22
Technology for a better society 1 Bernd Wittgens, Duncan Akporiaye, Inga Marie Aasen, Paul Dahl, Morten Frøseth; SINTEF Materials and Chemistry Judit Sandquist, Gonzalo del Alamo, Øyvind Skreiberg; SINTEF Energy Research AS Jorunn Skjermo; SINTEF Fishery and Aquaculture Advanced biorefinery concept based on cultivated macroalgae a value chain approach Judit Sandquist Symposium on Renewable Energy and Products from Biomass and Waste

Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 1

Bernd Wittgens, Duncan Akporiaye, Inga Marie Aasen, Paul Dahl, Morten Frøseth; SINTEF Materials and ChemistryJudit Sandquist, Gonzalo del Alamo, Øyvind Skreiberg; SINTEF Energy Research ASJorunn Skjermo; SINTEF Fishery and Aquaculture

Advanced biorefinery concept based on cultivated macroalgae

a value chain approach

Judit Sandquist Symposium on Renewable Energy and Products from Biomass and Waste

Page 2: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

• Motivation

• Value chain

o Feedstock availability

o Pretreatment and hydrolysis

o Conversion (biochemical, catalytic and hydrothermal)

• Techno-economic evaluation / areas for further

developments

Presentation Outline

2

Page 3: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Motivation

3

• Increasing needs/requirements for renewable resources

• The Norwegian authorities intend to double the use of bioenergyby 2020 as a way of utilizing renewables and rural development.

• Replacement of fossil resources requires an alternative abundant feedstock: limited land and water for sustainable biomass production

• Develop efficient technologies for given products: research and innovation essential to bring new ideas and technologies to the market

• The challenge in the bio‐economy market is the present uncertainty in which direction the market for energy, chemicals and materials will develop

Page 4: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 4

Biomass resource with a large potential in Norway High biomass productivity

(170 t ww/ha ≈ 25 t dw/ha annually) Large areas for cultivation available A wide range of products and applications/markets

Carbohydrates -> Conversion to fuels and chemicals Protein -> Food and feed Polysaccharides -> Functional and/or bioactive properties

for a range of applications Low-molecular weight compounds -> Functional and/or

bioactive properties (less explored)

Current situation Wild harvested annually (ww):

150 000 t Laminaria hyperborea (Forest kelp) 15 000 t Ascophyllum nodosum (Knotted wrack)

Why seaweed?Forest kelp

Knotted wrack

Sugar kelp

Page 5: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Low-cost products- Minerals- Fertilizers

Modification:- Chemical- Enzymatic

Seaweed Biorefinery

Carbohydrates (low-cost product)

High cost products- Bioactive extracts- Polysaccharides - Modified polysaccharides

Medium cost products- Food (fresh and processed)- Alginate- Mannitol- Feed (protein)Feedstock

Whole biomass or extracted fractions

Medium cost products- Single Cell Proteins- Organic acids, amino acids- etc.

Low cost products- Biofuels- Platform chemicals

Microbial or thermochemical conversion

5

Page 6: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 6

Value creation in the Norwegian seaweed industry – Scenario 2050

Olafsen et al., 2012: Verdiskaping basert på produktive hav i 2050 (DKNVS/NTVA)

Volume (mill tonnes)

Page 7: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Motivation – value chain

7

Feedstock‐ Harvesting‐ Conservation‐ Storage

Pretreatment‐ Mechanical processing

‐ Enzymatic  hydrolysis

‐ HTL

Conversion‐ Digestion‐ Fermentation‐ Catalysis‐ HTL

Products Recovery‐ Distillation‐ Membrane‐ Extraction‐ Separation

Process design & OptimizationTechnical & economical Evaluation

Chemicals

Fuels

Page 8: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Refinery

8

Petroleu

mFractio

natio

nDistillation

CrackingAlkylation

Isomerization

REMOVEoxygen

ADDoxygen

Hydrocarbons:‐ Alkane‐ Aromatics

Products:‐ Jet Fuel‐ Diesel‐ Gasoline

Chemicals

Biom

ass

Geo

logical tim

e scale

Pretreatment

Hydrolysis

Dehydration         OligomerizationHydrogenation    KetonizationDecarboxylation  Aldol‐condensationHydrogenolysis

Biom

ass

Sugar Platform:‐ Sugars‐Mono; di‐alcohols‐ Acids‐ Furane

Thermchem. Platform:‐ Bio‐oil

Hyd

roth

erm

al L

ique

fact

ion

Bio

Page 9: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 9

Address challenge of economic production of products from marine biomass

DHMF – (Bis(hydroxmethyl)furan)

Polyurethane and polyesters

Marine Biomass

• Biofuels• Chemicals

• Biofuels• Chemicals• Food/Feed

Chemical conversionWater based chemistry

Thermochemical conversionHydrothermal conditions

Biochemical  conversionHigh viscosity

• Food/Feed

Extraction

Page 10: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 10

Value chain = Project structure Feedstock Seaweed:‐ Enhanced biomass outcome‐ Seasonal variation in composition

Pre‐treatment:‐ Release and hydrolysisof polysaccharides

Biochemical Conversion:‐ Consolidated fermentation‐ High dry matter processing

Thermochemical conversion‐ Hydrothermal liquefaction

Products:‐ Platform Chemicals‐ Fuel‐ Functional food‐ Feed ingredients‐ Fertilizer

Separation I

Mass and Energy integration

Secondary conversion

Separation II

Extraction

Page 11: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 11

Feedstock‐ Harvesting‐ Conservation‐ Storage

Pretreatment‐ Mechanical processing

‐ Enzymatic  hydrolysis

‐ HTL

Conversion‐ Digestion‐ Fermentation‐ Catalysis‐ HTL

Products Recovery‐ Distillation‐ Membrane‐ Extraction‐ Separation

Process design & OptimizationTechnical & economical Evaluation

Chemicals

Fuels

Page 12: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 12

Feedstock seaweed –cultivated macroalgae

• Attractive biomass, large range of possible valuable products • Eco‐physiological effects on the chemical composition – an 

opportunity• Sustainable production of biomass, no negative effect on the 

benthic ecosystem• Large volumes possible• Effective harvesting and freshness of biomass• Possibilities for nutrients recycling (Integrated Multi‐trophic 

Aquaculture)• 480 species in Norway

Productivity sugar kelp:170 tons WW ha-1

30 tons DW ha-1

5-9 months Broch et al., 2013

Page 13: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 13

Feedstock‐ Harvesting‐ Conservation‐ Storage

Pretreatment‐ Mechanical processing

‐ Enzymatic  hydrolysis

‐ HTL

Conversion‐ Digestion‐ Fermentation‐ Catalysis‐ HTL

Products Recovery‐ Distillation‐ Membrane‐ Extraction‐ Separation

Process design & OptimizationTechnical & economical Evaluation

Chemicals

Fuels

Page 14: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 14

Pre-treatment and HydrolysisDevelopment of new, efficient pre-treatment / hydrolysis processes for seaweed biomass, enabling utilization of minimum 85 % of the alginate

Challenges: • Release of sugars with minimum dilution• Alginate: Ca-gel in native state,

high-viscosity when dissolved

Strategy: • Chemical and/or thermal pre-processing• Addition of alginate hydrolysing

enzymes to degrade the alginate matrix• Hydrolysis of separated fractions

Reduced pH reduced water binding release of carbohydrates

Hydrolysing enzymes further enhance the liquid release

-10

0

10

20

30

40

pH 1,5 pH 2,5 pH 3 pH 3,5 pH 4 pH 4,5 pH 6,5 pH ->3->7+ Aly

Treatment

Rel

ease

d liq

uid

[% o

f ww

]

Page 15: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 15

Feedstock‐ Harvesting‐ Conservation‐ Storage

Pretreatment‐ Mechanical processing

‐ Enzymatic  hydrolysis

‐ HTL

Conversion‐ Digestion‐ Fermentation‐ Catalysis‐ HTL

Products Recovery‐ Distillation‐ Membrane‐ Extraction‐ Separation

Process design & OptimizationTechnical & economical Evaluation

Chemicals

Fuels

Page 16: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Biochemical conversion Generation of clean and cheap sugars Minimum formation of inhibitors Highly efficient enzymatic conversion

o Alginate: less complex structure than lignin, no recalcitrant fibres

Microbial laminaran/alginate hydrolysing enzymes are widespread

Sugar acids new area for enzymatic/chemical conversions

Other sugars (mannitol, uronic acids) than in terrestrial biomasso New production strains must be developed

• Many possibilities for new productso Diols: 2,3-Butanediol

o Di-carboxlic acids (Succinic acid)

o 2-oxo-carboxylic acids (Pyruvic acid)

16

Page 17: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 17

Biochemical conversionFermentation generating biofuels/platform chemicals from seaweed hydrolysates

Main objectives:• Selection of potential wild type microorganisms for future development of 

production strains optimized for seaweed based biorefinery• Evaluate model microorganisms (E. coli, C. glutamicum and B. methanolicus, S. 

cerevisiae) for potential growth on seaweed hydrolysateso Screening different wild type and laboratory strains o Investigate tolerance to hydrolysates and inhibitorso Tolerance to high concentration of monosugars in                                                

hydrolysateso Salt tolerance

• Separation procedures (i.e. diols / di‐carboxylic acids)o Distillation ‐ Gas stripping ‐Membrane separation                                                                 

‐ Reverse osmosis – Pervaporation ‐ Solvent extraction

Membrane contactor

Page 18: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 18

Possible products: • High‐chain length alkanes• Carboxylic fatty acids (palmitic and 

palmitoleic acid)• Polyaromatic hydrocarbons (PAH)• Biochar• Methane‐riched gas for energy purposes

Thermochemical conversion• High conversion rates  under subcritical water 

conditions• Avoid energy demanding dewatering and vaporization• Improved conversion through inexpensive catalysts • Processing of the seaweed residues derived from 

biochemical conversion 

Page 19: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Advantages of hydrothermal processing

19

Hydrothermal processing

Biofuels, Bioprod. Bioref., 2 (2008) 415‐437

• No drying of wet biomass is needed,reduces energy consumption

• Multiple feed streams seaweed,waste streams and "micro‐organisms"

• High carbon conversion rate into bio‐oil (high‐chain alkanes, carboxylic fatty acids,polyaromatic hydrocarbons (PAH)), biochar and methane‐containing gas

• Fast conversion as compared to other routes

• The product gas is pressurized simplifying downstream processes.

• CO2 is easily separated from the gas product because of its higher solubility inwater than CH4 and H2.

• Advanced process integration is needed for high thermal efficiencies

Page 20: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society 20

Feed Stock‐ Harvesting‐ Conservation‐ Storage

Pretreatment‐ Mechanical processing

‐ Enzymatic  hydrolysis

Conversion‐ Digestion‐ Fermentation‐ Catalysis

Products Recovery‐ Distillation‐ Membrane‐ Extraction

Process design & OptimizationTechnical & economical Evaluation

Chemicals

Fuels

Page 21: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Technology for a better society

Technical and economical evaluationIs there money to be made? Yes, but

• Find the right combination of feedstock and product

• Extract valuable first

• Maximize utilization of feedstock

• Minimize feedstock decomposition

• Minimize energy consumption for

o Conversion

o Separation

o Reduced water amount in the system

o Increased dry matter content in processes

• Integration of biochemical, thermochemical and catalytic processes

21

Page 22: Advanced biorefinery concept based on cultivated macroalgae production strains optimized for seaweed based biorefinery • Evaluate model microorganisms (E. coli, C. glutamicum and

Thank you for your attention!

Questions?