18,344.0 KW BILLING DEMAND

ENERGY CHARGE 9,024,360 KWH 0.047457 PER KWH S428.269.05

»OWER FACTOR ADJUSTMENT 93.17 -90.00 - .= 3.17 3.17 ' X 0.013 =' -0.04121

-0.04121 X 18,344 KW BILLING DEMAND ($755.96)

UBTOTAL $616,039.41

REONA CORPORATION COMMISSION ASSESSMENT TÄTE SALES TAX

. $840.97 $30,844.52

3TAL CURRENT AMOUNT

DREARS AMOUNT DTAL AMOUNT DUE

$647.774.90

$575.399.82 $1,223,174.72

Page 1

USACERLTR-99/24 53

Appendix D: Spreadsheet Calculation Based on Option #2a

Historic With Engine Generator Operating 3 of 6 Months (Summer) Operating 3 of 6 Months (Winter)

Month Billing Demand

Actual Demand

Month Billing Demand

Actual Demand

JUL96(S) 18,659 18,659 +JUL98(S) 18,104 18,104 AUG 96(S) 18,805 18,805 +AUG 98 (S) 18,250 18,250 *SEP 96(S) 17,876 17,876 ++SEP 98 (S) 17,876 17,876 OCT96(S) 16,947 16,947 +OCT98(S) 16,392 16,392 NOV 96(W) 12,543 11,606 ++NOV 98 (W) 12,173 11,606 DEC 96(W) 12,543 10,787 +DEC 98 (W) 12,173 10,232 JAN 97 (W) 12,543 11,141 ++JAN 99 (W) 12,173 11,141 FEB 97 (W) 12,543 10,696 +FEB 99 (W) 12,173 10,141 MAR 97(W) 12,613 12,613 ++MAR 99 (W) 12,613 12,613 APR 97 (W) 14,142 14,142 +APR 99 (W) 13,587 13,587 MAY 97 (S) 17,026 17,026 ++MAY99(S) 17,026 17,026 JUN 97 (S) 18,099 18,099 ++JUN 99 (S) 18,099 18,099

SAVINGS RECAP FOR SEASON JUL 555 kW Summer: AUG 555 kW 3 months @ 555 kW reduction each SEP OkW 3 months @ 0 kW reduction each OCT 555 kW Winter: NOV 370 kW 4 months @ 370 kW reduction each DEC 370 kW 1 month @ 555 kW reduction each JAN 370 kW 1 month @ 0 kW reduction each FEB 370 kW MAR OkW APR 555 kW MAY OkW JUN OkW "*" indicates data that has been averaged between the month preceding and that following. "+" symbol indicates a month in which the engine-generator operated continuously, "++" indicates a month when it did not. (S) denotes a Summer month, while (W) denotes a Winter month. " '

54 USACERL TR 99/24

Appendix E: Spreadsheet Calculation Based on Option #2b

Historic With Engine Generator Operating 3 of 6 Months (Summer) Operating 3 of 6 Months (Winter)

Month Billing Demand

Actual Demand

Month Billing Demand

Actual Demand

JUL96(S) 18,659 18,659 +JUL98(S) 17,900 17,900 AUG 96(S) 18,805 18,805 +AUG 98 (S) 18,046 18,046 *SEP 96(S) 17,876 17,876 ++SEP 98 (S) 17,876 17,876 OCT96(S) 16,947 16,947 +OCT98(S) 16,188 16,188 NOV 96(W) 12,543 11,606 ++NOV 98 (W) 12,037 11,606 DEC 96(W) 12,543 10,787 +DEC 98 (W) 12,037 10,028 JAN 97 (W) 12,543 11,141 ++JAN 99 (W) 12,037 11,141 FEB 97 (W) 12,543 10,696 +FEB 99 (W) 12,037 9,937 MAR 97(W) 12,613 12,613 ++MAR 99 (W) 12,613 12,613 APR 97 (W) 14,142 14,142 +APR 99 (W) 13,383 13,383 MAY 97 (S) 17,026 17,026 ++MAY 99 (S) 17,026 17,026 JUN 97 (S) 18,099 18,099 ++JUN 99 (S) 18,099 18,099

SAVINGS RECAP FOR SEASON JUL 759 kW Summer: AUG 759 kW 3 months @ 759 kW reduction each SEP OkW 3 months @ 0 kW reduction each OCT 759 kW Winter: NOV 506 kW 4 months @ 506 kW reduction each DEC 506 kW 1 month @ 759 kW reduction each JAN 506 kW 1 month @ 0 kW reduction each FEB 506 kW MAR OkW APR 759 kW MAY OkW JUN OkW

indicates data that has been averaged between the month preceding and that following. "+" symbol indicates a month in which the engine-generator operated continuously,

"++" indicates a month when it did not. (S) denotes a Summer month, (W) denotes a Winter month. ()-number within = #units operating continuously for that month

USACERLTR-99/24 55

Appendix F: Spreadsheet Calculation Based on Options #2c and 3a

Historic With Engine Generator Month Billing

Demand Actual Demand

Month Billing Demand

Actual Demand

JUL96(S) 18,659 18,659 JUL98(S) 17,141 17,141 (2) AUG 96(S) 18,805 18,805 AUG 98 (S) 17,287 17,287 (2) *SEP 96(S) 17,876 17,876 SEP 98 (S) 17,117 17,117(1) OCT96(S) 16,947 16,947 OCT98(S) 15,429 15,429 (2) NOV 96(W) 12,543 11,606 NOV 98 (W) 11,530 10,847(1) DEC 96(W) 12,543 10,787 DEC 98 (W) 11,530 9,269 (2) JAN 97 (W) 12,543 11,141 JAN 99 (W) 11,530 10,382(1) FEB 97 (W) 12,543 10,696 FEB 99 (W) 11,530 9,178(2) MAR 97(W) 12,613 12,613 MAR 99 (W) 11,854 11,854(1) APR 97 (W) 14,142 14,142 APR 99 (W) 12,624 12,624(2) MAY 97 (S) 17,026 17,026 MAY 99 (S) 16,267 16,267(1) JUN 97 (S) 18,099 18,099 JUN 99 (S) 17,340 17,340(1)

SAVINGS RECAP FOR SEASON JUL 1,518 kW Summer: AUG 1,518 kW 3 months @ 1,518 kW reduction each SEP 759 kW 3 months @ 759 kW reduction each OCT 1,518 kW Winter: NOV 1,013 kW 4 months @ 1,013 kW reduction each DEC 1,013 kW 1 month @ 759 kW reduction each JAN 1,013 kW 1 month @ 1,518 kW reduction each FEB 1,013 kW MAR 759 kW APR 1,518 kW MAY 759 kW JUN 759 kW

indicates data thaf s been averaged between the month preceding and that following. (S) denotes a Summer month (W) denotes a Winter month ()-number within = #units operating continuously for that month

56 USACERL TR 99/24

Appendix G: Spreadsheet Calculation Based on Options #2d and 3c

Historic With Engine Generator

Month Billing Demand

Actual Demand

Month Billing Demand

Actual Demand

JUL96(S) 18,659 18,659 JUL98(S) 16,382 16,382 (3)

AUG 96(S) 18,805 18,805 AUG 98 (S) 16,528 16,528 (3)

*SEP 96(S) 17,876 17,876 SEP 98 (S) 16,358 16,358 (2)

OCT96(S) 16,947 16,947 OCT 98 (S) 15,429 15,429 (2)

NOV 96(W) 12,543 11,606 NOV 98 (W) 11,024 9,329 (3)

DEC 96(W) 12,543 10,787 DEC 98 (W) 11,024 9,269 (2)

JAN 97 (W) 12,543 11,141 JAN 99 (W) 11,024 9,623 (2)

FEB 97 (W) 12,543 10,696 FEB 99 (W) 11,024 9,178 (2)

MAR 97(W) 12,613 12,613 MAR 99 (W) 11,095 11,095 (2)

APR 97 (W) 14,142 14,142 APR 99 (W) 11,865 11,865 (3)

MAY 97 (S) 17,026 17,026 MAY 99 (S) 15,508 15,508 (2)

JUN 97 (S) 18,099 18,099 JUN 99 (S) 16,581 16,581 (2)

SAVINGS RECAP FOR SEASON JUL 2,277 kW Summer: AUG 2,277 kW 4 months @ 1,518 kW reduction each SEP 1,518 kW 2 months @ 2,277 kW reduction each OCT 1,518 kW Winter: NOV 1,519 kW 4 months @ 1,519 kW reduction each DEC 1,519 kW 1 month @ 2,277 kW reduction each JAN 1,519 kW 1 month @ 1,518 kW reduction each FEB 1,519 kW MAR 1,518 kW APR 2,277 kW MAY 1,518 kW JUN 1,518 kW

indicates data that has been averaged between the month preceding and that following. (S) denotes a Summer month (W) denotes a Winter month ()-number within = #units operating continuously for that month

USACERLTR-99/24 57

Appendix H: Spreadsheet Calculation Based on Option #3b

Historic With Engine Generator Month Billing

Demand Actual Demand

Month Billing Demand

Actual Demand

JUL96(S) 18,659 18,659 JUL98(S) 15,623 15,623(4) AUG 96(S) 18,805 18,805 AUG 98 (S) 15,769 15,769(4) *SEP 96(S) 17,876 17,876 SEP 98 (S) 15,599 15,599(3) OCT 96 (S) 16,947 16,947 OCT 98 (S) 14,670 14,670 (3) NOV 96(W) 12,543 11,606 NOV 98 (W) 10,518 8,570 (4) DEC 96(W) 12,543 10,787 DEC 98 (W) 10,518 8,510(3) JAN 97 (W) 12,543 11,141 JAN 99 (W) 10,518 8,864 (3) FEB 97 (W) 12,543 10,696 FEB 99 (W) 10,518 8,419(3) MAR 97(W) 12,613 12,613 MAR 99 (W) 10,518 10,336(3) APR 97 (W) 14,142 14,142 APR 99 (W) 11,106 11,106(4) MAY 97 (S) 17,026 17,026 MAY 99 (S) 14,749 14,749 (3) JUN 97 (S) 18,099 18,099 JUN 99 (S) 15,822 15,822(3)

SAVINGS RECAP FOR SEASON JUL 3,036 kW Summer: AUG 3,036 kW 4 months @ 2,277 kW reduction each SEP 2,277 kW 2 months @ 3,036 kW reduction each OCT 2,277 kW Winter: NOV 2,025 kW 4 months @ 2,025 kW reduction each DEC 2,025 kW 1 month @ 2,095 kW reduction each JAN 2,025 kW 1 month @ 3,036 kW reduction each FEB 2,025 kW MAR 2,095 kW APR 3,036 kW MAY 2,277 kW JUN 2,277 kW

"*" indicates data that's been averaged between the month preceding and that following.

(S) denotes a Summer month

(W) denotes a Winter month

()-number within = #units operating continuously for that month " '

58 USACERL TR 99/24

Appendix I: Spreadsheet Calculation Based on Option #3d

Historic With Engine Generator

Month Billing Demand

Actual Demand

Month Billing Demand

Actual Demand

JUL96(S) 18,659 18,659 JUL98(S) 14,105 14,105(6)

AUG 96(S) 18,805 18,805 AUG 98 (S) 14,251 14,251 (6)

*SEP 96(S) 17,876 17,876 SEP 98 (S) 14,081 14,081 (5)

OCT 96 (S) 16,947 16,947 OCT 98 (S) 13,911 13,911 (4)

NOV 96(W) 12,543 11,606 NOV 98 (W) 9,505 7,052 (6)

DEC 96(W) 12,543 10,787 DEC 98 (W) 9,505 6,992 (5)

JAN 97 (W) 12,543 11,141 JAN 99 (W) 9,505 8,105(4)

FEB 97 (W) 12,543 10,696 FEB 99 (W) 9,505 6,901 (5)

MAR 97(W) 12,613 12,613 MAR 99 (W) 9,577 9,577 (4)

APR 97 (W) 14,142 14,142 APR 99 (W) 9,588 9,588 (6)

MAY 97 (S) 17,026 17,026 MAY 99 (S) 13,990 13,990(4)

JUN 97 (S) 18,099 18,099 JUN 99 (S) 14,304 14,304 (5)

SAVINGS RECAP FOR SEASON JUL 4,554 kW Summer: AUG 4,554 kW 2 months @ 4,554 kW reduction each SEP 3,795 kW 2 months @ 3,795 kW reduction each OCT 3,036 kW 2 months @ 3,036 kW reduction each NOV 4,554 kW Winter: DEC 3,795 kW 4 months @ 3,038 kW reduction each JAN 3,036 kW 1 month @ 4,554 kW reduction each FEB 3,795 kW 1 month @ 3,036 kW reduction each MAR 3,036 kW APR 4,554 kW MAY 3,036 kW JUN 3,795 kW

indicates data that has been averaged between the month preceding and that following. (S) denotes a Summer month (W) denotes a Winter month ()-number within = #units operating continuously for that month.

USACERLTR-99/24 59

Appendix J: Construction Cost Estimates for Each Option

60 USACERL TR 99/24

I 8! 8 £ §J eS»»S

s O I

»• 3

i 8 8 s

Ü c § a 6 c 8

LU

3 o s i z c I ß

§

a» CO

f 1

m fa. «3 5

o

3 a

s CO

5 CD s 8 =

^ 8 2 E S3 to

1« I 5 OJ-5

Ä a To gf

'S? 00 CO

a»s » Ü »

~ s 3 o >

5I|

CM

s E ,g r-»

i

J3f ■ ¥^ S E §

SExftC

*3 -.as

CD —^ *- — S * £ S

§8f S" - 2a-g* «5SS2g

$ X

£&

a:

£21 -

dfi§

3 225

£ fe~

5 5 82?.'. S

«5

ÖJ"S« w ■Seo> |

^ « « ■= -o c:

Si

OS

r.S2 2

2®ls

-gal«

S * F

SÖÖ

USACERLTR-99/24 61

62 USACERL TR 99/24

USACERLTR-99/24 63

64 USACERL TR 99/24

USACERLTR-99/24 65

66 USACERL TR 99/24

USACERLTR-99/24 67

68 USACERL TR 99/24

USACERL TR-99/24 69

Appendix K: Energy Cost Estimates for Each Option

70 USACERL TR 99/24

o> »— c c *-* © tn Ü

■a c CD >

c o Q < »L $ O, J£. o

2

TJ CD co

-->

aj

CO CO CO lO CO CO CO §,0 Ö Ö Ö Ö CD CD

Or U)4 OOOO ^noisoot CD CO CO in CD CD CD Ö Ö © Ö Ö Ö Ö

ts ^ -g fc a fe S § - -

_, ^ in CM co CD in CO CO CO "

IP CM CO <* NOO)CM

o> co in c» i-^ c\i (DO)* O CM-CM

22 J2^CMCVJCMCMCMCMCM

o o o o o o o CJ> O» O) CJ> 0> O» OS CO CO CO CO CO CO CO

SI CO a co s

co = tt 55 s c*>

o o 1^» CO

CO CM 3

CO E 3 CO c o

CO CO CO CM in

■«a- in CO

CM

o> CD CM s 3 00 CO

Ü o O o o o O o

TJ o O o o o O o CD o O o o o o o CO 3

x: ro ■* o ^s CO ,— -^ CO m o h» CO m CO

CO o r» m CM o CO CO CO

O 111

CM v *"

31

o o o o o in o in o o o in CM o r-» * CM in in co, CM c» co i*>" co* r>" co" CM* T- CO CD O h- CM i-

0)00§W«>0 O CO CO _* L: q CD C3 CM* CD 00 O» "t °° m co g> o CM S r; CM CM * ~s _T CO CO

o o o o o o o o o o o o o o 0,00,00,00 B*T-"*"o"r (Or- co in o t*-. co in co o i*^, in CM o oo co Nrrrr

o o o in o o o «"oosipigo N N O O) N W W o co co" a" co co co CO CO CO * 00 CM *

TJ H 50ffl*(0OS CO CM —' jo** CO 00 CD in CM t- ^5

Q. < CO o o r» CO CM

CO CO

CJJ o m o m o m o

§2 SIONOMOWO 9 i£ CM NMi-rr-r

j, CM m co UJ ^ co 2 T- i- CO CO " O)

o in o in o in o IOWOMONO CM CM CM T- l- T- 1-

USACERL TR-99/24 71

E 8 u.

to

c o

I -DO £ £ p o o o

o B o o o O Ö o o o

O A O « (OS (D s N v.. en -m co g in © co o>

O

o o o o o o o § o o o o o o

o o o o o o OS 0> <o N. CO r«- CM CO CO 5 in o (O 0) to IO CO CO CM T"

14

.O 0) H O u

in en OJ a> m S O) CM in CO N s m in CO o T™ o er> CO N CO CO CM o o o CO CO h. O CM CO CO CO o in m CO CM

en co T- en m CM co O) «t o o T^ CO N a 4 n n o) n 4 co o co o o> co in CO © CO CM r^ in «T <* T- T- "* in CO r-

o o

c 5 fc

« Ui S p O CM Ü _£

UJ

(ji a» in N o) co r>» s in m © o> co r«-'

. o o o co I*. O CM CO CO CO

CO" CM in CO CM

N CD i- o> m CM CO © * © CO r-m CO s 9 t n ff) O) M <t CM o co o o> co in o> o co CM T- m ^>

Y? T-" *t in CO T-"

2* -^cococococotoco e fi ä « ^ v » » » * ui«Sqqqqqpq

CM CM CM CM CM CM CM $ $ $ $ $ (; Jj q q q q q q q A ^S, iA. ^<* .^A. A ^Z. w Vr WT W7 VJ \J/^ W

» E S co m o a» co e ü a co" co

CO

Z 5 © © o e o

CM o> ö

CO

o e e o o o

£ cCiniAifliniflinm ^J ggr-'N-ix-KNih-r».

DC a w

N. K K S S N. S d d d d d d ö

in in m m in m in N N- h» h» i»» r». I«. ö ö ö ö ö ö ö

CO Ä a>

s ■C » 5 »• +* :* c

CD o

i. CO o S s

(0 O) 3

S) g- c S c

CJ

fi a c

l^a a> > =8 i-

.x D

s s s CO CO o in ^ co

£ 3" 5 3 $ £ * S § 8 CO

CM q co in co 2

CO CO O) ^ CM o> CO 0> T"> 0> a» o jr o ^ CM CO CO T- N CO

© CM i- 2 © CO «* ID « N O Ol N IO

O CM i- * O (O * « o ~ 0> f- 3

72 USACERL TR 99/24

*- *f>

UJ

15

ß

(A O Ü >» E? CO

10 c

■jo

IS « P S

o S_ co oo co o g 0)*CV|T-T-

3 CM S t: JP 7T oo

^ggt °. » CD

h- jooS CM CO CM » °! °i ai *i cd ^ S! 3 i5 CM ^ zz Si g> © co m eo co jo CO * r» - *• " ~T

°> si

IS CO ?s

CO "8

S (0 03

O CO

JZ

m co co 3'

h» * *"" 0> CO rvi _- o> t?> CM CO CM 5j «

r in co n N «I o o> a> h- co o s; co CO CM * CM CM "^ "

O CO tO CM CO CO "* tNcnoooio O)os»neqr iC T-* i-^ r-T CM" CM* to" T-O) SW2J9 CO <o lO *«t CO CO CM

CO CM CM h» lO CO o to 05 ^t S» T- ^ CO CO CO CM >o to CO o cö co CM © r^ cd O O CO o> CO CO T- T- i- T- co * n t-

Cft CO lO CM 00 CO "* * CM en o> o o to CO © h» CO CO CO: i-^ S T-" r-" S* N CVl" O 1-OMOO)* t CO CO lO •* CO CO CM

I fe J= o o 3-°

*5 CO

o o o o o o o o o o o o o o o o © © o o © oo o> co" r>>~ co r>" CM CO CO * tO O CD CD CO lO •* CO CO CM i-

o o o o o o o o o o o o o o o o o o o o o co o> co rC CD h" CM CO CO ^ IO © CD 0> co to * CO CO CM 1-

|3 a5 CQ

II CD nr £ co •- a:

CO CM o CO to

CO CO

o CO

>>

CO CQ

*- CO co x:

CO

CO

CM CO CO © l>- tO © 0> 00 to CO CM O © h» CO CM CO

"coS« eo .<: « ~> Ä CD CO CO J2 "O CM 1$

<"> CM j-^co^toSj^

© 00 ^. to o CO CO

CO © Si co" CM w T-

co CO CO

CO Z>

USACERLTR-99/24 73

co ■ TJ CO c c CO o o

k- co .a u>

CM E o Q. .* CD CO CO

ä o „ «es co Ü

CO

o CO x:

0.

E . Urn CD

c o § b E 3

CO

E Is £ o

CO c ga "IZ CD CO

o c CO *i

* Z

8. X CO

co t? so

Ü

i

3. O

I co E co

*- CO

>» CD CD c CD CD ■C ^* ■o c CO

CT co

o

C5

-3

E p

^ II 8 I £ CD pj o SP Zo5

Is 0° tog

S II CD

Q-O |o g tj 0_ O.CJ j2

öj&co&iiS

O O © -o CD £ 5- CO & E ii E

JD CD

CD

TJ C CO $ o

« I Q. -°

CO CD <ll

5 ? O © c

co

&S §™

o o

£** I o ° S S5 = £ JS«j

o o o CO

E

II

5 -2 Ü °» TJ CD

loci CD + X ■J- CO n. CD CO

° «2 oE CD C JK 3

°s •c ■" CO X) Q-3

i 8

W CO CO

DO

CO CD CO c CD QL X CD

74 USACERL TR 99/24

<D •D

£» ^ *•»

O £1 CO

3 1 Ü

cocooocoeooocvjll CMCMCMCMCMCM'^-V" m ri w cö cö ei eo 2 iqiqwiqiqiniq'H CDCDCO*CO"CO~CDCOJJ"!

N. i^ r^ i^ h. h> c» CM CM CM CM CM CM OJ CO CO CO CO CO CO f- CM CM CM CM CM CM IO o> o> a> en o> o> i-^ io* io io* to io" io" to*

£

S

CO

I

IU

CO CD CD CD CO CD CD CD CD OJ CJ> CD 0> 05 * -tf *• S 2 3t 2 o o o o p oo d ö ö ö ö ö o

1 •a o Ü

i&&«}<&*»0>*&

i CM CM CM o5o>c»oooo io vr> io

If) If) JO in in io in r*. r^ r^ r^ t>: Is-; t«^ ö ö do d ö ö

CO CO CO CO CO CD h- CD CD CO CO CO CO h» CM CM* CM" CM CM* CM CO CO CO CO CO CO CO CO CO CO CO CO CO CO CO

CM CM CM CM CM CM CM r»- h» r» N- r> r^ r^ ooo o o o

dodo d do «3-»»» «»€»«&

S! 8? 2? S? 2? o o CD CO CO CD CO ~< ~J IO CO CO CO CO o o

IO IO IO IO IO IO IO r>. ^ t^. h» r^. r^ Is"; O O O O O O d

CO CO CO CO CO o> ^J" IO IO IO IO IO IO *- CD CO CD CD CD CD CM hT r«J i>T |C|C|C co* CO CO CO CO CO CO CO CO CO CO CO CO CO CO

CO CD CO O) CO CJ> ▼- CD O) O» O) 0> CD O IO IO IO IO IO IO CO

CO CO CO CO CO CO O) O OO O OO O CO CO CD CD CO CO CO

CO CD CD CO CO CO loinajoooo IO IO to IO IO IO

CO CO o o o o

unjSNNSOO CtO CO CO CO CO < IO > ■

co § « £ fi-»cocv|r:-,-:CJeocv"0£21ScMS2 ro J2 ^ O >tf CO CO CD lOCM i- " T- i- CO CO £! o> ^

o o Ü

CO o CO O IO O lOO IO o

IO CM o h» IO CM o CM CM CM -i- T- 1- T-

O IO O IO O IO o IO CM O h» IO CM O CM CM CM T- t- T- i-

USACERLTR-99/24 75

O CM T- "«* O CO «»

< ^~ ^» ^~ T™ k_ s u

1 m LU

a c ö o O

k-

Ü o T- in t o oo o c o

o f CO O O) o o ^ co co co to co co co o _

«r UJ o o o o o o o o

i 5 o Ü

■o *5 8 (0

2 X ? s "at Q_ i§ c

o GO 5 t. o o o o o oo

E P

o o o o o o o 8 t- T- t- 1- T- T- T-

ü u.

O CM i- ^ O CO ^ <Df CMOCBS©

OT-IO^OOOO Snooioo* co co in co co co ö o ö ö o ö o

o o oo o o o o o o o o o o

CO.' —

ü 21 »

CO 00 iri

oooooo*". C0cdcdcöcöcöo><° CM CM CM CM CMCMIO o> o> o* o> o> o> o> 8) o) si S) n O) o>

CM CM CM CM CM CM CM in in in in in in o §00 00. 00 00 CO CM

00 00" 00 CO CO ^* CM CM CM CM CM CM CO •«t -*f Tf ■** ^t ^ "*

ca

co z

& ca tr co co

CD

CO

I m m m in m in in N. t». r^ r» t>- r*.1*~ CM CM CM CM CM CM CM

o o o o o o o OS 0> 0> 0> CD 0> 0) CO CO CO CO CO CO CO

CO ca o ♦SOOOOOOCJ £o?cno?q?o?o?'* 7= co j; ^F ^f *-<**■>* -« S i Q. CD J= fDOO O OOOCM coecco^cococococococo ZR => ml? OCO" CO CO CO CO* CO CO O co CD uj a.

CO CO CM CM

CO CO CO CO CO CO co'co*

coco

CO CO coco CO CO co'co"

co co en

£££ CO CO CO CO CO CO cqcqco_ CO CO CO

s a. 2 CO ca

CD

u

<o

u

UJ "X ill *>-•'

€ 8 CO Z 3

o o o o o o o CO CO CO CO CO CO CO 00 00 CO 00 00 00 00

o o o o o oo CD CO CD CO CO CO CO 00 00 00 00 OO CO 00

mm in in m m m CM CM CM. CM CM CM CM o o o o o o o

in in in in m in tn CM CM CM CM CM CM CM O o O O O O O

CO CO CO CD CO CO CO CO CD CO CO CO CO CO

76 USACERL TR 99/24

o <**

o J» Jß JS «n ■ «-, UJ CM CM • ^ o> ««0000° joooooo

Sie?«- to Eö O © Q ÜCCO

"?_ w oo o co in co !P 22 21522 i ON(00*00)n NCOO^OO)- L. £ ,9 © <d in oö Tf CD o to in cö 3 co o « O o> P: <o ir> co i- o> h-<o ir> co ■■-

— E o «£ © ©

inioocot-oj mioonr-ffl OT-wr-ax» oi-mi-coo) °_ <D <0 <0 S <D N (OIOtOMON

£.£ö ^ = o

«S E o 5 fflJS 2CCUJ

o o © o o o o o © o o o

c I-BISSS^SMO 5*2 £! ? *»• m CM ° Ego © o-2 CCr-UJ

_ <o in ffi g <o CD co co <o CD |*{ g £: in .PCotOCO^^COr-CD CDTfO"ri3<£? ^Sü^Vrru)*^ <o ^ «n £ m 2 CD

CQ g J 03« £ £ CO CO CM CMCMloJg^CO

*ffl^ "«fT-^* *t CO 1- ^ ■*- -r- ^ CM o as r^ CD g> CM ö ° 2? Ji 2 22 S! 00 T- CO «O- CO CO CO 00 ^ CO <D CO CO CO. co «O CM* co CM" ci co co <& CM ed CM CM co r>» CD "i— CMf T- >- -Is» f"~ CO T- CM ■P- ■P- Is» <o«Di^r*-t^t^-«D <o <o r» h- r>-1*. to

o 2 o *~ E °

— O -Q

«Noxooo)« 2* 2* 22 2 22 22:? „NfflONOON NfflONOOS £_,.or«:ts:cöcöcöcöi^ r* i*. eo co co co h» ■= g < T- -r- -P- T- T- *- *- T- T- 1- -P- T- T- r-

tn m JG CO CO CO W ,. ^ CO tO *- CD W CM CO om «^ S) co S P: fe co co «t q q I-; oq t^ Ü^ggoT-'d»^ co <<* cö cö co cö * _ = £S(OWOOSfc CD O 00 O CD CO LQ «<ö<D.fi.OCMCOOCO CO © CO CM -P; lf> Tf jS fc J9 2 in in co* CM"™" *V»-^IO»T- I_ o © so--

CM „o T- rv. co co in,. _ «2 ^ 2 r: S m CM co to© f^n^hfeSS ö O LU cW © f^ O CD !2 l? £{ 3 *t CO CO CD CO *• O _ co oNOoStN- go © co o co co in £<:£COI*.OCMC00.OOcO öqoocM.T^iq^' > !z §co"cM*m*co"cM*0,:>co-r- "PPTMOOP 2SO „ © !* CM CM toQ] o>°°. q q o=~5S00000 goooooo ~ < o q o 2£0 o3«88 ?

ö f- <o ro CT

USACERLTR-99/24 77

v. ^t co ^ ^ T- ^ **• <■ oo T-^ T-1-^ O NOCDSOCfiCM CM O 0> N-0> O) CM U. CO i-_ CO CD CO CO CO CO T- CO CO CO CO CO •a of CO'CMCO cacao? o> co CM" co" cvf CM o> ™ CN C» *- CM T- T- N- N O) T-CV1 r- T-s o? .e cq co r>-_ i^ r>-_ N-_ cq »»»».».

£• 3 T- T" *— T— T— T— ^ T" ^ ^ T— T» T- T—

a> a ,9 S (0 £ v. £ °s

«a- ooooooo ooooooo J2 *~ ,—«CO CO CO CO CO CO CO CO CO CO CO CO CO CO to 2 fe CO CD CD CO CO CO CD CO CO CO CO CO CD CO (B 3 £«»«■«-»» .».-««.

S n 3 0) 0> O OXW © O) 0> OS OS 0> OS OS 0> r °- gOOOOOOO OOOOOOO « E ^TJC\j" CM CM" CM" CM" CM CM" CM* CM" CM CM" CM" CM "SO c

o

s'f o o o£ oSr *»u)oo>N.o> m N. co co ■* co co ■g ^ ^ao>ocqnu> co»"ro>r;ON tS ^ to »- cö in ui cvi i^ o ö ^ i-1 c\i us ^r o z CM * cam m o oo os co r*. ■<* co o us m & o>co co co io ^f w co co *• co o CM co "¥ _ c ^ t CMCMT-T- i- CM CO CM T-

o <a <3 FC0 O

(A a>

i2| a m > c OP == OQ: g

— E ESco^oitcOT-. ^»COT-COCOCO. «SjB EoT-cD5fc'-;o 5«oro>«o |5g £ CO"CO"CM"*--•*• CM*l0T-"cM"T-"0>

o

•fc CO CO 3- N> JgO -r- J2?>«OT-00> »- P FMJinn-'inWNOu) CON ■ •„• r«. o fi« cioiootS?'"^«- JR S2 ■•- <o <o S9 S tt J= =5 *~ "* » CO £ JT O 0> «SOrfflWO «fc O-r -_r -C0CM lO to --r -OS OO) ocx''r^pv'T" ^ CM i— ODC Ü

a> 0)Oon«,A CM-i-o co T-IO c ö!SNSinoS co co us CM i-os

«2 '55 Ü Q O) « w N * T-r-T-iOr-O)

20C UJ

78 USACERL TR 99/24

r* CO CO CO

5 m cococnr-rv.p.««»

ES?

Q. E 3 3 r*I ^ co co T^ co _f »■;

00 T- ,* CM N l- ^ y 3 o « to C 03

> C0 <2

o O 5

"8 to td O

u. 5 00 CM CD CM CM ^ cn T- it co s; j; en TJ "3 CO f- CM CO CM CM 0> O 0) tC NT CD in co co NT > CUCMOCOCOCOCQCM

CO < tf

3

CO to © cn £. JO JO

&§?5S9? T- ^" i- CO U5 ■*• CM

* CO CM CD CM CM 2 0>: 1- *t CO sfr "fr OJ OX i-^ CM CO CM CM CD rC rJ cd irf co co" r»T CM O CQ CO 00 CO CM m w ^ "«• ^- ^ m

1 Js ■g •o

J2 '5 CO

. CO CM 0) CD CO CD CD t co m co co co co co ^COmCMCDCMCMCO Sr^incocMcncnV1

CQ»-cni^cDh.N.T- ^ CO CO CO CO CO "<t

co CM en co en en CD CO lO CO CO CO Ü3 CO oo m CMC»CM wco »-^ in cn> CM cn cn •»- T- CD: t>- co h» I««, t- ■* CO CO CO CO CO St

>» ,*** 3

GO c IF

UJ

"5, 3? t 3 CD cr £ CD t- CC

T- CO CM O 0O in

ni i- CM en i- CM -. -. tx. cn co to co 5 3

CD in

cn m en en in cn in

co 22 T- © co CD m <D CO in

i •=?3 i- N. m co t-: (-; o rx. _; m T- ^r co co CM ffi CM T- co £- en ■^ u' ^ CO * CO T-

at

CO

5 CD CO Z>

3 >» T> s> CO CD ai C

CC UJ

CO CO 3 CO

to CO

CD

jE "C"CD CM CD CD CD CD CO .ccomcooocococo ^ooincMcncMCMco

co CM cn co cn cn co co m co oo co co co cq in CM cn CM CM OO

CO «T-"lOO)«CftO)i- ££.■»- CD |x- CD |x. 1^ ■»-

T- m o> CM en cn i- 3 T3

o T- CD (x. co rx. r* ■>- ^ CO CO CO CO CO ^* •"U- CO CO CO CO CO >*

CO CO CD CD d

CC I

USACERLTR-99/24 79

ism co §°©'

fts" © ©°- (D to CM i

5-I

CO

■o CO

CO o o

o CO LO •

(0 o g CD

Q. O co«»U.«»

Q m + N + CO c E J2 o Ü CD Si

JOO .» CO

to ■»- CO o

_ o fco

o 3? .2 >.«£

gill CO H CO

TO«* "55 E CO i2 « en PE = I- CO >

Q CO CO

CO >%-5 o E>co I- ©CO

< 2 vj

5 CM to" to

00

Ö o>

CO

Si

o CO IO

in CM 1^ CO IO C>

o CM CO

CM

i-i • * rf CO

© + & co «-

8 «Is 5-c co © E ©

3 C

coorco o> r^ T- co r^ co co co en cd 6 in * *' ri CO O CO f- CD h* so o> t^ ^- •■- 10" co cd co* r-" h-~

CO

r*. CO CM oo W CM CM ■* T- lo r* ■* co co T» © IO V^ CO T^ Tt 1^ CO co ,— o> o> co r»» IO -S©CMr-

t^ CD CD 1J- CO CO CM r>> co in co ^ in CM lodddcdcns CO f*» T- T- CO O CO i— CO '»■^CM T- r- CM o co" r«~ o> T-* co co __ i* *■> r*i r*± ^^ +**. *f± T~" W^ w7 w ^^ ViJ V7 «9- V>

LO

LOCDO>CTO§CMO cocor^.^i-r;»»«0 _; • .• LO 00 OJ _; —T SSSJG^CMCDgJ00 CO o> CM LO CO co o> CO CM CO ^flj^C»

D> O ©

S Ü © C CD ©.o

© TO £ 3

D> C ©

Tl £ SI C Ä£ CO # o 3 £ co

c CTC o CO a P. O CO O — CO **•**' CO-

5 I v. ,2 T7 CO CO 3 E ©

§ ©

B a

Q. C ©

CO o c CO >& o u CO co © © w rn CO lU m c UL m if o

© CL X ©

b 8

CO >» o (Tl E> co n © CO

E c © u u CO ^ sz o \- CO Jri co «•■^

CO o CO Z

AS I

i 3 l ^ 0 i

1 ° f cc 5-

80 USACERL TR 99/24

3 •o

>N in in io O) o» o> * Ä ST- T- I- o oo "<r = 0* ö 5 r

1

to o Ü

I

$

i cd eä ocx « co co co co <

a™ W lO « W UXIO CO

CO CD CO CO CO CO CO o> ox o> o> o> OS en sssssss O Ö Ö Ö Ö O Ö

V> f& t& V> V* tfr Vi

«*

o in in in m in it co h- t»» h» h» N- m - • T- 1— T- T- T- T- t^ CO CO CO CO CO CO o> h-h-1^ r^ t^ r^ r-i

CM CM CM CM NW CM

CM CM CM CM CM CM CM i^ t^ h- h- r^ t*. tr ■* ^ * ^ *»■ •* ^ OOOOOOO o Ö OÖ ÖÖÖ

"8 ■o S 3 o

S «9

211 JO

cllS I

i- o

e o I O

a O 2_ CO ~

I UJ 6

i

I

CO o Ü

■m w«

CO CO CO _:_;_; _; ~ ~ ~ O O O O CO CO. CO

m in in m in m m tv. rv. r^ r>~ r«. h- r^ ö ö ö o öö ö

1 |

LLf Ä

co co co in nconeo CO CO CO CO

In S In in >♦«*•*■ ■* £$

Oi i Oil

i Oi co o> o> j~ i co o> o> o> o m m m in m in co

a X £ II

el »- CD _

3* 3 5 lit a.

O) CO o> o> oi o> OO CO CO m m in r^ h-1^-

o oo o

O 'I

5* o

13 Q «- CO

Oo)5<oosncvi J h» CO CO CM T- T- CM * co oo co m CM i-

o c Ö o Ü

Q gomomoipo I2CMCMCMI-I-T-I-

in co ^220000

oo'tn .cvF o o oo

m in in in in in in r^ h« f^ r*. r- r* N. o ö a ö ö ö ö

i». co co co co co in CO CO, CO CO CO CO CM ^- •«r xr ■v **■ ^* CM. T-"T-WT-"T-"W" CO CO CO CO CO CD CO *t ** ** ■«*• ** "«■ ^f

oo oo oo oo oo co en OOOOOOO CO CO CD CO CO CO CO

o> o o o o _ o> o o o o o CO CD CD CD CO 5 ° m ooo o o smioiau)

a. < i. o z moos CM m co in T- T- CO CO

CMSS!

o m o m o m o in CM o r^ m CM o CM CM CM T- -i- T- i-

USACERLTR-99/24 81

s 3

1 D_

I o o Ü

ft

If 8. > t-o o o o o o o ,c o o o o a a a *5E 1— T- T- 1- V- 1— y

O O O O O O O O O Q O O

09 O O

CO CO CO CO CO <0 O .49 p p p p p p r». 0Q CO GO CO CO CO v ©CO CO CO CO CO CO f-

r^S-pppppOT^ w co co co co co co co

in to in in m in en CO CO CO CO CO CO CM

oacoco oo coco do CO CO CO CO CO CO COT

CO >"». "55 «3 £5 (3Ü 3' ccco CO 7

CO S COS o ■■—«

CD ^ ' «2

c roP o cS: U JB'C co CD £ CO o 5 O £5 o

cCL 2 O o 3 s z ^1

10 Ul

s IS CD QJ

8 CD

S» UJ'"'

is 8 3

ZZQ. ■o

^T3 CO S3 Ü CD 3

«"8 CO E| u

it P CD « S tu B>? ■C 0-

l "5 »_

t- CO CO

in tn mm m m m t«* t*. r*. f>-1«. N. r* c\i c\i cvi cvi CM oJ csi

CO CO CO CO CO CO o> CM CM CM CM CM CM CO OOOOOOO c\i cvi CM c\i CM cvi r^ m m m mm m co: h- r>» r»» i>- h- N- h- ^ ^ ^* ■«* ■*■* ^ ^

OOOOOOO co co co co ca co cor CM CMj CM CM CM CM CM co co co co co cot cor co co co co 00 co co O) O 0> 0> O) OJ 01 iC tC i>T |C »C rC |C

000 o>o> o> ■* in in in p op ^r 05 o> Oi, CO CO CO CO CV CM CM CO CD CO <*•

O O O CM CM CM CM CO CO CO CM CM CM CM

8OOOOOO 01 roocno) co

CO CO CO CO CO CO CO

CM CO CM CM CM CM m CM CM CM CM CM CM W ^ '*'*'* ^r "* p CO CO CO CO CO CO T~ Sä Si 2* Si SJ Sf 52 •CO CO CO CO CO CO CO tf -tf ^T if ** <* *f

OOOOOOO CO CO CO CO CO CO CO CM CM CM CM CM CM-CM CO CO CO CO CO CO CO CO CO CO CO CO CO CO o> o> o> o> pen o> h." tC fC tC rC r«T i>T

m o f» m m m ■* 1-1«-. ^ h. t*. is. in WCMt*T- T-T-N CM O N (O CO CO O) os CM «* r- r^i*^.^

" |C ■*" Y-" T? T? T? CM CM CM CM CM CM 8

82 USACERL TR 99/24

c o

m w o « ■■-> o> OT-IOT-OOO)

o>_ co co cq r^ cq r-; coööööoo c a cöO £ S <D Ü2 QCUJ

O r- lO i— CO O) CO CO CO N- CO f-; Ö ÖÖ Ö Ö Ö

a

i sis OC CDh-lU

fggl58»o

O

3 4-* m 2

00 OIOOCO _. ! t^. Co io s: in. 5 co o ca en cq ^

[ en cd evi cd r^ ^r" 5)inmo(oS CM CO "* *■ T- m

ÖJ Is» «n■ •*- f** ö 52 T- O T- T- "^ g> r- CO »- T- A r; I*. tf 5~ N. c* ^ CO OS CO CO £~

!>>• h» r» Is» r»

Oi r^.en. co CM ^■■rvT"g T>» NOJNOr

*" i- CM CO OJ

in en •«* eo •» ■* w ;c\» Ninss o s ca ' it? _ _ .* ■St1 n, i— O *— f- *T

r- g? t- CO 1-*f" *-'

K- f». t». i^» r> K

CD

c o,

(0

«a S

CM *- O» T- .T- CO aopoon 00 0> OJ 0> 0> CD

o> o> o> to N cn in co r»; r^ to in OT»00)(0 N" co CM o a OCQ f^ O CM CO 00 CO

'in in co"CM

eo CM *- cj> *- ^- co cqcnoqoqcq CD CO CX> 0> 0> 0> £0

o> co T- en m CM co co * o q i^ OB N

8 3 co a o> co « co c^ 55 CM t^ in •*

(0

«5 x: 5

CO o o i

S0ÖNOCM ! CO CM lOCOCM00"

5: «' SCM O O O i

i '

u CD

CO o o o o o ^ CO OO0QO CO lO i»*»Vi<»f»

CO O

<a

SO

HocgacnntR

CM O O O O© O atooqqqq Ö Ö Ö Ö ÖÖ o 5 CO

<

1

c "o o O o

LU

T- T— T» T— *" " w ISSSSM

c o

1 u

UJ g

3<^

Or-tO^OCOO Snoeaaos

CO CO lO COCO CO Ö Ö Ö Ö Ö Ö Ö

OrlO^OCOO

co co co in co co co oddödoö

USACERLTR-99/24 83

to o o u

c Ö

i o to

,g§ u a* tu w o

CO

T- OJ. W Q 00 CO lO rnui T^ cö iri ui oi i^.' gcMj^cu mcoosoo — to <o CO tf> Tf Ui CO a ^f w cv TT ^ *^ *^

m r». oo co ■* coco o> ca 5? o> T- o r*. ö ö T^ i-1 oi ui ■*' en co r»-tr co o tr>

8 v> &><&<& co *£ ca o cvfco ^

. ^ *» v* c\I co oi T-*

3 co o O ^o •c 6 a> tu

co o

t 0. o •c

I UJ c CD JZ 5

I a>

"5 S «> fc !ß cö *^ © e? CO ^ OJ ^f R/ II <E a T- jo co S 55 o co co CM T- *** '•,*

SßSSSR

*** Y» CM T» w#

E s

o

si

to Q Ü

LU a»

■ c- c n> R> c E- Ö CD c3

■ ZKP& «?.*? ^ "^ CO CM

ia<go>s S £ ^^r coco 5 r; CM 1-! CM T- °° °J

en oi S 52 5 o> : cd rf.1"' Ä £; cd °

g»_ c» o o in rf m c «a.; CM

t:5SJ'*CMlOCO'r-'* 5 CD JS Seem

Wr-OOOr-lO co co in CM l- ox »- in **■ eg r^ to o

o t

S^ I CO o Ü

Ui at

c3.S EÖ CD O 0CÜ

fee a>& m m ~ in

,CM ririooooo oio o> co CO i-

in co jjoooooo o>

e?_- in coo oo in oo v-~ oocotoco50>w

o «9v->o>ts.coinco»-

Jos 2CCUJ

in coo com co NCOO^OO oco tri co 5* oi o» r». co m co t-

84 USACERL TR 99/24

>.

03 3 S3

c ? LLI 75 03

W k_ -» 0) tT JZ (!) h- X

fs. 00 CM" o 00

in 'S- CO CO

o CO

CO

X ** CO CO

r«. co "» co o> m CM 15 Si CM CM ■* co co co S c -=-m. co co iA CM £ T- J2

©ajacococoT-riaiS — OJ w v; T- r; w (jj ^ 0OT-I-T-^CMW'

2 to CO

OC

'1= CD c

Ui

lO CO CO CM CM CO CO CD CM CM T- CM CO co m T- o> co co ^r

n u> ^n rt m ai rf N^coeosr-T-

co r^ i- CM CM T-

to

jg co J2

to 3 to co

DC

xl-cw-cotcococ» p>ioh-cacoeoooin ^Soorcococococqoq o SB-r^ cf CM in CM CM" t«T — wCO CO CM f- CM CM CO ■g. CM CM CM CM CM CM CM CD' X

o> l— CO ^" CO CO o> m r^ co o> co. co in oo co coco cqoo oq r»* o CM* in CM" CM r^ CO CO CM y CM CM CO CM CM CM CM CM CM CM

o LL

to CO X c a> <o «

c o to

ffl CQ T- © T- (O T-.»".T". "= w CM" cnr*" •*£"£* cu" £ h- r>» co a> co co r-

i- o> r-» co h» r*- T- •t- CO t- CO i-^ y-m i—_ CM o> K ■* r>" £* CM h- t^ 00 CO CO CO r^ t«^ r*. is. r«. r^ r- r~

u CO CO X

3 TO 2 Q.

CD to co

CD 5

s o 0.

75 E ** o <> i_

l-Uk

o o o o o o o o o o o oo o ^-»ooooooo Jcooooooo 2OOOOO0.5 B0 T-" •«-" T- T- T—" 1— T-

c o

O O O O O O O O O O O O O O O O O O CO CO CD o"o"o"o"o"o"o 5 O O O O O O

USACERLTR-99/24 85

—»©

w "»SO- TS CD C CO jS C •= CO

'pW CO H CO

It

n « o>5£ ,o c £ I— CD >

Q a CO

ll II co *■* en (A n o O Ü

5 0) F

00 o f= (i)

Ul r~ c O >x

3 k- Ü co © CD OO-

J. <0

(0 ><

a>

2v "5

§§ •1*°-

o> CM co co co m CM CO CO T- f>- CD ^- CO CO CO r*- CM CM w CM in CM o> 1- f- ">* CM ^ IO CM CO CO ID CO CM O

i-to)ins*co h- CM CD T- ^fr lO CO co 0 co CD in eo co

O O T- 1- O O cocn(Dins<o^ ^_ *** *«■* **» **\ *« fft ^^ \fj VJ VJ w wX VJ

«0. *<o, 13 « 5» S" CD CO CO CO CO T- 5Q" •ooxowcoeo Q=-'<oST-«DC>to''s-fii Ss oS<-inNO(SO

CO CO CO CO ?S 5 "* CD t>» r<- o> . °i CM cd CM r«^ CM 12 S2 co (OSCOCMSSN CO 1- CO o> »2 ~ 10

to a

<D

5 13 Z "g

1

CO 5 c' o a. E 10 c o Ü

CO CM 1- W CM •* ^ 51-1- g> CMCOJOT-O CO -r- CO T- CO Tf to* ■* 00 CM r». co O CO CO T-" 1^ °°.

T- CM 1- T- CO

CO T-

5? lO CM COT- CO o CM !•«: CO

CO ^" o> ^ o» try fM Tf h» 0> CD ^ 92 Si co in eo v co *". S o>co o h- o>

^ CD O T- CO

CD CM CO CM T- o»

«' 5

CO "O CO . 00

o <D £ X < o'Sco

CD u 3

■o CD

CD m co CD:

r-- r«. to h» r». co ■<f •<* ^ ■* •<* ^

in m co in in «t rocoNoaco o CM CM CM CM CM CO

T- CO ^" CO CO CD h- CO CD CO CO W CO CO CO CO CO CO CD CM in CM" CM I^T CO CM T- CM CM CO CM CM CM CM CM CM

co r^< N. co r>> t*» co TT Tf Tf TJ- Tt ■* ^ CBCOS r>NNO> Sin in to in in rf

O) CO N COCOO CO CM CM CM CM CM CO

CD i— CO ^" CO CO CD in N co o> co co in CO CO CO CO CO CO CO K © CM* in" CM" CM r>T CO CO CM T- CM CM CO CM CM CM CM CM CM CM

86 USACERL TR 99/24

38 qs

15S S|

o o Ö «O o <D o go .»s

• i-*co

ü « ol2

©S°- § CD CO T- »_

c?-3§ 111 "-"*■§ »_ go CD © Js CM CD CLOCO li-

iS fl

$ So s<°.

«j-

w GO w<o

rrt w o Ü ir>

<Tf u> o O Tf

CM

I a 1 cS O a> Z E Mt p o & 2 6 If CC >

USACERLTR-99/24 87

_ ^_o oo nooco o> }g ~ S?CO CO CO r- y- T- 00

■S S >-'eo cd «5 cd as <ci cti ^3,acoCTC0eocr,,<:aB <3o^*wwininiri!n

i- o> 01 cn cn o> 00 CO 5*> Tfr ^* ^ ><f O

CM CM CM CM CM/CM en in in ui in in in in CO CO CO CO CO CO CO -<f tf it. tr ^» ■* •*

icgcocoiQ

CO CO CD CO CO CO CO cn cn ox en c» cn ox

O J= sssssss. se 3 o o o o o o o "£ & *&*&<&<&<&<&<& Z3 (

ost

($)

S 2?0

n n n co 55 co _. S 3

1 CVI CM C\l • • ' O

£s Si 2*555° co co co 5: ^s ^i. c» < co coco co'eo'eo*

1— »— T~ ^* ^* ^*

m u) 10 1010 10 m r«. IN. |v. r«. h. r» h. a£ Qr ^ ....... og 0000000

CM CM CM CM CM CM CM r*. N, IN» r», r>- ^ h-

sssssss 0060006 **» Z^k »^ **^ »^ »^ «A W W WT W W OT W7

OX OX OX S5 0* Ö* *l<4 KI KI ®J * ^?"

»5 55 j» w jo o • • - r» Is- n»

ONNNNrt t- co cq to co §5 CM CM CM CM CM • Ö CM m en en. en 7X c» co «j coco 0% ~ o CO'OOOOQC T- *— T- 7— T- ***

lommuiioiflio t^ r». r>«. -r- r».t<- r-» ööööödö

CM CM CM O O 0(0 r-^ r>> f- r^ r-- r» 0 CM CM CM CM CM CM CO

Tf CM CM CM CM CM Q <o CO CO CO CO CO U7 cn en en oxen cn ^

cn en en en en en en CM CM ci C\| CM CM ^? CM CM CM CM CM CM CM en cn cn cn cn en en

en en en en en en r- ox en cn cn cn en 0 m in m in m in co

00 CO CO CO CO CO 0> 0000000 CO CD CO CO CO CO co

00 OOO O-, cn o o oocn r- CO CO CO CO I; o *- ▼- *- *- *-■ S2 2 tWOOOO^O

3SOo>a«ooNnw OS £.r»»coco CM T- 1- CM X Jo ^ co co co m CM T-

> o Z nooN in co CM

.5 *0'<o £ S goinoifloipo O n olONOMOWO

fcV W-# *-rf I"* *i-i W VM

2S8i8§83

OIOOIOOIOO m CM o i>- in CM o CM CM CM y- i- T- *-

88 USACERL TR 99/24

•a s 1 o» c

I;

«a CD X

c o I-

eowoißoing _ © CMO r>» © CM © P CM CM CM *- i- r- *-

oioomoino lONosincvio CM CM CM i- i- y- r~

*■£ CO CO CO 00 CO CO Ö> <i— r- r- y- T~ T- CO

© /» © © © ©CD © CO

o«3. CO* CO CO CO CO CO CO 2 CM CM CM CM CM CM: CM

o o> oi o> en ö> h» co co ca co co cq in <M* CM* CM Ci C\i CM: V CMCMTCM-CNICMCMCO co co ca co co co co |C |C |C |C |C K tC co co co; co eg co co *A *#» try *ä *A £j^ £A- Vf V7 V^ W W Ü7 V7

2*Äiniominiour>if) "*"■ 52 ^ CM CM CM* CM CM CM CM 2»-CO D&

OO OO ©OO o> o> o> CD 0>o> ox CO CO CO CO CO CO CO

CD —. joS IS ca c

O _ «s.

'«■■Eg»»«»»»»

'to HI

co .ca co coco ©g* CO S CO CO CO CO CO O) o> en o> co co o>

2 a

O CO

i Z

-2* © © p o o © © f? OCM CM C5 CM CM CM CM O

g S © <o co co co co

iqiq©_©iq© © CO* CO CO CO CO CO co" — CO© CO© © ©

ca co co cq co oa ©" ©* ©~ ©* © © ©r

(D T- T— T- V- 'P-

3

CM' CM § W § CM CM OOO * CM CM CM L to © in u* in in in ©* co coca©©© ©j© cacocac© © ma a coca cq cq © © in" in in w" in"

CO o o CD C

■o 8

CD 3- 'S CO

.0 £ o a.

uu. CD CD <n *

LU a o c u.

CO 3 HOT CO

O O O CO CO CO G) ooo ©© in cq oi o* o> N." r-' Is" co in © in o> en en © ^ Tjr ■* CM CM CM CM »— y- y— CO CO CO © CO © © © © © ^

r- © © © © CM © © T— T» T"J T"; CO © © CD CO ©CD 5 © ^ y~ y y— T- © OX co ** ** **; t «P. "i © © © © © © TF

USACERL TR-99/24 89

a> c 'c a £ w

CC

o o o oo oo

o OQ

c « O® l-Ui

oo o oo o o

- c in COO> N-CM^ too coin en S r; T- TJ-W in co Jg en ** cvi i-1 o>d 2 Z:- OJ TfNN 5jg0 T- V- CM T" T-

_. o> •* <o h». _ »r JN o en in en !£ o CM rr «a CM injg 5» j£ co o> ^ f«. CM O «5 o CO CO CO £M

2 c

Sis II CD <

co in CM CD CM ^f CO .oa Tf«atr-N CM- T- in co ca CM c» CM CO T^ CD i-" T£ of f Nwoawam T- ca CM i^- co ax ■* ^* CO CO" CM CM *■" »•*

CO in CM CJ> CM Tt CO CO ^ <* O."* T- CM CM_ t-^ in co cq cvt en CM co T- en'.*-*■ •*•' en ^ h- CO CO CM O OX *- co CM t»- co en ^t "** CO* CO* CM CM* 1-" i-*

c

i CO o Ü

to CO * ** CM v CM oca

men en en CM m co t- icid^d

= oinioco*

co •<*• CM co oca cö cd in

mN.cn N in in, Q> ci r> co co cO CM*

CO «t ■* CM CO <tf CM « CM O CO CO O CO N h*i»*'-cct.cQa>u>

■ '• ■ J. ■ ■ • co ^ co co. en co ■>* co Q oo a. en co in co o co CM ■t- w *t tW^lorir"

to 8 O HI

T~-.rw en oi «ct fo-cat»*

"?oa CMO, EcONOOf

■ mm Scoir»- o o co

ä CO CM m CO CM* °° n

si CMOO oao. o

T^ cädo 0)03 O £co"c*

ooo ooo odd

. co i- en m CM co ^»ooroas f^ • • • • * ^. -jz ^ co co en co^c go d CO o en co m öooofWT-in*

CM O O O O OO cno o o o oo öööäööö

, Ä.Ä *^ ^JI *tv ^<">. **^ V»* w»r w VJT ^rX w^ 5'

o» c

ii m

O CM T- Tf Q -o 3 SöTTiSoco*

o OT-mrfoooo

co co co co m co co co Q ■£ — d d d d d d d

OrlO^OOOO Snoo>oo*

co co m co co co ööööödo

90 USACERL TR 99/24

in ö» a> a> to t>~ q> w ui n N MO in co o T- ooj-eo r^

r- 35 CO C\t OO O CO g co t»» a e\i co co co = o io to CO cv B- *- CO

o o ü u

CO

•■a o "g

UJ 1? CO

n '3 8 I-C0Ü

co CD

«2S a en 2 e

a n ü •go CD CO .Er

Ui LÜ.E c caooooooo

co £ <D 5cc o •c

£ I x: ai 5 a> -Ü e U. j= oo o o o o o o

Cos

t R

em

Coo

l

CD-

'S Sooooooo

13 QCLU

o> eo *- g> in CM co

ed "» co cö oi cö ■* coo co o coco io co o oo c\j_ t^_ in'j

oo o o ooo

o o o o o o o

ooo oo o©

£ ID

I 1? c

"co c Vi E o O CD Ü0C 3

o oooooo oo o o ooo

»-•Hoooooooo O CO *-^ * E o Sccuu

oo o o o o o

■gis «: E o SCC UJ

USACERLTR-99/24 91

> E? o

3

c "? UJ

E •a 2 ^ ^> 0) cr

DC

00 CM o 00

in

s o CO

es ©

to

COl-»T-t0l-Tf Wh-CMO-r-CO^m «OTfcncorfioioo CM in ? ^ CO Ti" h» CO in

§« T-^tOJ^-CO^-1-^t- ■5-COOT-CONCMCMCO

_gNCON»-i-COIOS o m

£2

CM CVJ CO i- T- h- 03 N<OC03<DC»S r NCOOOfflS » «S ^ N: od rs.' o> o ^ co «n c\j T- m o T- co m CM co o CM CO CO CM «»■ CO CM

CO ' 3 T» CO CD a.

CD c

UJ

CD CO =)

CD CO

z>

CO CO CD CO ccx

f^incocMcoco^t >CONNt-NO(»

Srfin-^COT^CMCO co en ^ co in fc r*. CO O lA 05 Tf CO CM T^ CM* CM* CM CO CO* ^T

•* m co CM co <o «* ONSr'NOO) o-i-;h» r>» ■* i- co ■«-" in I-"".« i-" CM* co COO>«COIflNN co o in en ■«*• co CM ■»-" CM CM CM* CO CO ^"

o u. to CD X £ CD to CO 50

o

2 <£> fc"co 10 CM en CM ^ co Q-£ CO Tf <* o 3 -^ CM Os-cMT-incococMcn »= S CM" 00 T-" en T-" i-~ en

JS> E.*J- s co co CM o co — T^cocMN-coen^-

^* CO* CO CM CM i-~ ■r"

co in CM en CM <? co 00 - CM

*«o t- in co

ST- CM CM en

CM co <r- cn T- ■»— en ^ N CO CO N O CO T- co CM r^- co cn ^> ^" co" co CM" CM" 1-* 1-*

CO CD X X

© to co

co

o 2

T3 O

2- O U-3=

0000000 CM CM CM CM CM CM CM CO CO CO CO CO CO CO CO CO CO CO CO CO CO r^ t^ h. r»- h- r». 1». **! "*! "t "*". ""i **1 """l in" 10" in" in in in" in

0000000 CM CM CM CM CM CM CM CO CO CO CO CO CO CO CO CO CO CO CO CO CO rs. t^- r>- r»» N. h- ?^ rs.N.N.N.N.N.N. in" in" in" in" in" in" in"

92 USACERL TR 99/24

c HI ffl

00(0 09(9 _ CD CM CO f- *-; *» rf d ö <D c\i oi g>

cooV

a> r-

SI?»

isSssäg558

CO t- CM JO CO CO N. co co n> t*~ en ^ © looip's oi «55- CO CO"N« ^F- CO 00 CD IO CO CO ^ IO CD IO

C\j i£ CM CO CM CM r-

CO T- CO ry. Ifi CM «#'. eo co eo .°i e S °? ocoewiaeo^ui cot-wigro or,

(0 O

2 s z CD

1

ffi

*

o a E co c o Ü

co

SirSffirSeoSi

SgggSfcSS SOOPJCMQÄ* ^-* ^— t— T— 1— ~ CO 1

gfS^cocSlojcNieocp-t- Ä^^O-r-T-COt^-CMr*

<,g SCMCMT-CMCMTMO

_ xf 10 _, en 10 co ^

5 == -5 ,_: in J*5 T- c\irolTco

3 _ ^ CO CM T^CM *-*i-"cO *•"

' CO to ca

g«coIoe»g§E OJ en *? CM «o ^ o rf LjX; m«o*«° K? 2 oot coco CM * 1- CM 1- 1- CM

1- co cam to T» a § co in CM 10 CM CO

COCMT-I-C»S CM CM CO CO T- T- IO

<t W CO O _ 1-10 rt t^ t^ CM 2 CO CO

*~ "* Ti -fcs •* 22 £2 8829233 1-* CM CM* CM *- "t

USACERLTR-99/24 93

* o o Ö 00

co o

?s sq

i_ O f o "5©

gap?-? So»?

8 t

O (8 O u

22 o> o h-

CO

H

a o U s 00 O

■ 8

£

94 USACERL TR 99/24

_ Ä'^-.io lO O r- h» I*- CO

■g *j^<* -* c© 3* SS a orSaonpoow

S^cocooococococp

T- CO COCO CO CO i-

>* in in in in in o> iri iri iri inm iri oi CO oo co co co co o> CM CM CM CM CM CM CO m in m m m in in co co co cp <p co co

CO CO CO CO CD CO CO CD CD CD CD CD CD CD

o o o o o p öö ö ö o ö ö

«ff

(A Q Ü

CM CM CM CM CM CM CM i*. p*. r* c«. r» h» r- "* ^ ^ ** **" * * o © ooo o o Ö Ö ÖÖÖ ÖÖ

si m in o o o o OONNNS

gegcocoro

m CM CM CM CM o oco cococor»-

" co ci CM S rCOCOCMrH _. f.CO CO CO o . co (oiaaie

52 > in m in in in in in - c i ^ '*:"*:'*:'*:"*-. ^ ^ to V* O o o o o o o V ^UT ^» ^ ^ V ^* ▼• !■•

1

Z8

3

§ A CvJ •<-■>- T- IQ o s »• 1" »* <o

CD CD CMi OX.CD OX ^dV .ci co o> co co co co. cp cocxccrcococo: CO CO CD CO CO CO CO

SroS in in «o

00 CO CO CO CO 00 „ CD CD CD CD CD ox _

CO CO t^ t^ l^ l^ o ;• CM CM in in in in o

CM CM* T-" i-" i-" i-~

o P Y r>- co co CM i- X- CM X ~ «T^ co co co m CM T»

2i** *"S

— 'S coinoiooioo Q n ninc\ior»mcMo OJf «WWT-T-1-1-

IO mm m m m in (v r«. is» t^ is. t^ t*. 0600000

1- Tf *fr ■* * «* T- o o o o a o 00.

«S*t"*"* co CO CO 00 00 0Q 00 CO CO CO CO CO CO 8

a <

00 co co co 00 co en 0000000 CO CO CO CO CO CO CO

COO OOOCO CDO ppao>0 CO CD CD CD. CD f» o f~> T— T- T- T— 1— _£ CM_ in in in in in o CM ^— "i*" *~ *~ ■*-•

woos m co CM vi fc-> U f rvi w iü CM m co mS} co co 1- T- CO 00 J2 CD ""T

o m o m o m o m CM or» m CM o CM CM CM T- T- 1- 1-

USACERLTR-99/24 95

Q> g sZ oinowoio© S*>-£CMCMCM-££2§

§i :£

o in o lootpo WNONUJWO

0) o> o> o> o> o> OJ T- T- T- .1— T- *— O

: in ts w S © o o Q ö o ca §r;Sc5NWwe5M4 ü2 0> OS OS O» OT O* OV z n n n n n n co

qqqqqqcB ^CO CO CO CO CO CO o3r ^L ^t ^€ "t ■*. ^ "i

-CD? CO CO CD CO CO CO. in in m inin win, V» 5» V> «5 5£ «> «9

- AS 3,CCC0N.t*.|v.|v.|v,|v,|v. « <ggc\ic\jcNJc\ic\ieJc\i ZQÖ

8o o o> CD

CO CO CO CO CO CO CO

ooo o» o> o>

©—>. csa

c o Ü

3' o s 3 CO z

CD M4 C 3* CD

CD 9* o 5 A» o c o. o u

E 3 CO

T3 CD

iy

K r». r«- r»* r>-1» h- p p p p p p co CO CO CO CO CO ay CO ininioioinioo CM CM CM CM CM CM CO <* <*■ *f "* ** <« ^

r». t^- r>i t>- i*> N. r» CM CM CM CM CM CM© 00000d ^ t». |v» r. iv. tv. h. os ^t >«* n- T rr *r ^-. ^ ^T ^f *f if *t •*

2 0. B CO O

CO z

'SZ ^r

s 3

O O COCO |s.h. 6»a! en os

ooööo ooooooo co oo oa caco' eo co co co co co co t». r<* is» h-1^ i>» r*. r* r* r*. iv. h. 0> CJ> 0>: O». OX- Q> Q> 0> OJ OS Q> Q> 0> 0> O». OJt OX C r». iv, is. rw r» i

•co eo co CM CM CM

o> pi o> o> or. ^l """i ^ 'S 'S ^ ^

CO CO CO CO CO CO CO CO CO CO CO CM CM CM CM CM CM CM CM CM CM CM

CO O Ü

CO ja

© tu 3 a

CD c CD

CD E S u. co a -c

"g CO

8 3

I feoooNNsn SCOinOCMCMCMCO öcaoöoii^ivlislö £00« in CM CM CM«

8 o> o> co S co co co CO

co 10 in 10 10 co T- <* i-m 1-; •»-; T^ CM 0> 0> 0> 0> 0> Ol CO CM CO r- r- t- T- O 0> h> CO CO CO CO CO CO o> »- »— *~ y- l- m CO 00 CO 00 CO CO CO

96 USACERL TR 99/24

» _ £ gooooooo c t o ««° E c " © 0.2 CCI-ULl

o o o o o o o

coca co co g? to <qq-i

. <2 co T- ca o £ CM co CM •ss-,0 CO CO i-

.«& co in cvi 0)0 0 h» co ca 00 T-^CM

w W CO CM ^ O C "- O

CD<

c» ^ w

^- eo r>» co T- co in oo o co co m

co co i«. CM CO 00 in co" oco coo

T- 0> eo i^- o> m cd«? 00 CO r- CO

to T- m coo> NV r»- T- co r^

o> Is« r*. CM r* f^ T- r^. •» max co Bsco ^ °4 r; cd T-' S *■: co ca ox T" co S co CM<M * T- T- TO CO

co in CM co co •>* o .coo aNQti-in -T>. co ca cq cq cq en oa T^" c\f ui co h»* T^ •CO CM i-aÖN T- o> h~ wnacoN

MAiotanio £w ca N » in CM o T^ '« M CÖCÖOÖ CO 00 00 00 o1* c

T- in in "* o> co m CO N <p iq CM O r; CO CO 00 00 00 00 00

*? te o

•" 0) ft O) p N CJ CM lO « S 1"« IO lO

co co *- o> m CM eo IO*OOT-tON

,, ced'-ociiriN §5 «> r^ ca CM co oo co 0~ go"in in eocvT

cd ^ co cd c» eo ^p tocoomniß CD o CO CM *-m in ^P, C\V"T-*Tf WCOT-

75 < 75

?*8

kWh

Cos

t fo

rAH

EIe

c C

oolin

g 3,

804.

41

2,70

6.77

5,

021.

39

3,20

0.79

2,

309.

75

803.

57

387.

59

928.

07

1.00

4.46

1,

883.

01

4,20

3.09

5,

199.

15

3.53

3,82

1,

454.

73

<t CM o o o o o co eaooooo CD O O O O O O <cr o o ooop

■—• t-riooooo O O OOOQ O «So co in««»<»««»

2« ?88 **•_ s

^< Q

s<3

e §8 so 2o

s^KSsjes 111

jr Oi-in^tocog ,2 »nooioo* c o co co co in co co co o.2 — ööööödd §S!8

O^IO^OCOO S S co in co co S • ••••* • O O O o o o o

USACERLTR-99/24 97

o •c t3 JS UJ

^s o w-5 o>

w ö> ö> c» m r>- 0> CM in co t«. r« 1010 co ö T-' ö cr> cö r^ co co CM o o o co co r^ a CM co co co

S « > « o O O AÄO FOC0«?O

o m IQ CO CM y- *» m «> «>

7 w w

co co T- en in CM co U)*qOr;(OS co * co co g> co v ^F o co o ax co in co o CQ CM T- in ■* cvTr-'r-VinnT-' J^ m *^ *^ *** *^ lA W7 v7 WJT W W7 ViT V^

o •c •5 IXI

12 <« o Q

0. u I

a> "E 2>O O O O O O O

E.Ö £8

o oooo oo

o fa. o "O

£: UJ § c

c CD c IS 8 <D

oc 1 S c -o a 'B O

ca 8 2 tt UJ

ooooooo

ooooooo

ooooooo

ooooooo

o J8

ooooooo ooooooo

5

I 8 ooooooo ooooooo

UJ

UJ

98 USACERL TR 99/24

>» E? CD

3 m

c -? 111 15 E

CD w -1 CD IT x: (T) H cc

oo c\i o 00 in

in s CO r» o CO

CO CO I % CO cd

£* CO 3 TJ CO CD

CC

S CM 5 § «j jg § *>

2 *-»co o CM o o 2 go co E 3 T-" "* T-" T-" T-" ^ w (D CD CO

o »■

>» g> CD c

LU

_ _ CO GO CO O £° P5 H ^" oo m o £; JP, :* r^ co CM co 2 2; £ "*-" o CM NT £9 22 2 *- oo CM ▼- 2 o* 2 ^" oo i- 1- «T-W^-CM-CM-^-

CD CO 3

X 7S CO co > CD

"3 ^inoos^coö

t* £ o os os CM r». co in CM CO CO CO i- CO o

co CD i-" CO" |C <<f CO* CM CO" os o T- CM ** in T- "O ^^ onmsfflT-n

CO CD

CO CD

OCX

* lO CO S t CO o. o oj os CM N- co in CM CO CO CO T^CO_0

▼■" co" r»T «a" co* CM co OS O i- CM «£ in £• o co m h- os i- co i-" 1-" 1-" 1-" 1-" CM" CM*

For

atio

n ea

t pe

r hr

) - 3-0 3CDIO WOCO^,- x >. «SCDOONCM^S

<o m CM co co _., _ os o o r»> CM •* fR © ©Ca^-CCKOCOCOTrg

co s=. *"' oo" 1-* CM in <o* r* - ^tDto.co.eo.^w co i- CM in co :*••"£

co .c co CM T-o co t" ^ CO CM y- o co £- zi -gü oj.i^.iqeoo.Jgp c*i*-.»qco,=>£5h:

_ Ü S3-3.

?1 •§ fe -c-c"» o ö ö ö o o 2J §_r"cocoeocococooo

?QLäCÖ'CO*Cö'CO"CO"CO*CO"

♦; O C ,o .C O

o o o o o o o o o o o o o o o o o o o oo o o o o o o o o o o o o o o o o o o o o o o o oo o o'o CO CO CO CO CO CO CO o o o o o o o CO CO CO CO CO CO CO

USACERLTR-99/24 99

CO

pE£™ •"A a Q CO

CO

*?« CD CO

n £> S.« go Sf f-r> CB

15 .ax: q ca

CO CO O CM CO Q CD o 1- o *- e» cp co c\i ei ö i<

v— ^- O Is-* * VJF -VJ ^^T WIT

cvj r»» co «* t- co r>- CO CO CO CO CM CM CM iri ö ^ cd cd eri ^* I*- h» Is» f>» CO T- O CD T- in r». CM eo, ox r^" N* co* to CM co in" rX. rr*. »r* afL *A J»A -*^W w7 vT V«F V7 v7 w7 VJ

a O

« Ä ÄO CO ^f 'CM CM CO JO- Bu.«- ■* T- CM or en to r? a-S a « K^r-.cqco.gj <ZW«T-*CONT.ro

0> JZ Ö CO ffi m CO * 0> _r - • T- C3 i*r T- CM h» J. 5* IO

»2

CO CO CM VJ —j vw VJ w |.

7- CO CO CO uSfp

o CO

, _» CO °."

CM N- CM fc JM 0> CO CO Of» CD "- » - - - W CO r»

■ T" T* ^"*

co CM men o co CM co i>- rf r>» iß ,}• co ca CM ^« ca N." in 01-* a* 1- co A CM >* r* en *-" i-~ CM" CM" CM CM*

_,. _* ,_ en o r- co

S3 7T TZO> in CM co CO in xr co o r^- v Tf CM co - z^ Xf -

co e» CM m co o co t^ CM ca h- ■* h» in en *t ca co ca ^ ca COSIOOV'OJT-" co r» <* y- 01 in ro- coco co CM ■* r^ co 1-" 1-* *-* CM" CM* CM* CM

«lOONtfflO "2 ,_ fc.ocococMh.coin .g CDX:CMCOCOCOT-COO §"S^^ca*K^*cocM'cd 30CDonu)NO)^eo ^ T-" T-" f" *■" -r" CM* CM

«IflCOS^ttO 0 co o> CM t*- co in CM CO CO CO T- CO 0 T" CO t»* ^t* CO CM CO co 0 T- CM ■* in T- o co in f» co T- co

100 USACERL TR 99/24

SIÄ

CN co

3?

o o o CM o> CM CO CM ö»

75 o L_ O

.£= o =3 o

1 t CD CM

co o m

trols

: G

351 o

o o ro

CM

i

i_ 1— r» w u co T> ü C> T>

c Q "rö

CO

•c o 1_ <D CO *-* 3 o> o CD k_ c

c UJ CD

£ O CO

0) "5 •o 05

CD x: M © O.I-CVJU.

»s

s CM

«t»C0

co WfSi *■ •«*

St IS 33 »S 815

38

■ cn *■ y- im- !: <*

ev e*c\i S>* iß

k. in

H

co co ■K co So

co to JO O ^V ü<o

Oi

o co

•» ,9 o ü U a 2 I 08 p O <b

IS

USACERLTR-99/24 101

__->»__ Ö O O 00 00 CO o> 12 s Sco eo co *— v- T- oo ■a S wco <o co co co <o co -s-Jts-cocococococo oor 8 V* V* V-l Vrf V4 V4 MJt o^

T- o> oi o> os CO 00

cö co coLci co cri ui. CMCMCMCMfCM CMCW us ujuxuxusiou*. no» e> oo coco co "<t .•* ^ ^ ^r •* 5T

CO CD CO CO CO CO CD CJ> OS OS CD OS CD OS,

dödddoQ «* «Ö-«»</> «©• & <*>

OOOCO r«. r«. h» o CM CM CM CO os* gs as CM O ÖO •r- OS OS OS OS

SOS OS T- OS OS o

us us us co

8£' os oso 03«JOÖ5 IfllfllOO r^ t*. h»

gs-o ts = 50os'

«^f CO CO CO US CM T^

Scoo h* eocvj CO CM f- -r- CVJ

— 'S cOlOÖUSOlO £NcyiNi-i-i-i-

CM CM CM CM CM C\J CM i«^ r**»». h- r»- h» r* S^j? ^ *t; ■« * ^ ooadaq Ö ÖOÖC3 a d

© h« h- r- r» co f» co co co co fo CM CM CM CM CM ' ©■. CMOS OSOIOX5O co co oa co co ;; a coo" docs"«? V T- T» T» V" ***

us u> in u> us us m r^ 1^ t>- r^ r». r*- f>- ö ö ö 0 0 ö o

t CM CM CM CM CM O CO CO CO CO CO CO u% OS OS. OS OS 05" os ^

OS O) OS OS OS OS OS m co co oa co 00 00 en 00000 0.0 CO CO CO CO CO CD CO

00 o o o o _ OS o o o o OS " __* • • • QJ C^p

t** CO CO CO CO • o .^M <f>M ^» Y*"* 1*"" W

,_ usoo oojoo

o

CO O O f». JP, CO CM CM US CO US £j CO CO 1- 1- CO 00 5Ü OS ■*

o us o US o us o « w o MO w o CM CM CM -r- 1- r- T-

102 USACERL TR 99/24

las

11 > o o o o o I o o o o o

© o o © © o o O O O O O O O

o "9

eo eo cO co co co o> T- T~ ^ T" T- ■r- CO

o en CD CO CO CO CO CD CO ■K U «»CO CO CO CO CO CO CM. o ~ 2t ■"" T" '"" '""", ^* """, ^H O IS cö co* co* co* CD CD CD W 2 CM CM CM CM CM CM CM

OCOCQ-COCO CON CO CD CO CO CO CO ux

CO CD CO CO CD CO CDj ,.|sT |C K rC rC isT h"

_ CD ^*

SSSmeoiDtnioinu) 3""SSNNt>NNN (5 cs^cvicvicvicvicvicvicvi

CD "

So ooö © © ÖS OS CIS OS OS OS

CO CO CO CO CO CO CO

£ CO O CD wO CO o C5 S « O sä *£ Z 3

to

CO;

JJinmioininino Jssss-ssfc -inmioininwio os o> os os os os os a

co ra 3 co 3 3 £ CO CO CD CO CO CO CVI:

S35S3 Sea OS OS OS OS OS OS o>

8 a.

(A CO o CO w 3 13 z

!a *e c$ S ° CM S3 §J cv* c c: inin inin inin in •SCOCOCCCC0COC0CO CD ca co, co co co co co *-<ca co co co cq cq cq

in in in in in in in

o o CM CM ID ID CO* CD CO CO 00 CO US»

© © © © © CM CM CM CM CM. in in in in in CO* CO CD CO CD CO CD CD CO CD' CO CO CO CO CO in in to in in

CO o Ü

SEA- CJ J2 UJ

75

■2

i8 tD 3

I? U. §3

C?C?

%8 CO CO

O O O CO CO CO OS o o o tn in in cq OS OS os N ^ t»" co

999.38'SS f-T-T-CO CO CO w co co co m m m v

,_ CD CO CD CD CVI CO CO r- T-; 1-; T-; CO © CD CD CO CO CD ""S" ID SI— T~ T- T- CO OS.

OS it us m i in in ID «t

USACERLTR-99/24 103

E c y (Do5 ocPiD

!£ ?! ° Is- W CM °

ii w to .2 t=

SS !S 8> £2 28 2 Si to oS< LZ © CO CO cq co "? ^: co h» o>

COCD^ ~ CO CO CM

-* co r«

<<* Co T- re i- i- ^ CM o ax r». en ax CM. co t-; co <c> co co cor cDcacvFcprclcMOx i*. o> ■ t- CM T- T- r>» <o to r«- r^. h~ i** CD.

cocoe»£££io

'S" 00 f* ^f *~ *~ if S52coco%8S! en cd cv ec? CM CVI en N oi T- cvi t- r f*" co co t*. r*. r«- h» to

-* CM en co a> cr> *r NOIOWOON (C t^ to cd cd cct r^

** CM en © en co ir NqOOjOON h* r»- co oo oo oo r^-

men en en in t« en CM in co P-t«- in m

to o O «

(oorcjnn s cococMgooco o _

© cor« cäcMco oo ui »©* in in co CM

III

en co T- en in CM co rtn »> O O r CO N S^ co co en co it

© 00 o en co in co a co CM T- in if

o UJ 0 = o 00 -5 ■■— w 1^ *-^ IM v* m *v* X:<,3COCMIOCOCM00"

IS

s o

8

28L

o 00 ö 0 Si*- toco*0

00

co *- en m CM co Tf a o T- car*. ^* co co en co ^* SjOfflowriÄ

°» T-1- TT m co »-

CM en

|888888

o> c

11 LU

SS! 7T, So« u- cc* CMOgft; S T— T- ^ T— w' ' w SScMcSgjes l"" V- V- ^ w* • ^^

.2 oi-io«oooo T; O twowoot g aj co co co in co co co §Qj oööööööö

l3ö

Ot-lß^OCOO Sco o en o © ^

co © m © co co © ©0 oo © ö

104 USACERL TR 99/24

c CD -2 «(oißocftso) wfi2S2'*S2£?

IfflSSlSBSÜS «W?W So«.oo«DtDcoiO'<tioeo t» T w <->_ ^j. ^-_ (2üW<Ü^CVrCNT^T-- *■ CMCOW-r-

£ 5 o)

CD .£ .£ tD CO CM i- OT W CM "' T- CM i- *" ■ üi LU £ _ C CO S 2 E «° i &

o

o b CD

■S III § at ^ c o cz

ca to E o CD Ü QC

5co?R§S 3f53"5K

o Ü

rn SCM^IOOK? <o co in CM j- co ^ § 2 co co Sr co £ S! '■^^SS®

•*= CO ■cEo

2 OC UJ

JC £ CD W CO

•2 ircrfriooooo 55000000

s illli 5 ü DCIUü"

o> .£ o in co o co m co j£> co o eo u> co c ONcqq*qo)_ t^ cq o -<r o co 0 co Ü6«5in«30) °J?lGc2SC0>

5 i

o c c 1 o CO

I i - S OC UJ

o in co o co to co oscoqif oca- O ö co in co" * co ocosffliflrtf CD

111 «n in o co i- o> o T- in i- co co tO CO tO h» to N;

■5 ö öd ö 00 0 Ü 0 CD

o> h- to m co ■»-

in m © co T- o> o T~ m T- co o> <DtOCDN(DN O Ö O OÖ Ö

USACERLTR-99/24 105

>> & CD

3 m

c ? 111

E T3

>_ -» a> cr £ a> r— CC

is. CO CM o CO in

in CO

o CO

CO © I r

CO CO |s. <o T~ CO CO r-owr-ooorl

« CD • i^ o • • o g^Soogoooo 3 2 c\f CM* in

CO CO en o o o o o Xr _2 o

o o o a en S <=> O O O O o O ©

co = ~" CO i

3 . CO

3

CO CD

CC

CO

<g >» CD

iS.2

CD CO Z>

© "5 w E 5 CD ^«O CM 0> CO O O CO Srroi^-CMtNCMO) rp-^^cvioxorocß*

co CM © co © en co TO i- CM ■* CM CM © ^ CM o> co a> en >«j^

co i_ A co tC o TT* ©" o* co 3 o Sen is. © rr © © ©

co 1*- O ■«*• o O. cor © r>» coc 5 co co ©

■o ^z ° oo o o o o © © o o o o o co co -^ ^~ ^" ^* ^t ^* TI" CD CD' an:

1* ■«* ■* "<t ^- •* •*

OB <D X' x

S a» . CO.

c o HI ^ CO ^ ^ T" r- ■♦ S CMOO)NO)CBCM CD "C© •»— CO © CO CO © ^.c © © CNT co CM" CM" e» »■«©©rs.h-fsi's©

*tra T- ^- T- i- •* MOffisencnev © T- CO © CO CO © © co" CM" ra* c\f CM" © r«. © T- CM T- T- r». © © is. is. is. is. <©

*1 CD »_ C

co

a. © o CD -CCM CM 5 .c © co P 3 CO CO a. ä N. is.

g c in in to in iö in in

o oo o o CM CM CM CM CM CO CO CT CT CO CO CT CT CT ©

h- is. r^ t^- K

o o o o o © o CM CM CM CM CM CM CM CT CO CO CO CO CO CO CT CO CO CO © © © fs. is. js» h«. is. is. is. |s. |s. |S. |S. |s. fs._ |S.

in in in in"©"©" u>

l-LL-S

106 USACERL TR 99/24

ü i2 til 75 o

CD

& 0»T--

uJ-cs CO

in ■o«g.co

J2 ,CD^* E c *■» ©•5

"co

II II «

<Sa

I £

ff 3 (5 ec>- OOIOCO CO W CO N coi»-' i^ cö CM io o> in

CO CM CM

© CD

s s « in o o> ^ cq Iß r-O) ^t CO IO W; «tr ^ <* ui ui tj in »- Iä co co r^ eg co T- CM co co co to CO *f ^" r-" od o co rC

T1 <" —*CO

J^ScSSfcoS00

< Z U» CM CO

r- co *"? °?

O O O O ^ CM O CO cs o o CM CM

Of

is Co '2 Z Q.

E "8 CO

ro CM en s as CM OCM CO T- CO

CO t-» to CT> co

co •»# oo o o r^ cöo

^ CO CM -r- lo'io"

g ,_ CO o> CO

OJDCQCO O CO

*S|5 22. 00*°

o o

CO o> O t- lO CO

o o o o o> to o U) o CM CM

CM OS i- CM- ^os

O O O O CM~0 O CM CO CO o co*'**

USACERLTR-99/24 107

o o Ö CM O «Do ©§ WO

•ss T" £C fiffc

O CO m u

o^->5 CO

<D 5 <** CD

il 8?

IS

a»1

m

o 5

w 52

OS

CO CO in CO CO

8 o s 8 g

■E

8

!

108 USACERL TR 99/24

_ .ä«^*- t- N. CO CO CO CO g = «»(a(Dr-(D(0(DO

> =E ö CM CM r>- CM CM CM m. "*-SO>0)COÖ>C»C»0>

CO CO CO CO CO CO CO o> o> Ol OS O* OS ox sssssss ÖÖOÖO QÖ

[ ¥*, J2-«> V> <& t& *» f» «>

>,,9 o o *- *- t- 1- 1 £u •«■ •* co co co co

_ co co •<* *t »*> ^r o > c\T CM *t jf «tf * Ä tO CO CM CM CM CM

t>

w ^-. mmmin m w m is. ts. r>. t>- p«« h>. N. Ö Ö Ö Ö Ö Ö Ö

in m co co co co co.

5 S ai s s s s CO CO CO CQ OO 00- *f' i— T* CO. ■>— T- v— CM- 00 08 CO 00 CO CO CO

8P' 0> OS 0> T— icncocD o> coo m m m m m m co

N. t» O OO O ; ^«.o> o> o o o o _ ^iriirir^i^r^f^o 5S-0 O CM CM CM CM °

CO* CO* CM" CM" CM" CM

CO 00 CO CO 00 CO ^" CM CM CM CM CM CM ^ S S N N S S d ssssssg t^ t>-1^ r». r»-1^- N- 00 CO 00 00 00 00 00

CM CM CM CM CM CM CM fv» r~- h~ I-- r^ r-- h- S^ ^f tt ^ TJ- ^>

OO O O OO Ö Ö Ö ÖÖ Ö Ö e» <& <& #*v* <& if*

CM 00 00 CO 00 CO Tf CM m in m in to r^ «st ■* jt jr g <* CM i>» N. r- 1*»/°. co in r>» r«._ N; t^ o XM CM •«-* 1-* T-* *•* CO CM CM CM CM CM

m in in m m m v> ■i*. t*. t*. i>. r^ r~ i»- o ö ö © ö ö ö

o Q a o o o co r^ r>~ r^ r*. i*- Is« o co oa cq co co oq o>

~ ux in in to" co* co co co co co

SCO 00 00 0O CO Q> o o o o o o CO CO CO CO CO CO CO

t>- o o OO o o> o o p o o in in in in in in © CO 0> CM CM CM CM o oooooo

Q. CO* CM CM* CM* CM CM <

i > o

^J CO

0> ^ CO O I-» CO CM .r^ 00 CO CM -i- T- CM ^- co co co in CM i-

co OOONS©N CM m co in « eg co i— T- CO CO J; O ^

^omomoino 5 in c\|o MONO

O-'«-' CM CM CM t- t- T- T-

o in o m o in o lONONinMO CM CM CM T- T- -i- T-

USACERLTR-99/24 109

81

UL. ©

f! <0 c

OO O OOi o o o o o

o o Q W A-^ ^/ »—» *•/ *-* *-/ ^rf

Olli '-*-'- T-I-*-T-

o o o o o o o © o o o o o o

*s to to to to to to co CM CM CM CM CMCMt*»

<-' rti cv» cvi CM CÜ CM CM CO to Z AN !>. N N N !>. TT

O 43 2 •Ä CM CM CM CM CM CM 5.

CM CM CM CM CM CM CM- ujiftioinioißw '•** A^h £& »*^ £A t& *** UJ W7 Vf VT VT W7 W

09 CO 00 CO CO CO

-to ui to ICMCMCM no uiio

GO CO 00 ^ CO CO CO T- uitri tri cri CM CM CM Vt

rs. i>- r^ r«.

_ eo-K wSsiniomiominm

ZW-2^CMCMCMCMCMCMCM

go o oo o o > en en en en en en

CO CO CO CO CO CO CO

.13 *lf ö*;P55555 -. c Q-oao oo 2S .aoäedcocöodi sAftzSSSg (5.c ooaraoa 7 = <Dcnojo>05CDaja>

S3 £D T"»-*-»-*-*--

en in o to tt o o en en

CO 00 00 00 00 GO T— CO CO CO 00 00 0QFCM to <o coi «a cq cq ^ CO CO CO CO CO CO to 0> oi en en en. en CM CM CM CM CM CM CM CO* en en en. en en en ox

8 a. O .$*^0 O O O O Q Q »■c5 O O OO O O O

75 Si "N.N.N.S.S.N.|S: | g CO CO CO CO 00 00 CO

OO Ö OOOO V *■ *t ^ If *» Tf 0„ O, O O O CD O CO CO CO CO CO CO CO" O CO CO CO cor CO CO •"1 f"! ^ ^i """l ^ ^ ^ T* T- V— T— T* T" CO 00 00 CO CO CO CO

i-o

52 w « j; oo fc fc co .„ fecocOaCCOCDco-*

HOT« 1-1-T-

en eo o co co co co co -t h- to cq cq oq cq ^ CM ^J" T- 1— t— V— f~ en r*- CM CM CM CM S cq in oq oq cq oo_ <£ en en coco oo oo *,* i- a o o o o g

110 USACERL TR 99/24

co_

c o

i as

CB'«-<cOCOCDh-CDrs» Igöööööo CELL»

10 10 o co T- as o T- m 1- co o> CO CO CD r-> p I-"-. d d d d o* cs

a>

c CO E 03

CD 5

x:

CQ

f§ A-

co

•40

.01

in op o co o co _ -US t; co us 5 ui 5j nCM co ca ö cö A co;

m os a co 2 OS 01 CO CM CO h- ,

~ OJUiOJO co cv co ^r ^t

■CO i

in © « oo "*■ <» iß

-* S -r- O . ~ •r- «t T- g? T- CD T- T- T- h- ^* co os oo co rv

•JJ* $Ü ~! i»- u> «°

.^WNOJCVlOr; _•; cd os: o * cö c\£ 2 r- m. co co r«. rv- °* T- CM co o» K- co

to os TT CO Tf. rf u> © SJrCiri r^h-' o

'-CM f^ £ ** 'P fc« CM • f* **- CO OS CO CO N> ■t». t«. r>» f> i>» t>.

c Q

CO O O ca S

CO -TO CM T» as ■ 00 0)00

« 2Z

T— T- CO —' O O 00

§woöcdo>oSoSaJcd " 'o

to ös ös os us f*» o> CM IO CO t>» t^; US «3.

Sco ö •<-' ö os go t; CO CO CMC? o o CO

CO ^ O CM CO CO CO 'J^. odip* inco'cJ

SO

52 Ö* IT 5? ir 51 S3 cq os p o o p CO cd co os. os os os 00

TO CO t- OS US CM CO US OS O o ■»-- CO h»

■.S£S88J8$ xo ca oo. CM- i^, uj t CM f- i-" *f Ul CO »-•

CO o Ü

<0 o Ü

I

u SB LU =i:§CO <^co fe °

OS OS us CSh« I»;

(Ci-'od OCMOO r*. OCMTO CM US CO CM 00 s

CO

& So* CO 00

e<3

CD

CM OO O ooooo CÖOÖÖ - «««

>o I o

s° «

9

T- OS US CM CO OOrCUN TO COT C» CO ■* CO O OX CO us

äi w CO CM T- US "* *" i- 1- «* US CO T- §1

co r- o o ö o o Tf ^ o a o o o © cd a a d d d NO««»«« £8 «

£

< •8 k. O a o

1 LU S SÜ X". X o co ^ co ■* CM o §5 p; 3

O CM -I- <* c CO Tf CM o S qM» ^N» ^p»' ^» *"

CO1* h» CO

8. > «- US tf O CO o i: äs twooioos 3 m Ö O O <D K) (O (O (O ^ v. — jOÖÖÖÖÖÖÖ

Or-lfl<tOOO Seoomoos

CO CO us co p CO dödöööd

USACERLTR-99/24 111

10 o Ü u I UJ

Is .o

c o.

i to

to > o n» or C/7Ü

«(DtnosiNOi ^ en o> © co co w u> T£, o> ui ui CN» ti C\J rK CM IQ CO OS CO co ccx co us. ** m jo ■^p CM CM T^ T-" ** **

Ö> ^ CO CO ^ CO CO *t *- *r o> T- © r»« © r> i^ T^ evi tri ■* N<ON •* cooin »2»— CM CO CM i-

CO o o o = 1= t3 m

UJ

I

83Rsg t3 J?;r Co S uj pj ;j o

2~ 5cc

o

si -at c .COCO «88

n 5 = w <a co ■ tj-Eg^TFcocoss;

OfiCU

f» Pi S £ 5 g> CO CO T" 3^ fc cd © u>S°^°2o>

töfflOOlDS,»

o s

u •c

i UJ

& to o Ü

EÖ £5

io to a> to. CM CM nnooooo o m en co CO -f-

CM •»- o co T- m co co m CM f- o» i-IO«WS(00 £ £ CM ■* 5 T-

CM *■»

op

in co jjj© o o oo o o>

c"s lOeoo co moo

SQC HI

IO CO O CO IO CO SCOO^OO) © co" irico 3 cri CO N. CO IO CO T-

112 USACERL TR 99/24

II CM ©

8

to

CO

CO

2

73

£

CBS

uJ,g

0^ift(gOOOo 88B IS

§*; =2 > m

2838 §IES T-CMCO

oo

»75 oo a>r"

CO.I

8 CD ccx

CM CMF*. in in to

CO CO CO CO CO 00 CO

COCO

CM CM e* CM, CM

CO CO 00 CO I foTo CM to CM CM r*- to <cr ux ^ in to <q CM CMCMCM.CM.CNtCM. CO CO CO CO CO CO CO

<- s

111 X t

to q ^ cq ^ ^ u> © en Is- to i*. **• ©

sj£o?g^:g^^* :0 £" 2> fc X IS & ß! r>» S oo eft co cp r>

BOt09<t^iq

r.®.r.®.r.,".T". {•>» f». CO CD CO CO £~ K» K f» r«» i*» f- K

_ 6

'© fc. QOOOOOO slfgsssgs.g a» oäooQQooo

o c o

So o o o o © ©ggSggg © © o© OSS SS33SS.S "tf" *T ^f if "*"'«• •*

USACERLTR-99/24 113

8 8

iu »Ä«H

$

1 | »co g ^ii i

W 3 - »

^8ES8{8g88j SSSjSfeS§

1 ^ * s; fü S? 2 fc 00 it) .V fm CM-

IJISBSSISSI iSBIBSS

BUS 5 E; Sg flj 3E M* Cn n

fOOO

03(0 v~ CO ''fc- S? «« CW

CM tO *<- W

oo

CDjB

if ^a

i «*S^

to »- CO

ooo iß!

15 288. f? * 3S$£ «oo

*- CO <♦

CM

CCjQOOO :SS =

3 55 5

si oo

1-M "- ^ coco«

fe:

§ ooo CNJ. «g *r © «cqss. CO CO CO CO

114 USACERL TR 99/24

öS? is«?

3L m

o o ö co c«r m

'S

i° : co cq

to om"

2"oi

ü «J ■* T3

§SO§

So|fe

Q.U.COU.

!* ls

♦2 co o _ OS

<o 52 £0

CM

CM co 00

USACERL TR-99/24 115

^ &^tn inosssn

> s£ ofv,|s-'r',>s-rs,rs"0:r

<§Jois:'ts-"»ni^h-rh«.''tC

T- CO CO CO CO CO T- TT in in in m in en in in in iriui in cvi co as cot co co. co a* CM CM CM CM CM CM CO tnui in in in in in cp co co ca co co to

— %.

i %

CO CO CO CO CO CO CO ox en en en en en en sssssss 0 0 0 0 0 0 0

**» f *N # #» *<■* »#* J»^V *^ w Vy Wr w v7 W W7

■'S»

, >» IOIOOOOO

; S 3 3 CM CM C\i CM 2 I -* CO tt» CM CM CM CM 3 ■ »i 5 x co 03 co ca o 5r ^ * CO CO CO CO 2 CM CM l- T- w- y-

tn m in m m in

o a o o o o o

- CM

O>CM T- i- [ en CM ox en i co en co co 1 & £ & 58 i co en co co

i en en ö> en i en en en en itOIOIOlO

CO CO CO CO en en en en

Nf T~ T~ ^-* CM in in in

»ON CO CM f- co co m

ö g Sin no mo CMONIO CM CM r- t-

y- in ♦- <o OiTt 2'ca

co: coco

CO

50

CO CM 1- CM CM -r-

m O CM O

CM CM CM CM CM CM CM r>. r*. r- N 1^ 1^ f» ^ «a- Tf -»j* TJ> Tf 3- 00 00a 00. oddödd d

W7 W W W w Wr w

m CM CM CM CM p cq to <q co r^ ^f <o CO CO. I feo 55 co«

CO CO CO ( C0 «D CO

CM •»-.v-t y- y T-

10 m in in m m m h. r-- h- h* r-. r>» 1--

y- rt *t Tf TJ- >tf 1- o o o a o Q co <«r ■* •* '«r •* ^| to «ef ^ *fr 351*' ^ cc? cp cp co cp- ca co co CO CO CO ( fCOl CO

co co co coco 00 en O O O Or O O O CO CO CO CO CO CO CO

CO 000 en o o o 1

ca ox.

CO Ol 0)OJO)No

CM 5 5 E 55 5 o O-CM-

cS ZCOOONffi«)CM

CM m co in v! 00 co 1- T- co co 5: en »a-

o in o mo m o m CM o h- m CM o CM CM CM y- y- y- y-

116 USACERL TR 99/24

T5

8

0.

(0 CD

it > v^-CM CM CM i- *- ■»- •»- E p

© m © in o ID o m CM o N- to CM o CM CM CM i- T- i- i-

OU-

o> © o> o> G) o> gj *— T— T"» 'T» T- «— O

So a« a as; • ö co LCM.CO

.O» OXOVCSi ox ©>©

SSScSSSS

co © co co co co co?

S^Äioujioioinipin a DC © rv. r». t», r». r»» r*» »»» CO

rv. t*. fv. fv, rv, N. rv. <§ $ CM CM CM CM CM CM CM

So o o o o o Co © © OT © o>

cö cö co co w ej co

c o Ü CO CO

o CO

CO z

© -V.

II a» tr O 03 CO Op CO 00 CO o g co «5 ca co cp •B o a o a o p c Q- <o cö co cö co o a «n in-uriD u3 »rNNMNN Eu *■" ^* "* "* **

ffl T- T- T- T- T-

WLU

COCO tore» CM CO

CO CO CO CO CO CO CO CO CO CO CO CO CO CO CM CM CM CM CM CM a dödddojf 1— r- i— r— i— r~ cs> *■ <* ** *r •* ■*_ ■* ^" ■* ** ->f ■>* ■**■ ■*

2 a. o

ff ■C"

G •c

I ffi COUJ

atui

uc

e

^ "O

^ tJ IS c 8 Ü CD 3

"8 CO Ü E A •c fc! t_

8 Li- en I

tu ra o c LL

CO o is ß i-co CO

CQ CO

CD O) r» fv. co"co" CM CM

oo CO CO fv. P»

OXO> aro> fv> t«- coco* CM CM

o o o CO CO CD I*« r-. fv» OX © Of o% o> ox fv.fv.rv.

CO CO CO CM CM CM

OOOSNNCO ID ID p CM CM CM CD CD CO CO f"v" f"v f"^ © CO CO ID CM CM CM CO T-_ *-_ ^_ © p O S>

a> O) co » S co co

o © © CO CO CO

ennen 0> © © iv. r». fv_ CO CO CO CM CM CM

O © CO CO |v. fv. OJOJ ©© fv. fv.

CO CO* CM CM

O© CO CO fv. fv.

'at o>

fv. fv.

S3 S3

£!

© ID ID ID ID CO *- ♦ i- T; r r N fll 0> CJ> © © © © CM CO ▼" »■" T" »- © OT fv. CO © © © ©CO ©' T^ T-" T-" 1-" 1-" ID" © © » © © © ©

USACERLTR-99/24 117

w _ .E ö C "* oooooooo

CD O ■£ CC h-UJ

o oo o o o o

w-s

3 £

5 co

L. co o -c o

.c 1- ^ *0 •-* CO 4f

,C" CO 1 JQ < 4-

SSS^

lO 00 01 t^ CM _

•»- ^J- W W CO {g g* n" CM T^oiö.JS,-

1-" T-" CM* T-" T-* ^ "'~

cp in CM co CM ■« to CM T^ 5 CD S CM O»

^t N M CO £M o » T- CD CM Is* CO O» ^ ^ CO CO CM* CM t-* -r-*

CO <fr "* CM CO ^ CM •* CM o co co o ca

«r^r^'f^cpcdcoiri O .

CO TT CO l<* ,

CO CD

CO <

Ifl C» O) (5) m N O) CM m co f». f>- in to cö ö *-* o oi c*i r^ CO CO CM O Q O CD CD N. O CM cq CO CO

c»o in in COCM

jr £j o oi m co S o CM ^ «J CM U3 <g in r» ,/ 12 —• J o> «OO«'»,

-giS83ä&$ mm ■ T- CM CM i-

CO lO CM CO CM •>* CD e3^«osi-M CM r-^ in CD CO CM Ol CM co T- cm i— 1- cnc *• h» co oo CM a co

-r- CD C^1»- CO Ol <ST *f CO CO CM* CM *"* T-"

CO ^f 5 CM CO «* CM ^ CM o co n o ca K r>" fx" CD CD* CD iri

CO CD t- OS m CM CO

00 »* CO CO OO CO V. ? o co o co co in COO CO CM v* U\^ CM 1-* -r" *f lO CO -r- »> »^ *^ «A -£j& *^ i£A WiF VT w W W W TFT

u! CD T- r» o> o> in ^ ^ Tf r^ co i^- r*~ fc co ^. co -i- co in CM co

g <» O Oi- CQN

kWh

Co

for

All

El

"rPa O CM O O JO £- .E ccrr» o CM CO£JCO ■^ • «■•"■»» co CO O CO CM m CO CM

eti *!* CO CO OX CO <rf S3 o ca o cw co in » o co CM T- m <«r ro T-T-* m co f

^ CM o oo o o 00 coo oo o o

to o oo o oo ^- oooooo

to Ü *~ CO o o o o o ooooooo •O CO oo in»»»«»» CM «»«/»«» «9 «»«> Oü" hi «q 1*.

l§ Ö CO CO

¥> ^ s 5 CO c

"3 O < o I-Ü Ü o

& SÜ 3*" S o co ■«*■ ^£**~°corScD

S Sü 7T, S o co ■«• CO Tf «og^§ LU

Ä O i- lO «tf OCO O t- o «noaoo« o»_ co co co m co co co <;UJ gööööööö i*lü

Orin*O00O SCO O CO O O <tf

CO CD m CO CO CD Ö OO Ö Ö ÖÖ

118 USACERL TR 99/24

c o

o to

to o Ü Ü •c B JB LU «'S

m CM CD oo

^ 08 ,-tfO

.2

00 O) 'S '> (0

CO

CO or

a, o

o> o c> in £- o u> eq r^ t«; in in ö i- ö ci CO t: to CM o o Q oo i«~ o CM oo oo oo in to co" CM"

co CD T- as in CM CO ID <t O O ^ O Is; co ^- co oo g> oo ;* 5* o co p a> co uj co o co CM T^_ in ^

£3 CO o Ü o

CO ©

If ctg

'=■"£■ B HI 75 .t5

g a» £ © o o o o o o

C CO-

o o o o o oo

I to o Ü

CD

tu a> c

"cz 73 E CD

c =0000000 o o o o o oo o o

So cqooooooo .c E o 5 © .2

o o o o o o o

B ,2 -CUT

III $ no J£ c o c

'S CO o o o o o o to E o CD ÜCC

o o o o o o o

•= gooooooo o «Ü * E o > S © 20C UJ

o o o o o o o

.2 *= Ö

gräO < E o > 5 » scr in

USACERLTR-99/24 119

>. ̂ -s

3 s c "F LLI ffl E

•o &

fa» n (1) or h- cc

00 cvi © oo in

m 00 CO h- o 00

CO CD X © te

CO 3

w CD

CC

s> CD C HI

aiomtoeos. CM CO-NCNN-COI-T-J^CO ■g roOr-CCOOfON^ '-'CÖCTcdoicdcri'Sco ©co^cocor^cofOio to *-. o> in <q CM ■<* £: irj 3 cvTi—^eooo t- 1- ins ■>- w

•<* CM r}- 00 «., CO CD to in oo o SM rr ■* NNCOOJ^ifi- *° ^ -r^ O ~£ yt i^ iri r^ o> co. g <D w in M" i*- o Je <o ^

- "^ CO CO

CD CO

Z> c CD 15 CO en

P CD x: Tt IO CO CM 00 CO * I- ^ os ca co r»- co co m

co 3

fa. o CO

CO 00 "» CO r-m h» 0_ S T- CO O CO CO o

■o T- co CM r*. co m co CO as lorovconST; CD CD OCX

rt *t Vi in <D <D T*-

c o o u. ni

k_ CO CD ^■*" CD Q. x: X O 3 s

co in CM en CM ^ <o e CD

I» (T>

00 "* ^ O * i- CM CM T- IO CD CO CM o>

CO r= CM 00 T- OS T- y TO CO sz fsncoNoc» < O T- CD CM N CO OS rf

^t ur> co CM co co ^,

OS CO CO N- CO CO W co co ** cw T-, r^ o Nr- C&OCOCO ©.' T-cowsnmto in as it co co r- T- ^•" «<f in in co" co" r-"

•«t co co CM CM T- i-

co in CM O) CM ^t co CO ■* «* O -<t i- CM CM_-r^ in CO 00 CM 0> CM CO T-O) i- T-© ^ r>~ co oo CM © os T- CO W N CO C» t. •** co" CO CM* CM* i^ -I-*

^2 co CD X

T3 2

I D. & i

o

OO

CO *3 9,98

9,

98

CD in in co fc CO CO

o 2 n 00 oo l-U- #3

o © © o o CO 00 CO 00 00 os os os os os os OS OS OS CJ> in m in in in CO CO CO CD CD_ CO 00 00 00 00

oo o o o o o 00 00 00 CO 00 00 00 OS OS OS OS OS OS OS OS OS OS OS OS OS OS in m in m in in us CO CD <D CO CO CO CO 00 00 00 00 00 CO 00

120 USACERL TR 99/24

CM

© UJ

^»CO ,»CO

CO

(2

CO m ■og°. 5 "»CO <0 t3>£2 E £ ^

°<55

ii «

O v

19.

c III

15 p

a> m ^ CD

_CMCO

SCO

3 k- U co CO cu CC>- 1— CM CM CO •r* ©CM CM

CO CO cq p

co co co. CM CM r^ oo» CM"O>

8P

SOQgiÖ o en o m

kS

ntoiooNOQ co en p CM co r^ in CM iri ir> cd in cci cd co CM CM co o CM r^ r- en o o pr^co oo" en co in cd jar trx

•n CO—.COCncOCOCMCOT-

I<g«8SS528&£ CM co CM CM en m Ol

CO CO CO O 1-" O m i^ co in o CM CM in- NsmNffloin CM co co m r— co in

Co JK

S 3 c5

I

C o a. e 3

04 K CO CM K. COCO SJg?

o o a ° o o r: "^ t-1-1- *" i- T- r:

S 52 fe Ol CO CO CO

coinjc^

_ <2 ^IflCSOIOtDS •a co ».mcooo^T-m ^O-ncoT-OiinoiCMin •2 }- 3" CM i-rr».*co CMcno»

CO 35CMCMI^T-CM^-C»

_ CO CO _ O © CO ■* P ,_ w CM co S 23 £* °° 15 •Ä^"5osco!ficomp>o SS^^coOjincowco 5CQC0h.T-2CcoincOT-

T- CM ■ co r»-

m co in co f- co o i- co co r- o en gv en en in ^ CM p «* T^ co co in in in in en co in o CD com NCOONIOIOO) IOCO<OT-W*CM"

SO p CM 1- O CM ■«: ^ CM co "* co

CDÄ TO CM. CM CM. CM i^ co ■<* o * T- m r- *~ CO CO ^ CM O U> CQ CM CO CM CM CO ^?S---CM-

USACERLTR-99/24 121

_ - «Mtt>

i m o o Ö CO o

t »_ O sz o

, "3o 1 BS cor: «I •^ S CM y w eg CM •gen CO«»

fog :

E_ (D ^* •—

Q) CO *- 3 CD O CD t-

i UJ S o -g eo x: ~ o Q. I- CM u_

l<5 3 -

.s a

i8 p £ Is"

CO

O CM ÜCÖ

_ <D CO CO CO «CO oo

O CO

!C5

o Ü s s •E

122 USACERL TR 99/24

(B

0>

Ü<

ii

,». r->• «O «I lO U) S gj-kOJ OS Is» CO CO 00 OS != Scöco ö cd eg ego 2 « -* * ca^-■ *; -* Co; > c9 to" in CM in in us in -5<-Jcoco--eococaco -*■ ^ —_ _. ^ _.. *■ *»•

CO CO CO CO CO CO CD os os os os os o* cw sssssss d ö o ö ÖÖÖ

-5 off»»»»««» CO

.■£? O T- T- r^ r»- r> hr

¥ S OS OS CO CO CO CO ob cd ö g CM o? *t -"f »» v co co

o —s

Bt*~

u) m m n to ui to i». r«» N« Is» r>- r»» r»t dddddoo

is. r*. -- co co ca ^ T- r- CO T- T"I-CXI' oo co T- oo oq c© ox isT is* co" t»r is" NT co CM CM r-> CM CM CM co. r-- r-. CM Is- r- i^i"*- CM CM CM" CM CM CM c\"

0>CDg5 OS OS OS OS OS _. -, LO IO IO LO IO IO CO

"O IO IO CO CO O Q

3 5 CO CO* it •* CO eg o öim to i*» Nqq A" ^* ^* CO CO co co"

IL„ "B^COOOCOIOCNJI-

0> «rh CO O Is» CO CM rs. co co CM «- T- CM

*2 Somopo LOO 2 SIOCMOIS-LOCMO HISCMCMCMT-T-I-T-

co Is» Is» h- Is* Is» CM co r*. r«. K r» i*- to öööööpui ts.r>- r«, is. rs. r*. oo m io to in in in r*. d o" o" o" d o* o co co co co co co co

CM CM CM CM CM CM CM fs. |S. |s. js» rs. fs. N;

sssssss 0 0 0 0 0 0 0

»»»»»»»

•— CM CM CM CM |s- co ts" is" hj ri in 2 CO CO CO CD CO ^£ "-J O CO CD CO CO CD, O CO* C\f CM CM CM CM •3r co co co co co

io m in m m m u) fs. |S. |s» fs. rs. |s. fs. d ö a a ö ö oi

CO CM CM CM CM CM CD o a a o o o in oo oo oq co oq cq cq oo* oo" co oo" cd oo* co CO CO CD CD CD CD I*» r». rs. is. r- ts^ rs K CM* C\f CM* CM CM CM CM"

CO 00 00 00 CO CO Cft o o oo o o o CO CD CO CO CD CO CD

m OS o o o o o _; OQ oo oo oo co © S? CO CO CO CO CO ^T;

^fiooöooo ^■^r co" co* co" co co > o Z noONfficocj

o in o m o in o to CM O fs. m CM o CM CM CM i- f- T- y-

USACERLTR-99/24 123

si OUL

OIOOIAOIAO IOCMOMOCJO CM«Wl-T-T-l-

omoinoino IONOMOCMO CM CM (M l- T-T-i-

00 00 CO 00 00 00 h» M_ «g CO CO CO CO CO CO T-; ® m 00 CO CO CO CO CQ O tn US°0° OQON gj; JS-'f "«■ "<* TT ^TT Cd ü J2 cö «? CQ cd ca cd" ocj

VJ w vj ui vy w V7

CO 0O 00 00 CO 0Q T— p c» p p a a r* oo oo co OOF co CO CO co cö ca ca <o ca in- to oa oo- oct- co. co O. CM" CM" CM CM" CM* CM co

*** *** *** ***. +*+■ »^ /A V7 W W W7 W WT W

— 52 "— SjSgfiniotomiomm « g$cvicjc\icvicsic\ic\i

OO O OQ O O cn o> o> ox o> en en co co co co co co co

©

S m O c a o eoC?

a s g O

Z 3 W

2: CD 5. CD »tococococococo QCOCOCOCOCOCJCO Q^l-T-f-T-T-l-CO o cü CM* CM CM CM CM r>

•J- ^-" t—■' T- 1— ^» T- O «uTiniotflinin» CJ * * _— •.•••.■» rnCOCOCOCOCOCOCO jjj CM CM CM CM CM CM CM

CM CM CM CM CO CO CO CO lOIOIfllO dodo «* "«S- ^- '»i 0> 0> OS OJ CO CO CO CO CM CM CM CM

CM CM CM CO CO CO UXlflt- dded ^ T ca- en a> en CO CO oo CM CM CM

£ a. o CO CO o s i z

u

p J5 CO UJ-—

8 3

■o

oo caea Ift» pre» OXO> U> V) rCrC

o o ca ca taw en en en en to in

OO o CO CO CO into to o> o> en o> o> o* IOIAIO

■* ^f Tf

oo co co to to o"cn en en to m h"r>*

ooo ca ca ca u>io_u> en" a* en en oxen LO U) to tCrCtv ^ t ■*

o o coca into en en. en: en into

CD CD

•C O^T-i-T-OCßON Sit c5<"? 9 "?«?«?«? °i

m~ äO^^-^:T-'"SCO _ cQ.WP3(" CMO O CO

P co to - *" "* "- *- *- '"

CO

CO CM CM CM CM T- CM en o o o o to to oö cd oö co ocj co id CO CO CO CO CO *■" CO tf> CM CM CM CM CM 1^ en co co co co co o fs. co co co co co co

124 USACERL TR 99/24

2> —ooooooo £ o

© O -S CCH-W

to £2 S2 «*» ^ 22 Si oo oo OJ m ■»— oo 53 JJ5 °? R TT "? °P °? co CO T-«j <J> ^ <D (a CM CD §i O CD 00 Sg o> CD - co in T- ro

ooooooo

CM T— CM ▼- Oi CD CO £*. S

cd cd co $2 cö in CO co m o> T- co £g 3t CVJ CM ■* --CO CO

ÖIOCMCOÖ^O roOOSN r-Hfl fs» CD CD CD CO CD OX co" T-" CM in co* K T-* co cvj ■»- o oo N- T- o» r*» woooco r-

co m CM CO CO ^ o (DOONNi-W t^ CO CD CD CO CD OV CO 1-* CMm" CD h-" T-" CO CM i- OONr. ©Nwnooas

(A

CO

CO

h. m in ^ o> co m oo r^ co in CM o ^

ccooooococococo

ß in o> CD Oi m r*» o> CM m co r- r»; in in cd ö i^ o co co r^ 00 CO CM o O O CO

a)CDt*-ocMcococo .E o in in co" CM*

o o

co£8SgJ§;e 00 CO CO CO CO 00 CO

co co i- en w CM oo U)tpOr|CqN oo Tf co co a> co ■* So oo o o> co in

co oq CM_ T-_ in <*

tsia o iu O — 2>o at CM o ot 25 C; ^ cornea CM cog go -COCMinCOCM

CM O O O O O CO O O o o o

■r^ CO Ö O Ö Ö O oo in*&<#<&<»i&

. CO r- o> m CM CO r* ^ o o T- oa t»^ S !* co" co oi co ■* co o OQ o co coin CM o ca CM y- in *t ro 1-" I-" ■*" in co I-"

co o o o o o o ^ o o o o o o Ö O Ö Ö O oo CM «/>*»*&<&*&*»

55-

o>

18

si III I llgsgfes O CVJ i- <t

co^CMOgi j^ 5^CMÖg{5"S

O Oi-W"tfOC0O c" co CD CD in CO CD CO ,§ j2-5 ö ö ö o ö d ö %xd>

o t- m * o co o Sco oo o o 5t

CD CD in CD CO CO Ö Ö ÖÖ Ö Ö Ö

USACERLTR-99/24 125

to o O o

c3 a>

LU

«

ß

c .0

e- o jQ W O» <3> Cft to h» TO < CM m co N. r^ m w -is a> ÖV 6 oi ri N 5 CO CO CM O O O 03

CD h« O CM CO CO CO D) fl e o in in co CM

_ S 1-«§• «$• «6 «»

<5§<3

«*«*

co co 1- o> in CM co U) * O O r; 00 N

^ CO CO OJ CO ■* rift vocoorociL »OOOCÜi-lß^ CM" T-" T-" ^t in co T-" £A *^ #^ <■>* * A ^ A. *^ VT w W/ 07 W^ V7 v7

OOOOOOO

m o O

LU o> c = CD « .E £= = 0000000 CD 5

OOOOOOO

co_

5 c3 ® Sec 111

OOOOOOO OOOOOOO

fil c? tl J5 — 0000000 «CO 000 OCCO

OOOOOOO

co_ = 5

.co0000000 o « O :r E o SIT LU

OOOOOOO

126 USACERL TR 99/24

>. ̂—^

m 3 s

c ? LU 15 E

■o

k. -i Q> tT £Z fr> H CE

co c\i o oo in

to s o CO

to o I I

B 05 CD

£8

■o "55 CD

IE

to is a» m

>. S> CD C

LU

in ^ CM co co 3; <£ £ OCOCDCOT-COS^:

r-cootf^ofjjr^

CO T- 00 CO 00 CD eo co •* IO w £2 fS O Iß CO •*■!-; CO J. °> ^ Ö ■* CM <3> £

K co i- Tj- co in ^

0

3 Jg "5 w E (9 t/<> 5 S^^-incor^jJ-coco Pt'iOOJcncNJh-ooin _t~3CMCTCOCOi-COO

TMOCON^COO OCOCONSCOU) CM CO CO CO 1- CO ©

2 o 00 T-" CO* N-" «t CO C\T CO = a ^"CM oo -* w £- co g- — 'S 1- eo -in r*> o> t- eo

T- co r^" ^ co CM" co CM ra ^ 10 SC05 ■»- co in t^_ o> 1^, co

0 CD ■*" ■* Tt ■* ■* in m ^" ■* M" "«r ■* in in OCX

0 O "- «

X O "^ CD in CM CO CD ^. _ co in CM CO CO _^ _ CBOOS«*fO r^_ co CD_ co. 00.5 g

"Was

te"

Chi

ller

(Bt

1.93

8,7

1,72

1,6

1,51

2,6

1,30

5,6

1,08

6,8

877,

61

711,

95

00 1- CM in CO ^ - co CM T- 0 »£ r: CB.r^'ß.co.oggp;

*J CD

0- CD w

CO § ¥ 0

0. CO E

0 ,0 c. I-U.-5

o s. o Bo- gg ^co" o

000000 000000 o o ©_o_o,o. o'o'o'o'o'o CD CO CD CO CO CO O O CD O 0_0_ CO CD CD CD CD- CO

OOOOOOO OOOOOOO O O O O o.o_o_ o"o"6*o*o"oo CO CO CD CD CO CO CO O. o_ CD O O. o_ O CO CD CD CO CD CD CO

USACERLTR-99/24 127

Ü 111

1

c LU

75

O) «CO teg»» w co00-

CO »-

T3«»0

2 ON E.Ecö Q tO ^

CO

(0 o Ü 5 00 O

co CO o Ü

E

P) c

g •c I— __

o <9 CD CD CO-

IOINOQ) IO(MIOC\l

f- CO O CO

i- o> o> en cöcncrir^c\iöa>in

ügESSSScoSS ■^ .£ ^~ ▼""

CD CO

Sin t- co o en en in r».

CO

CO O 00 CO. O CO CO CO ^- T- O T- CVJ IO oi Tt cvi co o> c\i cd Si»» en ■* T- ■* o

00 CO i- CO Is- o o CM <* co r».* co ■* r». in in co co co CM j-rv *A *^. /f« ffi *<%. J»'g% W w V7 W W VJ w

W ^-.I*"- CO T- CO m 13 COS»CM<O sioSog

^zOO^cog^coS

m .-»«-»CM « O O CM O CO O _• I»?

o o CO CM

U W CM W in W W co o ij h- Jy co CM CM m 2> m >a °o «9 i- T- co co £J a> <3r

CM

co at O 5 3

z

o 3

3 CO

c o S. E 3 (A C

!"*•/». <0 ■"- Is" .«

O^ttOfflj CM Jg mino g> i-g>CB*W2 -co - - -^

CM CO m CM 00 CO CD CO i- Jt

co co CM in in m r»- t m en co CM o en — ir ■* o CM co

r^ T^ coin en ^ CM co I-T-U)CM CM CO CM t-

c&o fc??????£ T>

■s Js^cnencncncncnin SJBfrcocococococoo 3-sDQcocococococow <,g CDCMCMCMCMCMCMCM

CO

co co en co co co co o o r*- o o o o

CO CO CO CO CO CO CO in m co m in in m CM CM i- CM CM CM CM

_ O O O O O © T- S XJ ,_ ..ooooooo1" CD

■D^ CD ooooooms •S'S 3 10 10 10 10 10 10*S SjSsSCMCMCMCMCMCMWri 3CuGQcococococococncM

o o o o o oo o o o o o o o o o m o o o o dococfddo" o o o> o o oo O O CM OO O O CM CM T^ CM" CM* CM CM

128 USACERL TR 99/24

o o o CM Cvi CO J 15 o i_ o jr o "3d si CO

, m*. ! o0

4 5 8.8 2 io o . ♦= co co •

a>JS4=" *

s

«5 *•

!HS

e-o CD

•c 2 CD CD »5 c cö •5)ü HI CO o CD .25 X o> «D Q.CO ■* U_

o Ü

l°0

in to CO

CM

USACERLTR-99/24 129

Appendix L: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 1

Life Cycle Cost Analysis Study: Option #1 Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #1 Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T.Brown III

LCCID FY9 6

ECIP Summary Report

1. Investment A. Construction Cost

SIOH Design Cost Total Cost (1A+1B+1C) Salvage Value of Existing Equip. Public Utility Company Rebate Total Investment (ID-IE-IF)

$260,963 $14,353 $15,658

$290,974 $0 $0

$290,974

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel I Price

IElectricityl JElec. Demanj jNatural Gasj TOTAL

I Price Units

$46.j/Mwattj I I

$3.4|/Mbtusj

Usage |Usage Savings |Units

792|Mwatt- I

-5,502|Mbtus -2,799JMbtus

Annual |Discount|Discounted | Savings | Factor j Savings |

$36,441| 14.47| $527,296| $13,377| 13.47| $180,188| -$18,706| 17.32| -$323,993| $31,1111 | $383,491|

3. Non Energy Savings (+) / Costs (-)

Item Savings/ | Year Cost

Discount Factor

Discounted | Savings/Costj

|ANNUAL TOTAL I ONE TIME TOTAL TOTAL

$0| $0| $0|

$0| $0| $0|

4. First Year Dollar Savings 5. Simple Payback Period (Years) 6. Total Net Discounted Savings 7. Savings to Investment Ratio

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return

$31,111 9.35

$383,491 1.32

5.55%

130 USACERL TR 99/24

Appendix M: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2a

Life Cycle Cost Analysis Study: Option #2a Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2a Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public Utility Company Rebate G. Total Investment (ID-IE-IF)

$176,011 $9,681

$10,561 $196,252

$0 $0

$196,252

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

| Fuel |Price |Price | Usage |Usage j I junits jSavings jünits

|Electricity| $46.|/Mwatt| 5,361|Mwatt- JElec. Deman| | | I iNatural Gas| $3.4|/Mbtus| -45,660|Mbtus TOTAL | I I -27,369|Mbtus

Annual |Discount|Discounted Savings | Factor | Savings

$246,5901 $45,6701

■$155,244| $137,016|

14.47| $3,568,1601 13.471 $615,175| 17.32|-$2,688,826|

| $1,494,509|

USACERLTR-99/24 131

3. Non Energy Savings (+) / Costs (-)

I Item Savings/ Year Discount Discounted | Cost Factor Savings/Cost|

jBaseline Maint -$50,991 Annual 13.47 -$686,849| |ANNUAL TOTAL -$50,991 -$686,849| jMaintenance -$16,934 2 .92 -$15,626| [Maintenance -$15,797 3 .89 -$14,003| j Maintenance -$55,950 4 .85 -$47,643| [Maintenance -$15,458 5 .82 -$12,644| [Maintenance -$16,724 6 .79 -$13,141| [Maintenance -$55,542 7 .75 -$41,924| [Maintenance -$17,998 8 .73 -$13,050| [Maintenance -$18,115 9 .7 -$12,618| [Maintenance -$56,639 10 .67 -$37,897| [Maintenance -$16,586 11 .64 -$10,661| (Maintenance -$18,184 12 .62 -$11,227| [Maintenance -$54,056 13 .59 -$32,062| [Maintenance -$18,527 15 .55 -$10,140| [Maintenance -$72,476 16 .53 -$38,105 j [Maintenance -$19,212 18 .49 -$9,321| |Maintenance -$16,250 19 .47 -$7,573| [Maintenance -$55,120 20 .45 -$24,677| JONE TIME TOTAL -$539,568 -$352,314| |TOTAL -$590,559 -$1,039,163|

Life Cycle Cost i analysis Stud] {: DAVM0N2 .LC Energy Conservation Investment Progran i (ECIP) LCCID FY9 6 Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 9 7 Discrete Portion: Option #2a Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

I Item |Savings/ | Year [Discount | Discounted | I I Cost j j Factor jSavings/Cost|

4. First Year Dollar Savings $59,047 5. Simple Payback Period (Years) 2.87 6. Total Net Discounted Savings $455,346 7. Savings to Investment Ratio 2.32

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 8.57%

132 USACERL TR 99/24

Appendix N: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2b

Life Cycle Cost Analysis Study: Option #2b Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

ECIP Summary Report

1. Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public Utility Company Rebate G. Total Investment (ID-IE-IF)

$211,132 $11,612 $12,668

$235,412 $0 $0

$235,412

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel Price |Price IUnits

Usage |Usage Savings jUnits

Annual |Discount[Discounted | Savings | Factor j Savings |

$330,671| $46,664|

•$214,852| $162,483|

= 1 = jElectricity j Elec. Deman jNatural Gas j TOTAL

$46.j/Mwatt I

$3.4|/Mbtus

7,188|Mwatt- I

-63,192IMbtus •38,664|Mbtus

14.47| $4,784,803| 13.471 $628,5641 17.32|-$3,721,231|

| $1,692,1361

USACERLTR-99/24 133

3. Non Energy Savings (+) / Costs (-)

Item Savings/ Year Discount Discounted | Cost Factor Savings/Cost|

Baseline Maint -$50,991 Annual 13.47 -$686,849| ANNUAL TOTAL -$50,991 -$686,849| Maintenance -$16,934 2 .92 -$15,626| Maintenance -$15,797 3 .89 -$14,003| Maintenance -$55,950 4 .85 -$47,643| Maintenance -$15,458 5 .82 -$12,644| Maintenance -$16,724 6 .79 -$13,141| Maintenance -$55,542 7 .75 -$41,924| Maintenance -$17,998 8 .73 -$13,050| Maintenance -$18,115 9 .7 -$12,618| Maintenance -$56,639 10 .67 -$37,897| Maintenance -$16,586 11 .64 -$10,661| Maintenance -$18,184 12 .62 -$11,227| Maintenance -$54,056 13 .59 -$32,062| Maintenance -$18,527 15 .55 -$10,140| Maintenance -$72,476 16 .53 -$38,105| Maintenance -$19,212 18 .49 -$9,321| Maintenance -$16,250 19 .47 -$7,573 | Maintenance -$55,120 20 .45 -$24,677| ONE TIME TOTAL -$539,568 -$352,314| TOTAL -$590,559 -$1,039,163|

Life Cycle Cost Analysis Study: DAVMON3.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

I Item |Savings/ | Year |Discount | Discounted | I I Cost I I Factor jSavings/Costj

i::::::::::::::::::!:::::::::!:::::::!:::::::::!::::::::::::1

4. First Year Dollar Savings $84,513 5. Simple Payback Period (Years) 2.51 6. Total Net Discounted Savings $652,973 7. Savings to Investment Ratio 2.77

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 9.55%

134 USACERL TR 99/24

Appendix O: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2c

Life Cycle Cost Analysis Study: Option #2c Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public Utility Company Rebate G. Total Investment (ID-IE-IF)

$427,380 $23,506 $25,643

$476,529 $0 $0

$476,529

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel |Price |Price | Usage |Usage | jUnits jSavings jUnits

:l = :| =

Annual |Discount|Discounted | Savings j Factor j Savings |

jElectricity| JElec. Demanj j Natural Gas j I TOTAL I

$46.|/Mwatt| 14,289|Mwatt- I I I

$3.4|/Mbtus|-113,421|Mbtus j j -64,666IMbtus

$657,2811 $154,883 1 •$385,633| $426,531|

14.47| $9,510,858| 13.47| $2,086,274| 17.32|-$6,679,160|

| $4,917,973|

USACERLTR-99/24 135

3. Non Energy Savings (+) / Costs (-)

Item Savings/ Year Discount Discounted | Cost Factor Savings/Cost|

Baseline Maint -$101,982 Annual 13.47 -$1,373,698| ANNUAL TOTAL -$101,982 -$1,373,698| Maintenance -$33,868 2 .92 -$31,253| Maintenance -$31,594 3 .89 -$28,006| Maintenance -$111,900 4 .85 -$95,286| Maintenance -$30,916 5 .82 -$25,289| Maintenance -$33,448 6 .79 -$26,282| Maintenance -$111,084 7 .75 -$83,849| Maintenance -$35,996 8 .73 -$26,100| Maintenance -$36,230 9 .7 -$25,235| Maintenance -$113,278 10 .67 -$75,795| Maintenance -$33,172 11 .64 -$21,321| Maintenance -$36,368 12 .62 -$22,455| Maintenance -$108,112 13 .59 -$64,123| Maintenance -$37,054 15 .55 -$20,280| Maintenance -$144,952 16 .53 -$76,210| Maintenance -$38,424 18 .49 -$18,642| Maintenance -$32,500 19 .47 -$15,147| Maintenance -$110,240 20 .45 -$49,354| ONE TIME TOTAL -$1,079,1 -$704,628| TOTAL -$1,181,1 -$2,078,325|

Life Cycle Cost Analysis Study: DAVM0N4.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

Item |Savings/ | Year |Discount | Discounted | I Cost I j Factor jSavings/Cost|

4. First Year Dollar Savings 5. Simple Payback Period (Years) 6. Total Net Discounted Savings 7. Savings to Investment Ratio

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return

$270,593 1.65

$2,839,647 5.96

13.82%

136 USACERL TR 99/24

Appendix P: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 2d

Life Cycle Cost Analysis Study: Option #2d Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2d Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

ECIP Summary Report 1. Investment

A. Construction Cost $573,172 B. SIOH $31,524 C. Design Cost $34,390 D. Total Cost (1A+1B+1C) $639,087 E. Salvage Value of Existing Equip. $0 F. Public Utility Company Rebate $0 G. Total Investment (ID-IE-IF) $639,087

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

| Fuel |Price |Price I j IUnits

|Electricity| $46.|/Mwatt |Elec. Demanj | jNatural Gas | $3.4|/Mbtus j TOTAL I I

Usage |Usage Savings |Units

20,546|Mwatt- I

-178,587IMbtus -108,480JMbtus

Annual |Discount[Discounted | Savings | Factor | Savings |

$945,1361 14.47|$13,676,120| $232,056| 13.47| $3,125,795| -$607,197| 17.32|-$10,516,65| $569,9951 | $6,285,267|

USACERLTR-99/24 137

3. Non Energy Savings (+) / Costs (-)

Item Savings/ Year Discount Discounted | Cost Factor Savings/Cost|

Baseline Maint -$152,973 Annual 13.47 -$2,060,546| ANNUAL TOTAL -$152,973 -$2,060,546| Maintenance -$50,802 2 .92 -$46,879| Maintenance -$47,391 3 .89 -$42,009| Maintenance -$167,840 4 .85 -$142,920| Maintenance -$46,374 5 .82 -$37,933| Maintenance -$50,172 6 .79 -$39,424| Maintenance -$166,626 7 .75 -$125,773| Maintenance -$53,994 8 .73 -$39,151| Maintenance -$54,345 9 .7 -$37,853| Maintenance -$169,917 10 .67 -$113,692| Maintenance -$49,758 11 .64 -$31,982| Maintenance -$54,552 12 .62 -$33,682| Maintenance -$162,168 13 .59 -$96,185| Maintenance -$55,581 15 .55 -$30,420| Maintenance -$217,428 16 .53 -$114,315| Maintenance -$57,636 18 .49 -$27,963| Maintenance -$48,750 19 .47 -$22,720| Maintenance -$165,360 20 .45 -$74,031| ONE TIME TOTAL -$1,618,6 -$1,056,933| TOTAL -$1,771,6 -$3,117,479|

Life Cycle Cost Analysis Study: DAVMON5.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #2d Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

I Item |Savings/ | Year |Discount | Discounted | | I Cost j j Factor jSavings/Cost|

4. First Year Dollar Savings $336,088 5. Simple Payback Period (Years) 1.75 6. Total Net Discounted Savings $3,167,788 7. Savings to Investment Ratio 4.96

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 12.77%

138 USACERL TR 99/24

Appendix Q: Calculated Paybacks and Savings-to-Investment Ratio for Option 3a

Life Cycle Cost Analysis Study: Option #3a Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3a Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

ECIP Summary Report

1. Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public utility Company Rebate G. Total Investment (ID-IE-IF)

$241,710 $13,294 $14,503

$269,507 $0 $0

$269,507

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel |Price |Price | Usage |Usage I I Units jSavings jUnits

|Electricity| $46.|/Mwatt| 13,937|Mwatt- |Elec. Deman| j | I |Natural Gas| $3.4|/Mbtus|-113,421|Mbtus TOTAL j I I -65,867|Mbtus

Annual |Discount(Discounted | Savings j Factor | Savings :l = $641,0911 $147,375| -$385,632| $402,834|

14.47| $9,276,586| 13.47| $1,985,141| 17.32|-$6,679,142|

| $4,582,585|

USACERLTR-99/24 139

3. Non Energy Savings (+) / Costs (-)

Item Savings/ Year Discount Discounted | Cost Factor Savings/Cost|

Baseline Maint -$101,982 Annual 13.47 -$1,373,698| ANNUAL TOTAL -$101,982 -$1,373,698| Maintenance -$33,868 2 .92 -$31,253| Maintenance -$31,594 3 .89 -$28,006| Maintenance -$111,900 4 .85 -$95,286| Maintenance -$30,916 5 .82 -$25,289| Maintenance -$33,448 6 .79 -$26,282| Maintenance -$111,084 7 .75 -$83,849| Maintenance -$35,996 8 .73 -$26,100| Maintenance -$36,230 9 .7 -$25,235| Maintenance -$113,278 10 .67 -$75,795| Maintenance -$33,172 11 .64 -$21,321| Maintenance -$36,368 12 .62 -$22,455| Maintenance -$108,112 13 .59 -$64,123| Maintenance -$37,054 15 .55 -$20,280| Maintenance -$144,952 16 • .53 -$76,210| Maintenance -$38,424 18 .49 -$18,642| Maintenance -$32,500 19 .47 -$15,147| Maintenance -$110,240 20 .45 -$49,354| ONE TIME TOTAL -$1,079,1 -$704,628| TOTAL -$1,181,1 -$2,078,325|

Life Cycle Cost Analysis Study: DAVMON6.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3a Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

| Item | Savings/ | Year |Discount | Discounted | j j Cost j j Factor jSavings/Cost| |==================|========= |^======^=========!============ |

4. First Year Dollar Savings $246,895 5. Simple Payback Period (Years) 1.01 6. Total Net Discounted Savings $2,504,260 7. Savings to Investment Ratio 9.29

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 16.37%

140 USACERL TR 99/24

Appendix R: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3b

Life Cycle Cost Analysis Study: Option #3b Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

ECIP Summary Report

Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public Utility Company Rebate G. Total Investment (ID-IE-IF)

$481,450 $26,480 $28,887

$536,817 $0 $0

$536,817

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel I 1 = | Electricity I Elec. Deman j Natural Gas I TOTAL

Price |Price | Usage |Usage jUnits jSavings jUnits :l =

Annual |Discount|Discounted | Savings j Factor j Savings j

= 1 = 1 = $46.|/Mwatt| 26,943|Mwatt- II I

$3.4 j/Mbtus j- 244,743|Mbtus | |-152,811|Mbtus

$1,239,367| $310,4531 -$832,128| $717,692|

14.47|$17,933,640| 13.47| $4,181,802| 17.32|-$14,412,45|

| $7,702,992|

USACERLTR-99/24 141

3. Non Energy Savings (+) / Costs (-)

Item Savings/ I Year Discount Discounted | Cost Factor Savings/Cost|

Baseline Maint -$203,964 Annual 13.47 -$2,747,395| ANNUAL TOTAL -$203,964 -$2,747,395| Maintenance -$67,736 2 .92 -$62,505| Maintenance -$63,188 3 .89 -$56,012| Maintenance -$223,800 4 .85 -$190,571| Maintenance -$61,832 5 .82 -$50,578| Maintenance -$66,896 6 .79 -$52,565| Maintenance -$222,168 7 .75 -$167,697| Maintenance -$71,992 8 .73 -$52,201| Maintenance -$72,460 9 .7 -$50,471| Maintenance -$226,556 10 .67 -$151,589| Maintenance -$66,344 11 .64 -$42,643| Maintenance -$72,736 12 .62 -$44,910| Maintenance •-$216,224 13 .59 -$128,246| Maintenance -$74,108 15 .55 -$40,561| Maintenance -$289,904 16 .53 -$152,420| Maintenance -$76,848 18 .49 -$37,284| Maintenance -$65,000 19 .47 -$30,294 j Maintenance -$220,480 20 .45 -$98,709| ONE TIME TOTAL -$2,158,2 -$1,409,255| TOTAL -$2,362,2 -$4,156,651|

Life Cycle Cost Analysis Study: DAVMON7.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3b Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

I Item |Savings/ | Year |Discount | Discounted | I j Cost j j Factor |Savings/Cost|

1:=:::;:::;::::::::=:!:::::™ 4. First Year Dollar Savings $405,815 5. Simple Payback Period (Years) 1.21 6. Total Net Discounted Savings $3,546,342 7. Savings to Investment Ratio 6.61

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 14.41%

142 USACERL TR 99/24

Appendix S: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3c

Life Cycle Cost Analysis Study: Option #3c Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY9 6

ECIP Summary Report

Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public Utility Company Rebate G. Total Investment (1D-1E-1F)

$482,863 $26,557 $28,972

$538,392 $0 $0

$538,392

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel |Price |Price | Usage |Usage j junits I Savings |Units I

I ===========| = |Electricity| JElec. Demanj j Natural Gas| I TOTAL j

$46.j/Mwatt| 20,546|Mwatt-

Annual |Discount[Discounted | Savings j Factor j Savings

= 1 =

$3.4j/Mbtus| I I

179,077|Mbtus 108,970IMbtus

$945,1361 $232,056| -$608,863| $568,329 1

14.47|$13,676,120| 13.47| $3,125,7951 17.32|-$10,545,51]

| $6,256,406|

USACERLTR-99/24 143

3. Non Energy Savings (+) / Costs (-)

Item Savings/ Year Discount Discounted Cost Factor Savings/Cost

Baseline Maint -$152,973 Annual 13.47 -$2,060,546 ANNUAL TOTAL -$152,973 -$2,060,546 Maintenance -$50,802 2 .92 -$46,879 Maintenance -$47,391 3 .89 -$42,009 Maintenance -$167,850 4 .85 -$142,928 Maintenance -$46,374 5 .82 -$37,933 Maintenance -$50,172 6 .79 -$39,424 Maintenance -$166,626 7 .75 -$125,773 Maintenance -$53,994 8 .73 -$39,151 Maintenance -$54,345 9 .7 -$37,853 Maintenance -$169,917 10 .67 -$113,692 Maintenance -$49,758 11 .64 -$31,982 Maintenance -$54,552 12 .62 -$33,682 Maintenance -$162,168 13 .59 -$96,185 Maintenance -$55,581 15 .55 -$30,420 Maintenance -$217,428 16 .53 -$114,315 Maintenance -$57,636 18 .49 -$27,963 Maintenance -$48,750 19 .47 -$22,720 Maintenance -$165,360 20 .45 -$74,031 ONE TIME TOTAL -$1,618,7 -$1,056,941 TOTAL -$1,771,6 -$3,117,488

Life Cycle Cost Analysis Study: DAVMON8.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3c Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

| Item |Savings/ | Year |Discount | Discounted | I I Cost j | Factor |Savings/Cost|

4. First Year Dollar Savings $334,421 5. Simple Payback Period (Years) 1.49 6. Total Net Discounted Savings $3,138,918 7. Savings to Investment Ratio 5.83

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return 13.69%

144 USACERL TR 99/24

Appendix T: Calculated Paybacks and Savings-to-lnvestment Ratio for Option 3d

Life Cycle Cost Analysis Study: Option #3d Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3d

LCCID FY96

Analysis Date: 10/01/97 Economic Life: 20 Prepared by: William T Brown III

years

ECIP Summary Report

1. Investment A. Construction Cost B. SIOH C. Design Cost D. Total Cost (1A+1B+1C) E. Salvage Value of Existing Equip. F. Public Utility Company Rebate G. Total Investment (ID-IE-IF)

$838,542 $46,120 $50,313

$934,974 $0 $0

$934,974

2. Energy Savings (+) / Costs (-) Date of NISTIR 85-3273-X used for Discount Factors Oct 1995

Fuel |Price |Price j jUnits

Usage |Usage |Savings jUnits

Annual |Discount|Discounted | Savings j Factor | Savings

====== I = |$1,876,397|

$468,7801 -$1,278,55|

| $1,066,622|

= 1 = = 1 iElectricity! j Elec. Deman| I Natural Gasj I TOTAL j

$46.i/Mwatt j I I

$3.4|/Mbtus

40,791|Mwatt- I

-376,046|Mbtus -236,860|Mbtus

14.47|$27,151,460| 13.47| $6,314,467| 17.321-$22,144,57|

| $11,321,360]

USACERLTR-99/24 145

3. Non Energy Savings (+) / Costs (-)

Item Savings/ Year Discount Discounted | Cost Factor Savings/Cost|

Baseline Maint -$305,946 Annual 13.47 -$4,121,093| ANNUAL TOTAL -$305,946 -$4,121,093| Maintenance -$101,604 2 .92 -$93,758| Maintenance -$94,782 3 .89 -$84,018| Maintenance -$335,700 4 .85 -$285,857| Maintenance -$92,748 5 .82 -$75,867| Maintenance -$100,344 6 .79 -$78,847| Maintenance -$333,252 7 .75 -$251,546| Maintenance -$107,988 8 .73 -$78,301| Maintenance -$108,690 9 .7 -$75,706 | Maintenance -$339,834 10 .67 -$227,384| Maintenance -$99,516 11 .64 -$63,964| Maintenance -$109,104 12 .62 -$67,365| Maintenance -$324,336 13 .59 -$192,369| Maintenance -$111,162 15 .55 -$60,841| Maintenance -$434,856 16 .53 -$228,630| Maintenance -$115,272 18 .49 -$55,926| Maintenance -$97,500 19 .47 -$45,440| Maintenance -$330,720 20 .45 -$148,063| ONE TIME TOTAL -$3,237,4 -$2,113,883| TOTAL -$3,543,3 -$6,234,975|

Life Cycle Cost Analysis Study: DAVM0N9.LC Energy Conservation Investment Program (ECIP) Installation & Location: Davis-Monthan AFB Region data: ARIZONA Census Region: 4 Project NO. & Title: 250-Ton Chiller Replacement Fiscal Year: 97 Discrete Portion: Option #3d Analysis Date: 10/01/97 Economic Life: 20 years Prepared by: William T Brown III

LCCID FY96

Item |Savings/ | Year | Cost I

|Discount Factor

| Discounted | j Savings/Cost |

4. First Year Dollar Savings . 5. Simple Payback Period (Years) 6. Total Net Discounted Savings 7. Savings to Investment Ratio

If < 1, Project does not qualify 8. Adjusted Internal Rate of Return

$598,806 1.43

$5,086,382 5.44

13.3%

146 USACERL TR 99/24

USACERL DISTRIBUTION

Chief of Engineers ATTN: CEHEC-IM-LH (2) ATTN: CEHEC-IM-LP (2) ATTN: CECC-R ATTN: CERD-L ATTN: CERD-M

Tyndall AFB 32403 ATTN: HQAFCESA/CES ATTN: Engrg & Srvc Lab

Defense Tech Info Center 22304 ATTN: DTIC-0(2)

11 2/98

■&U.S. GOVERNMENT PRINTING OPHCE: 1999 - 746^>7«80039

This publication was reproduced on recycled paper.

$