38
1 ADMOL, Dresden, Germany February 2004 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J. Lukens, X. Ma, A. Mayr, I. Muckra, Ö. Türel Discussions: P. Adams, J. Barhen, L. Chua T. Ishii, V. Protopopescu, T. Sejnowski Support: DOE, NSF References: - K. L., “Electronics Below 10 nm”, in Giga and Nano Challenges in Microelectronics (Elsevier, Amsterdam, 2003), pp. 27-68 - Ö. Türel et al., “Nanoelectronic Neuromorphic Networks: New Results”, http://rsfq1.physics.sunysb.edu/~likharev/nano/ CMOL: Devices, Circuits, and Architectures

ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

Embed Size (px)

Citation preview

Page 1: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

1ADMOL, Dresden, Germany February 2004

Konstantin LikharevStony Brook University

Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling

J. Lee, X. Liu, J. Lukens, X. Ma, A. Mayr, I. Muckra, Ö. Türel

Discussions: P. Adams, J. Barhen, L. Chua T. Ishii, V. Protopopescu, T. Sejnowski

Support: DOE, NSF

References: - K. L., “Electronics Below 10 nm”, in Giga and Nano Challenges in Microelectronics (Elsevier, Amsterdam, 2003), pp. 27-68- Ö. Türel et al., “Nanoelectronic Neuromorphic Networks: New Results”,

http://rsfq1.physics.sunysb.edu/~likharev/nano/Budapest.pdf

CMOL: Devices, Circuits, and ArchitecturesCMOL: Devices, Circuits, and Architectures

Page 2: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

2ADMOL, Dresden, Germany February 2004

CMOS TECHNOLOGY

Pentium 4 processor:

• 42 million transistors

• 0.13 m design rules

• > 3 GHz clock frequency

DRAM memories:

4 Gb chips demonstrated

(~ 109 transistors/cm2)

Page 3: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

3ADMOL, Dresden, Germany February 2004

VOLTAGE GAIN

(!)

V. Sverdlov, T. Walls, and KKL, IEEE T-ED 50, 1926 (2003)

Page 4: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

4ADMOL, Dresden, Germany February 2004

PROBLEM: FAB SENSITIVITY

ND = 31020 cm-3

~0.4nm

50 mV

V. Sverdlov, T. Walls, and KKL, IEEE T-ED 50, 1926 (2003)

Page 5: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

5ADMOL, Dresden, Germany February 2004

ULTIMATE CMOS PROSPECTSRANGE

Pessimistic Optimistic

Minimum half-pitch: 45 nm 20 nm

(Yr. 2010) (Yr. 2016)Transistor density:

5109 cm-2 31010 cm-2

5-transistor device density: 1109 cm-2 6109 cm-2

Page 6: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

6ADMOL, Dresden, Germany February 2004

CORTICAL CIRCUITRY

Brain:

~ 21010 neural cells

~ few1014 synapses

Areal density: Cells: ~ 1.5107 cm-2

Synapses: ~ 1.01011 cm-2 axon

dendrite

synapse

Each synapse is an “active device”!

Page 7: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

7ADMOL, Dresden, Germany February 2004

TRANSISTORS: SET vs FET

gate

drainsource

Choice: G e2/

FET SET

G G

Page 8: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

8ADMOL, Dresden, Germany February 2004

SINGLE-ELECTRON TRANSISTOR

Averin and Likharev, 1985 (theory)

Fulton and Dolan, 1987 (experiment)

source drain

islandC1

C2

C0

Vg

V

gate

-2 -1 0 1 2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Vt (for Q

0 = 0)

Qe = 0

Qe = e/2

C1 = C

2 = C/2

R1 = R

2 = R/2

kBT = 0.01 e

2/C

-2 -1 0 1 2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2 -1 0 1 2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2 -1 0 1 2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-2 -1 0 1 2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Cur

rent

I (e

/RC

)

-2 -1 0 1 2-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Source-drain Voltage V (e/C)

(b)

Page 9: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

9ADMOL, Dresden, Germany February 2004

0.1 1 10 100 100010

-19

10-18

10-17

10-16

10-15

C

Isla

nd

Ca

paci

tan

ce (

F)

Island Diameter (nm)

0.1 1 10 100 10001E-3

0.01

0.1

1

10

Ec

En

erg

y (e

V)

Island Diameter (nm)

0.1 1 10 100 10001E-3

0.01

0.1

1

10

Ek

En

erg

y (e

V)

Island Diameter (nm)

0.1 1 10 100 10001E-3

0.01

0.1

1

10

Ea

En

erg

y (e

V)

Island Diameter (nm)

SET PROBLEM #1: FABRICATION

kB300 K

Ec 102 kBT

Page 10: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

10ADMOL, Dresden, Germany February 2004

SINGLE-ELECTRON SINGLE-MOLECULE TRANSISTORS

see also:

- E. S. Soldatov et al. JETP Lett. 64, 556 (1996)

- H. Park et al. Nature 407, 57 (2000)

- N. Zhitenev, H. Meng, and Z. Bao PRB 88, 226801 (2002)

J. Park et al. Nature 417, 722 (2002)

Page 11: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

11ADMOL, Dresden, Germany February 2004

1

-ne

VS VD

2

single-electron transistor

C0

single-electron trap-0.1 0.0 0.1 0.2 0.3

-0.1

0.0

0.1

0.2

0.3

Curr

en

t (e

/RC

)

Voltage (e/C)

Cc/C = 2C0/C = 1Q1 = -0.425eQ2 = -0.2ekBT/(e2/C) = 0.001

n = 0

n = 1

Vinj

S. Fölling, Ö. Türel, and K.L., 2001

“quasi-fuzzy”dynamics: dp/dt = (1-p) -p,

= 0 exp{e(V-S)/kBTef},

Cc

SINGLE-ELECTRON LATCHING SWITCH

Page 12: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

12ADMOL, Dresden, Germany February 2004

P. Dresselhaus et al., 1994 

                      Al/AlOx/Al structure                      stored an electron for > 12 hrs (at T < 1 K)

SINGLE-ELECTRON LATCHING SWITCH:

low-T prototype

Page 13: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

13ADMOL, Dresden, Germany February 2004

SINGLE-ELECTRON LATCHING SWITCH:

possible molecular implementation

N

O

O

N

O

O

R

NN

O

O

O

O

R

R

N

R

C

R

R

N

R

R

C

O

R

N

R

C

R

R

O O

O

R = hexyl

naphthalenediimide group as a transistor

perylenediimide group as a trap

Courtesy A. Mayr (SBU/Chemistry)

(C6H13-)

Page 14: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

14ADMOL, Dresden, Germany February 2004

CMOL CONCEPT

CMOSstack

CMOSwiringand

plugs

goldnanowire

levels(nanoimprint)

MOSFET

self-assembledmolecular devices

I/O pin

Si wafer

Page 15: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

15ADMOL, Dresden, Germany February 2004

- memories (both embedded and stand-alone)

CMOL: POSSIBLE APPLICATIONS

Page 16: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

16ADMOL, Dresden, Germany February 2004

TOWARD CMOL-TYPE MEMORIES

J. Heath and M. Ratner, Phys. Today, May 2003

(picture F. Krausz, HPL)

Y. Chen et al. APL 82, 1610 (2003)

Page 17: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

17ADMOL, Dresden, Germany February 2004

- memories (both embedded and stand-alone)

- Boolean logic (??)

- neuromorphic circuits (“CrossNets”)

CMOL: POSSIBLE APPLICATIONS

Page 18: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

18ADMOL, Dresden, Germany February 2004

CROSSNET: GENERAL STRUCTURE(feedforward option)

somaj

somak

jk+

jk-

+

+-

-

wjk = {-1, 0, +1}

Page 19: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

19ADMOL, Dresden, Germany February 2004

CROSSNET SPECIES

x = y = const = M = 1/tan2x = y = Mx = y = const = M

FlossBar RandBar InBar

Maximum Connectivity: 4M (for RandBar, on the average)

Page 20: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

20ADMOL, Dresden, Germany February 2004

Synapse footprint (33 switches per synapse):

As = 2(8F8F)2 for F = 2 nm: As ~ 500 nm2

Synapse density: ~ 21011 cm-2 (@ 61012 cm-2 bits/cm2)

Neural cell density (recurrent network, connectivity 104):

~5107 cm-2 (cf. 1.5107 cm-2 in bio)

Speed (intercell latency): ~ 20 ns @ 100 W/cm2 (R ~ 1010 )

or: ~ 2,000 ns @ 1 W/cm2 (R ~ 1012 )

(cf. ~10 ms in bio)

Performance (for 100 W/cm2):

~ 31012 cm-2 / 20 ns ~ 1020 ops/cm2-s

(cf. ~1016 bits/cm2-s for Prescott)

CROSSNETS: ULTIMATE PERFORMANCE ESTIMATE

Page 21: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

21ADMOL, Dresden, Germany February 2004

- binary synaptic weight (for single device)

- randomness (“fuzziness”) of switching

- synaptic weight adjustment• two-terminal devices,• access via 2 nanowires (+ global back gate)

CROSSNET TRAINING CHALLENGES

dp/dt = (1-p) -p, = 0 exp{e(V-S)/kBTef},

Page 22: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

22ADMOL, Dresden, Germany February 2004

“GRAY CELL” (SOMA)(fire-rate model, feedforward network)

effective linear gain:g = GRL/R

Training mode: Working mode:

+

-

G

RL

from external tutor

+-

Page 23: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

23ADMOL, Dresden, Germany February 2004

WEIGHT IMPORTINTO RECURRENT INBAR

operation mode:

+-

+-

rowselect/unselect

(i) column select/unselect(ii) data to write

semi-selected

fullyselected

semi-selected

un-selected

un-selected

Page 24: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

24ADMOL, Dresden, Germany February 2004

HOPFIELD-MODE IMAGE RECOGNITION: DYNAMICS

original B/W image

(1 of 3 taught)

random 40% bits flipped(t = 0)

t/0 = 1 2 3 4 5

where 0 MRLC0

Page 25: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

25ADMOL, Dresden, Germany February 2004

HOPFIELD-MODE OPERATION:DEFECT TOLERANCE

InBar CrossNetN = 1664M = 25g/gt = 5

99% fidelity @ 85% bad

devices!

Page 26: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

26ADMOL, Dresden, Germany February 2004

FEEDFORWARD NETWORKS:SYNAPSE DISCRETENESS EFFECT

O. Turel et al., 2004

100 cells per layer

averaged over 100 random weight vectors

>98% fidelity at L = 37

Page 27: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

27ADMOL, Dresden, Germany February 2004

MULTI-VALUED SYNAPSES

Training mode: Working mode:

Iout = (Vj /R)iniNumber of levels: L = 2n2+1

V0xj

V0xj

Vd V0

RL

(V0)j +Vs

(V0)j +Vs

(V0)j

(V0)k

Page 28: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

28ADMOL, Dresden, Germany February 2004

CROSSNET SYSTEM HIERARCHY

I/O SYSTEMSENSOR/

ACTUATOR SYSTEM

WORLD

TUTOR

HIGH SPEED BUS SYSTEM

SOMA SOMA SOMA

“flat”CrossNet

array

Self-evolution possible ?

Page 29: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

29ADMOL, Dresden, Germany February 2004

CONCLUSIONS

CMOS: - approaching the end of Moore’s Law

CMOL: - the future of microelectronics?

CrossNets:- natural for CMOL

- ultimately high density @ high speed

- “quasi-fuzzy” (controlled randomness)

- may reproduce: Hopfield networks, feedforward perceptrons

- suitable for globally reinforced training ?

- (promise of) self-evolution ?

Page 30: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

30ADMOL, Dresden, Germany February 2004

THANK YOU!THANK YOU!

Suggestions/comments to:

[email protected]

Page 31: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

31ADMOL, Dresden, Germany February 2004

CANDIDATE MOLECULES FOR SELF-ASSEMBLING SET

oligo(phenyleneethynylene) wirediimide groupthiol group

N

R

R

NN

O

O

O

O

R = hexyl

N

R

R

C C

n n

n = 3

NN

O

O

O

O

R2

R2

R1

R1

SH

R1

R1

R2

R2

R1

R1

HS

R1

R1

NN

O

O

O

O

R2

R2

R1

R1

R2

R2

R1

R1

NN

O

O

O

O

R2

R2

R2

R2

NN

O

O

O

O

R2

R2

R2

R2

SHHS

R1 = n-hexyl; R2 = i-Pr

Page 32: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

32ADMOL, Dresden, Germany February 2004

SELF-ASSEMBLING SETs first results

supporting nanowire structure(Au on Si/SiO2)

I-V curves typical for single-electron transistors

Page 33: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

33ADMOL, Dresden, Germany February 2004

RECURRENT CROSSNET

somaj

somak

+

+-

-

+

+-

-

“synaptic plaquettes”

(each serves 4 cell pairs)

Page 34: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

34ADMOL, Dresden, Germany February 2004

CROSSNETs: TRAINING

Njal (>72 GFLOPS Linpack) - 165 processors

- 81 node Ethernet - 40 node Myrinet

Acknowledgment: DoD’s DURIP program, AFOSR

Challenges… …and means

-deeply recurrent network (backprop, etc. impossible)

-no access to individual synaptic weight

- possibly, large system sizenecessary for interesting tasks

Page 35: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

35ADMOL, Dresden, Germany February 2004

CROSSNET STATISTICS

“Small-world” networks: l ln(N/Mlong)

The World Wide Web: l 3

InBar: l L/3M = (N/9M)1/2

RandBar: l (N/4M)1/2/ln(L/2)

Example:N =107, M = 103

l 5 (cf. the Web)

L2 = (M+1)N

Page 36: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

36ADMOL, Dresden, Germany February 2004

RECURRENT CROSSNETS: CHAOTIC DYNAMICS

Effective gain g

xj(t)

g/gc = 1.0

1.1

2.0

3.0

O. Turel, I. Muckra & K.L., 2003

time (R0C0)

M = 16

axon saturation level

256256 InBarg/gc =1.5

M = 16

Page 37: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

37ADMOL, Dresden, Germany February 2004

GLOBAL REINFORCEMENT TRAINING (PLANS ONLY)

- Self-evolution: xj = xj(t)

- Inputs: xj(t) = xj

i(t) + xje(t)

- Outputs: xk (t)

- Training:

change (quasi-) global shift S

INPUT

OUTPUT

“HIDDENCELL

FIELD”

Page 38: ADMOL, Dresden, Germany February 2004 1 Konstantin Likharev Stony Brook University Acknowledgments: W. Chen, E. Cimpoiasu, S. Fölling J. Lee, X. Liu, J

38ADMOL, Dresden, Germany February 2004

INBAR-BASED BLOCK

column address decoder

and drivers

line

address

decoder

and

drivers

sense

amps

and

address

coder

bus

drivers

high speed, long distance bus system

bus

drivers