26
Adaptive Reduced Basis Generation for Time-Dependent Problems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk University of Stuttgart, Germany Institute of Applied Analysis and Numerical Simulation [email protected] Acknowledgements: Mario Ohlberger, Martin Drohmann (University of Münster, Germany) Markus Dihlmann (University of Stuttgart, Germany)

Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

Adaptive Reduced Basis Generation forTime-Dependent Problems

RB Workshop, 23.6.2011University of Paris

Bernard HaasdonkUniversity of Stuttgart, Germany

Institute of Applied Analysis and Numerical Simulation

[email protected]

Acknowledgements:

Mario Ohlberger, Martin Drohmann (University of Münster, Germany)

Markus Dihlmann (University of Stuttgart, Germany)

Page 2: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 2

Institute of Applied Analysis

and Numerical Simulation

Overview

RB-Schemes for time-dependent PDEs

POD-Greedy Algorithm

Motivation

Convergence

Adaptive Basis Generation

Training set adaptivity (Offline)

Adaptive P partition

Adaptive T partition

Adaptive N adaptation (Online)

Conclusion and Perspectives

1. time-evolution

2. large Param.-domain

3. less smoothness wrt. µ, t

Page 3: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 3

Institute of Applied Analysis

and Numerical Simulation

Model Reduction with RB-Methods

Scenario:

Parametrized PDEs: geometry, material or control parameters

Multiple simulation-requests: design, optimization, control, ...

Goals of RB-Methods:

Reduced basis space by snapshots

Reduced simulation scheme, Offline/Online decomposition

Rigorous a-posteriori error estimation

References: [NP80], [PL87], [PR07], … http://augustine.mit.edu

Solution manifold and RB-space: Example reduced basis (POD):

ϕ1

ϕ6

Xh

XN

uh(·, t,µ)

uN(·, t,µ)

XN ⊂ span(uh(·; tkn ,µn))

ΦN = (ϕ1, . . . , ϕN )

Page 4: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 4

Institute of Applied Analysis

and Numerical Simulation

RB-Method for Linear Evolution Schemes

Parametrized linear evolution equation [HO08,DHO09]

For find

s. th.

Discrete implicit/explicit scheme

For find s. th.µ ∈ P ⊂ Rp ukhKk=0 ⊂ Xh ⊂ L

2(Ω)

u0h := Ph[u0(µ)]

µ ∈ P ⊂ Rp u : [0, T ]→ X ⊂ L2(Ω)

u(0) = u0(µ)

∂tu(t) + L(µ)[u(t)] = 0

(Id + ∆tLIh

)[uk+1h ] =

(Id−∆tLEh

)[ukh] + ∆tbkh

Page 5: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 5

Institute of Applied Analysis

and Numerical Simulation

RB-Method for Linear Evolution Schemes

Reduced Basis Space

Reduced Operators

Orthogonal projection

Implicit/explicit space discretization operators

RB-Evolution Scheme in Operator Form

For find s. th.µ ∈ P ⊂ Rp ukNKk=0 ⊂ XN ⊂ Xh

PN : Xh →XN

u0N := PN [u0h(µ)]

XN ⊂ span(uh(·; t,µ)) ⊂ Xh

bkN := PN [bkh]

N := dimXN dimXh

LEN := PN LEh LIN := PN LIh

(Id + ∆tLIN

)[uk+1N ] =

(Id−∆tLEN

)[ukN ] + ∆tbkN

Related: [GP05]

Page 6: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 6

Institute of Applied Analysis

and Numerical Simulation

RB-Method for Linear Evolution Schemes

A-posteriori Energy Error Bound

Stability wrt. Data, independent of

Reproduction of Solutions

Relation of RB-error to Best-Approximation

ukh(µ) ∈ XN ∀k ⇒ uN(µ) = uh(µ)

∆KN,γ(µ) :=

(1

αC(γ)∑K−1k=0 ∆tk

∥∥Rk+1h

∥∥2)1/2

.|||uN(µ)− uh(µ)|||γ ≤

∆t

‖uN(µ)‖ ≤ ‖u0(µ)‖+CT

ek+1 := uk+1h (µ)− uk+1N (µ)

∥∥ek+1∥∥ ≤ C

∥∥ek∥∥+C′ inf

v∈XN

(∥∥uk+1N − v∥∥+Φ(

∥∥uk+1N − v∥∥ , ek)

)

Page 7: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 7

Institute of Applied Analysis

and Numerical Simulation

Basis Generation

Manifold of parametric and time-dependent solutions

Trajectory-oriented view in RB generation: Time not a „normal“ parameter: causality, accessibility of snapshots only via computing trajectories

Computational effort for trajectory computation is high

Maximum information from trajectory must be used

u(µ, t0)

u(µ, tK)

u(µ′, t0)

u(µ′, tK)

Page 8: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 8

Institute of Applied Analysis

and Numerical Simulation

POD-Greedy: Procedure

Basis generation: POD-Greedy [HO08]

Based on „Greedy“ for stationary RB problems [VPRP03]

Define initial reduced basis

Choose finite training parameter set

Iterative Extension of basis:

While

1. Find

2. Compute detailed trajectory

3. Orthogonalize trajectory

4. Add principal components as basis vectors

Mtrain ⊂ P

µ∗ := argmaxµ∈Mtrain∆N (µ)uh(µ

∗)

ΦN+k = ΦN ∪ POD(eh, k)

ΦN0⊂ Xh

ε := maxµ∈Mtrain∆N (µ) > εtol

eh := uh(µ∗)− PXN (uh(µ

∗))

Page 9: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 9

Institute of Applied Analysis

and Numerical Simulation

POD-Greedy: Convergence Rates [Ha11]

Existing: Results for Greedy [BMPPT09,BCDDPW10]

Main Steps of Extension:

Abstract „weak“ POD-Greedy Algorithm on spaces of function sequences

Coefficient matrix representation:

Block structure

Possible repetitions of block-rows

Possible nonzero block-rows

In particular non-(block) triagonal

Selected at n-th POD-Greedy step

fn ∈ X Generated basis function at n-th POD-Greedy step

aij ∈ RK+1, (aij)k :=

⟨uki , fj

⟩X

un := (ukn)Kk=0 ∈ FT

Page 10: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 10

Institute of Applied Analysis

and Numerical Simulation

POD-Greedy: Convergence Rates

Main Steps of Extension (cont‘d):

quantification of matrix coefficient properties

Extended „Flatness-Lemma“/“Delayed Comparison“ of [BCDDPW10]

Thm: „Almost optimal“ error Decay of POD-Greedy:

Algebraic (or exponential) convergence of the Kolmogorovn-widths of the solution manifold transfer to the POD-Greedy error sequence

dn(F) ≤Mn−α ⇒ σT,n(FT ) ≤ CMn−α.

‖ann‖2

W = λ0(un − PT,n−1un) ≥ γ2σ2T,n/(K + 1)

∑j∈N ‖aij‖

2

W =∑Kk=0 w

k∥∥ukn

∥∥

Page 11: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 11

Institute of Applied Analysis

and Numerical Simulation

Adaptive Training Set Extension [HO07]

Problems of (POD-)Greedy:

Tends to overfit for small training sets

Infeasible for overly large training sets

Infeasible in absence of error estimators

Remedy

automatic training set extension

Page 12: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 12

Institute of Applied Analysis

and Numerical Simulation

Adaptive Training Set Extension

Qualitative Results in 2D Parameter Domain Parameter domain Basis size , random validation set Resulting error (estimator) : plot of

Overfitting in uniform-fixed grid (standard greedy search) Improved uniform error distribution by adaptive approach

uniform-fixed uniform-refined adaptive-refined,

µ = (β, k) ∈ [0, 1]× [0, 5 · 10−8]N = 130

Θ = 0.05

|Mval| = 10, ρtol = 1.0

log∆(µ,ΦN)

Page 13: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 13

Institute of Applied Analysis

and Numerical Simulation

Adaptive Training Set Extension

Quantitative Results in 3D Parameter Domain

Full 3D parameter domain

Random test set

Maximum test error

Flattening of test error curve in uniform-fixed approach Improved convergence for adaptive approach

max. test error decrease

µ = (cinit, β, k)

P := [0, 1]× [0, 1]× [0, 5 · 10−8]

|Mtest| = 1000

maxµ∈Mtest

∆(µ,ΦN )

Page 14: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 14

Institute of Applied Analysis

and Numerical Simulation

Adaptive P-Partition [HDO10]

Adaptive P-Partition Goal: bases with desired accuracy and online runtime:

(adaptive POD)-Greedy Basis per parameter-subdomain.

If not then refine subdomain

Increased offline cost: Runtime & Storage

Considerably improved online runtime vs. accuracy

(ε ≤ εtol) ∧ (N ≤ Nmax)

εtol, Nmax

Related: [EPR09]

Page 15: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 15

Institute of Applied Analysis

and Numerical Simulation

Adaptive P-Partition

Verification of Online Efficiency:

Considerably reduced online computation time with equal accuracy

Further orders of magnitude improvement by combination with adaptive training set extension

online time / test-error

Page 16: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 16

Institute of Applied Analysis

and Numerical Simulation

Adaptive T-Partitioning [DDH11]

Specialized RB spaces on time-subintervals:

t

τ1 τi τΥ T0

XNi

Page 17: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 17

Institute of Applied Analysis

and Numerical Simulation

Adaptive T-Partitioning

Online Computation of Projection Error at Basis Change:

Extended a-posteriori Error Estimators:

Page 18: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 18

Institute of Applied Analysis

and Numerical Simulation

Adaptive T-Partitioning

Idea: Aim at uniform error estimator growth over time

bisectionbisection

bisectionbisection

0 0

0

τ1

τ1

TT τ2

τ2 τ3

εtol,global εtol,global

εtol,global

εtol,1

εtol,1

εtol,2

N = NmaxN = Nmax

N < Nmax

Page 19: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 19

Institute of Applied Analysis

and Numerical Simulation

Adaptive T-Partitioning

Experiments:

Advection problem (1-parameter)

FV-Discretization: 4096 DOFs

Euler time integration: 512 time steps

Adaptive reduced basis settings:

Testing the reduced model by performing reducedsimulations for 20 randomly chosen parameters

εtol,global = 0.01,Nmax = 45

Page 20: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 20

Institute of Applied Analysis

and Numerical Simulation

Adaptive T-Partitioning

Result Diagrams:

Test error estimator over time Online runtime vs. accuracy

Page 21: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 21

Institute of Applied Analysis

and Numerical Simulation

Online RB Dimension Adaptation

N-adaptivity in Evolution Problems [HO09] Goal: Adapt model dimension N over time

Target at equidistribution of residual-norms over time

Look-ahead prediction of error estimator determiningin-/decrease of N

ExampleError estimator evolution model order N

Attachment to error target, detection of model complexity

N-adaptive computationally faster than N-fixed

Page 22: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 22

Institute of Applied Analysis

and Numerical Simulation

Conclusion and Perspectives

POD-Greedy

is a practical and theoretical well founded

procedure for time-dependent RB-methods

-> Kolmogorov n-widths for PDE-classes

-> Application in other

„sequence“-based problems

Adaptive Basis Generation

Adaptive basis generation approaches enable simultaneousaccuracy and online-runtime control

P and T partitioning works well -> Combined P/T adaptive basisgeneration schemes

(adaptive) grids in parameter space merely applicable to limitedparameter dimensions: -> sparse grids, meshfree

Algorithms mainly empirical, no/few analysis

-> theoretical investigations

Age: 2+

Page 23: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

Thank you!

Page 24: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 24

Institute of Applied Analysis

and Numerical Simulation

References (Barrault&al´04) M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An ’empirical interpolation’ method:

application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Series I, 339:667–672, 2004.

(Binev&al‘10) P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtazczyk. Convergence ratesfor greedy algorithms in reduced basis methods. IGPM report, RWTH Aachen, 310, 2010.

(Buffa&al‘09) A. Buffa, Y. Maday, A.T. Patera, C. Prud‘homme, G. Turinici. A priori convergence of thegreedy algorithm for the parametrized reduced basis. M2AN, submitted 2009.

(Dbrlikova&Mikula´07) O. Dbrlikova, K. Mikula. Convergence Analysis of Finite Volume SCheme forNonlinear Tensor Anisotropic Diffusion in Image Processing. SIAM J. Numer. Anal., 46, 27-60, 2007.

(Drohmann&al ´09) M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced Basis Method for Finite Volume Approximation of Evolution Equations on Parametrized Geometries. Proc. ALGORITMY 2009, pp. 111–120, 2008.

(Dihlmann&al) M. Dihlmann, M. Drohmann, B Haasdonk. Model reduction of parametrized evolutionproblems using the reduced basis method with adaptive time partitioning. SimTech Preprint 2011-12, University of Stuttgart, ADMOS 2011, 2011.

(Eftang& al 2009) J.L.Eftang, A.T. Patera, E.M. Ronquist. AN hp certified reduced basis method forparametrize parabolic partial differential equations. In Proceedings of ICOSAHOM 2009,2010

(Fink&Rheinboldt´83) J.P.Fink, W.C. Rheinboldt: Error behaviour of the Reduced Basis Technique. ZAMM 63, 21-28, 1983.

(Goldsmith& al 2008) F. Goldsmith, M. Ohlberger, J. Schumacher, K. Steinkamp, C. Ziegler: A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane. Journal of Fuel Cell Science and Technology vol. 5 – 2008.

(Grepl&Patera´05) M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis approximationsof parametrized parabolic partial differential equations. M2AN, 39(1):157-181, 2005.

Page 25: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 25

Institute of Applied Analysis

and Numerical Simulation

References (Haasdonk´05) Haasdonk, B., Feature Space Interpretation of SVMs with Indefinite Kernels.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4):482-492, april 2005. (Haasdonk&Burkhard´07) Haasdonk, B. Burkhardt, H., Invariant Kernels for Pattern

Analysis and Machine Learning. Machine Learning, 68:35-61, july 2007. (DOI 10.1007/s10994-007-5009-7)

(Haasdonk & Ohlberger 2007) B. Haasdonk, M. Ohlberger: Adaptive Basis Enrichment forthe Reduced Basis Method applied to Finite Volume Schemes. In Proc. FVCA5, 2007.

(Haasdonk&Ohlberger´08) Reduced basis method for finite volume approximations of parametrized linear evolution equations, M2AN, 42(2):277-302, 2008.

(Haasdonk&Ohlberger&Rozza´08) Reduced basis method for parametrized explicit evolutionschemes. ETNA, 32:145-161, 2008.

(Haasdonk&Ohlberger’08b) Haasdonk, B., Ohlberger, M., Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws. Proc. 12th International Conference on Hyperbolic Problems: Theory, Numerics, Application, 2008

(Haasdonk&Ohlberger´09) Haasdonk, B., Ohlberger, M., Efficient Reduced Models forParametrized Dynamical Systems by Offline/Online Decomposition MATHMOD 2009, 6th Vienna International Conference on Mathematical Modelling , 2009.

(Haasdonk&Ohlberger´09b) Haasdonk, B., Ohlberger, M., Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems. MATHMOD 2009, 6th Vienna International Conference on Mathematical Modelling , 2009.

Page 26: Adaptive ReducedBasis Generation for Time-DependentProblems · Adaptive ReducedBasis Generation for Time-DependentProblems RB Workshop, 23.6.2011 University of Paris Bernard Haasdonk

23.6.2011 B. Haasdonk, RB-Workshop, Paris 26

Institute of Applied Analysis

and Numerical Simulation

References (Haasdonk, Dihlmann, Ohlberger 2010) Haasdonk, B., Dihlmann, M., Ohlberger, M.: A Training

Set and Multiple Bases Generation Approach for Parametrized Model Reduction Based on Adaptive Grids in Parameter Space. SimTech Preprint 2010, Accepted by to MCMDS

(Haasdonk 2011) B. Haasdonk. Convergence Rates of the POD-Greedy Method. SimTech Preprint2011-23, University of Stuttgart, June, 2011.

(Nguyen&al´05) N.C. Nguyen, K. Veroy and A.T. Patera. Certified real-time solution of parametrized partial differential equations. In Handbook of Materials Modeling, p 1523-1558, Springer,2005.

(Noor&Peters´80) A.K. Noor and J.M. Peters. Reduced basis technique for nonlinear analysis of structures. AIAA J., 18(4):455-462, 1980.

(Patera&Rozza´07) Reduced basis approximation and a posteriori error estimation forparametrized partial differential equations, Version 1.0, Copyright MIT 2006-2007, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.

(Pekalska&Haasdonk´09) Pekalska, E., Haasdonk, B., Kernel Quadratic Discriminant Analysis with Positive Definite and Indefinite Kernels. Preprint Angewandte Mathematik und Informatik 06/08-N, University of Münster, 2008. Accepted by IEEE TPAMI.

(Porsching&Lee´87) The reduced basis method for initial value problems. SIAM J. Numer Anal., 24(6)1277-1287,1987.

(Veroy&al‘03) K. Veroy, C. Prud‘homme, D.V. Rovas, A.T. Patera. A-posteriori error bounds forreduced basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In Proc. 16th AIAA computational fluid conference, 2003, paper 2003-3847