23
単電源差動 18ビットADCドライバ ADA4941-1 Rev. A アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に 関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、 アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様 は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。 ※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©20062009 Analog Devices, Inc. All rights reserved. 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 0354028200 大阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪 MT ビル 2 電話 0663506868 特長 シングルエンド/差動コンバータ 優れた直線性 歪み: 100 KHz VOdm = 2 V p-p 110 dBc 低ノイズ: G = 2 10.2 nV/√Hz (出力換算) 極めて少ない消費電流: 2.2 mA (3 V 電源) 高入力インピーダンス: 24 MΩ ゲインがユーザ調整可能 高速動作: −3 dB 帯域幅 31 MHz (G = +2) 高速セトリング・タイム: 2 V ステップに対し 300 ns 0.005%へ安定 低オフセット: G = 2 で最大 0.8 mV (出力換算) レール to レール出力 ディスエーブル機能を装備 広い電源電圧範囲: 2.7 V12 V 省スペースの 3 mm × 3 mm LFCSP パッケージを採用 アプリケーション 単電源のデータ・アクイジション・システム 計装機器 プロセス・コントロール バッテリ駆動のシステム 医療計測機器 機能ブロック図 DIS 4 3 2 1 IN OUT– OUT+ V+ REF FB V– 7 8 5 6 05704-001 1. –60 –140 0.1 10 1 1000 FREQUENCY (kHz) DISTORTION (dBc) 100 V O = 2V p-p V O = 6V p-p 05704-045 –65 –70 –75 –80 –85 –90 –95 –100 –105 110 115 –120 –125 –130 –135 HD3 HD2 HD3 HD2 2.さまざまな出力振幅での歪みの周波数特性 概要 ADA4941-1 は、消費電力の厳しいシステムでの最大 18 ビット までの ADC を対象とする低消費電力で低ノイズの差動ドライバ です。ADA4941-1 は、使い易いシングルエンド/差動変換に構成 されており、ゲイン = 2 の設定に対しては外付け部品が不要で す。2 より大きいゲインを実現するときは、抵抗帰還回路を追 加することができます。ADA4941-1 は、高分解能 ADC の駆動 で重要な低歪みや高 SNR のような長所を提供します。 この ADA4941-1 は、広い入力電圧範囲 (5 V 単電源で 0 V3.9 V)、レール to レール出力、高入力インピーダンス、ユーザ調整 可能なゲインを持っており、バッテリ駆動のデバイスや単電源 のデータ・アクイジション・システムなどの、さまざまな低消 費電力アプリケーションで採用されている、差動入力の単電源 ADC を駆動するようにデザインされています。 ADA4941-1 は、AD7687AD7690AD7691 のような 16 ビット 18 ビットの PulSAR ® ADC の駆動に最適です。 ADA4941-1 は、低電源電流で 18 ビット性能を実現するアンプ を可能にする、ADI 独自の第 2 世代 XFCB 製造プロセスで製造 されています。 ADA4941-1 は小型 8 ピン LFCSP または標準 8 ピン SOIC パッケ ージを採用し、40°C+125°C の拡張工業温度範囲で仕様が規 定されています。

ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

単電源差動 18ビットADCドライバ

ADA4941-1

Rev. A

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、各社の所有に属します。

※日本語データシートは REVISION が古い場合があります。最新の内容については、英語版をご参照ください。 ©2006–2009 Analog Devices, Inc. All rights reserved.

本 社/105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 電話 03(5402)8200

大阪営業所/532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪 MT ビル 2 号 電話 06(6350)6868

特長

シングルエンド/差動コンバータ

優れた直線性

歪み: 100 KHz の VO、dm = 2 V p-p で−110 dBc

低ノイズ: G = 2 で 10.2 nV/√Hz (出力換算)

極めて少ない消費電流: 2.2 mA (3 V 電源)

高入力インピーダンス: 24 MΩ

ゲインがユーザ調整可能

高速動作: −3 dB 帯域幅 31 MHz (G = +2)

高速セトリング・タイム: 2 V ステップに対し 300 ns で 0.005%へ安定

低オフセット: G = 2 で最大 0.8 mV (出力換算)

レール to レール出力

ディスエーブル機能を装備

広い電源電圧範囲: 2.7 V~12 V

省スペースの 3 mm × 3 mm LFCSP パッケージを採用

アプリケーション

単電源のデータ・アクイジション・システム

計装機器

プロセス・コントロール

バッテリ駆動のシステム

医療計測機器

機能ブロック図

DIS

4

3

2

1 IN

OUT–OUT+

V+

REF

FB

V–

7

8

5

6

05

70

4-0

01

図1.

–60

–1400.1 101 1000

FREQUENCY (kHz)

DIS

TO

RT

ION

(d

Bc)

100

VO = 2V p-p

VO = 6V p-p

05

70

4-0

45

–65

–70

–75

–80

–85

–90

–95

–100

–105

–110

–115

–120

–125

–130

–135

HD3

HD2 HD3

HD2

図2.さまざまな出力振幅での歪みの周波数特性

概要

ADA4941-1 は、消費電力の厳しいシステムでの最大 18 ビット

までの ADC を対象とする低消費電力で低ノイズの差動ドライバ

です。ADA4941-1 は、使い易いシングルエンド/差動変換に構成

されており、ゲイン = 2 の設定に対しては外付け部品が不要で

す。2 より大きいゲインを実現するときは、抵抗帰還回路を追

加することができます。ADA4941-1 は、高分解能 ADC の駆動

で重要な低歪みや高 SNRのような長所を提供します。

この ADA4941-1 は、広い入力電圧範囲 (5 V 単電源で 0 V~3.9

V)、レール to レール出力、高入力インピーダンス、ユーザ調整

可能なゲインを持っており、バッテリ駆動のデバイスや単電源

のデータ・アクイジション・システムなどの、さまざまな低消

費電力アプリケーションで採用されている、差動入力の単電源

ADC を駆動するようにデザインされています。

ADA4941-1 は、AD7687、AD7690、AD7691 のような 16 ビット

と 18 ビットの PulSAR® ADC の駆動に最適です。

ADA4941-1 は、低電源電流で 18 ビット性能を実現するアンプ

を可能にする、ADI 独自の第 2 世代 XFCB 製造プロセスで製造

されています。

ADA4941-1 は小型 8 ピン LFCSP または標準 8 ピン SOIC パッケ

ージを採用し、−40°C~+125°C の拡張工業温度範囲で仕様が規

定されています。

Page 2: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 2/23 -

目次 特長 ...................................................................................................... 1

アプリケーション .............................................................................. 1

機能ブロック図 .................................................................................. 1

概要 ...................................................................................................... 1

改訂履歴 .............................................................................................. 2

仕様 ...................................................................................................... 3

絶対最大定格 ...................................................................................... 6

熱抵抗 .............................................................................................. 6

ESD の注意 ..................................................................................... 6

ピン配置およびピン機能説明 .......................................................... 7

代表的な性能特性 .............................................................................. 8

動作原理 ............................................................................................ 15

基本動作 ........................................................................................ 15

DC 誤差の計算 ............................................................................. 16

出力電圧ノイズ ............................................................................ 17

周波数応答とクローズド・ループ・ゲインの関係 ................. 19

アプリケーション ............................................................................ 20

概要 ............................................................................................... 20

REF ピンの使用 ........................................................................... 20

内部帰還回路の消費電力 ............................................................ 20

ディスエーブル機能 .................................................................... 20

3 極 Sallen-Key フィルタの追加 ................................................. 21

AD7687 ADCの駆動 .................................................................... 22

ゲイン-2 の構成 ............................................................................ 22

外形寸法 ............................................................................................ 23

オーダー・ガイド ........................................................................ 23

改訂履歴

3/09—Rev. 0 to Rev. A

Change to Gain Error Drift Parameter, Table 1 ..................................... 3

Change to Gain Error Drift Parameter, Table 2 ..................................... 4

Change to Gain Error Drift Parameter, Table 3 ..................................... 5

Updated Outline Dimensions .............................................................. 23

4/06—Revision 0: Initial Version

Page 3: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 3/23 -

仕様 特に指定がない限り、TA = 25°C、VS = 3 V、OUT+は FB に接続 (G = 2)、RL, dm = 1 kΩ、REF = 1.5 V。

表1.

Parameter Conditions Min Typ Max Unit

DYNAMIC PERFORMANCE

−3 dB Bandwidth VO = 0.1 V p-p 21 30 MHz

VO = 2.0 V p-p 4.6 6.5 MHz

Overdrive Recovery Time +Recover/−Recovery 320/650 ns

Slew Rate VO = 2 V step 22 V/µs

Settling Time 0.005% VO = 2 V p-p step 300 ns

NOISE/DISTORTION PERFORMANCE

Harmonic Distortion fC = 40 kHz, VO = 2 V p-p, HD2/HD3 −116/−112 dBc

fC = 100 kHz, VO = 2 V p-p, HD2/HD3 −101/−98 dBc

fC = 1 MHz, VO = 2 V p-p, HD2/HD3 −75/−71 dBc

RTO Voltage Noise f = 100 kHz 10.2 nV/√Hz

Input Current Noise f = 100 kHz 1.6 pA/√Hz

DC PERFORMANCE

Differential Output Offset Voltage 0.2 0.8 mV

Differential Input Offset Voltage Drift 1.0 µV/°C

Single-Ended Input Offset Voltage Amp A1 or Amp A2 0.1 0.4 mV

Single-Ended Input Offset Voltage Drift 0.3 µV/°C

Input Bias Current IN and REF 3 4.5 µA

Input Offset Current IN and REF 0.1 µA

Gain (+OUT − −OUT)/(IN − REF) 1.98 2.00 2.01 V/V

Gain Error −1 +1 %

Gain Error Drift 1 5 ppm

INPUT CHARACTERISTICS

Input Resistance IN and REF 24 MΩ

Input Capacitance IN and REF 1.4 pF

Input Common-Mode Voltage Range 0.2 1.9 V

Common-Mode Rejection Ratio (CMRR) CMRR = VOS, dm/VCM, VREF = VIN, VCM = 0.2 V to 1.9 V, G = 4 81 105 dB

OUTPUT CHARACTERISTICS

Output Voltage Swing Each single-ended output, G = 4 ±2.90 ±2.95 V

Output Current 25 mA

Capacitive Load Drive 20% overshoot, VO, dm = 200 mV p-p 20 pF

POWER SUPPLY

Operating Range 2.7 12 V

Quiescent Current 2.2 2.4 mA

Quiescent Current—Disable 10 16 µA

Power Supply Rejection Ratio (PSRR)

+PSRR PSRR = VOS, dm/ΔVS, G = 4 86 100 dB

−PSRR 86 110 dB

DISABLE

DIS Input Voltage Disabled, DIS = High ≥1.5 V

Enabled, DIS = Low ≤1.0 V

DIS Input Current Disabled, DIS = High 5.5 8 µA

Enabled, DIS = Low 4 6 µA

Turn-On Time 0.7 µs

Turn-Off Time 30 µs

Page 4: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 4/23 -

特に指定がない限り、TA = 25°C、VS = 5 V、OUT+は FB に接続 (G = 2)、RL, dm = 1 kΩ、REF = 2.5 V。

表2.

Parameter Conditions Min Typ Max Unit

DYNAMIC PERFORMANCE

−3 dB Bandwidth VO = 0.1 V p-p 22 31 MHz

VO = 2.0 V p-p 4.9 7 MHz

Overdrive Recovery Time +Recover/−Recovery 200/600 ns

Slew Rate VO = 2 V step 24.5 V/µs

Settling Time 0.005% VO = 6 V p-p step 610 ns

NOISE/DISTORTION PERFORMANCE

Harmonic Distortion fC = 40 kHz, VO = 2 V p-p, HD2/HD3 −118/−119 dBc

fC = 100 kHz, VO = 2 V p-p, HD2/HD3 −110/−112 dBc

fC = 1 MHz, VO = 2 V p-p, HD2/HD3 −83/−73 dBc

RTO Voltage Noise f = 100 kHz 10.2 nV/√Hz

Input Current Noise f = 100 kHz 1.6 pA/√Hz

DC PERFORMANCE

Differential Output Offset Voltage 0.2 0.8 mV

Differential Input Offset Voltage Drift 1.0 µV/°C

Single-Ended Input Offset Voltage Amp A1 or Amp A2 0.1 0.4 mV

Single-Ended Input Offset Voltage Drift 0.3 µV/°C

Input Bias Current IN and REF 3 4.5 µA

Input Offset Current IN and REF 0.1 µA

Gain (+OUT − −OUT)/(IN − REF) 1.98 2 2.01 V/V

Gain Error −1 +1 %

Gain Error Drift 1 5 ppm

INPUT CHARACTERISTICS

Input Resistance IN and REF 24 MΩ

Input Capacitance IN and REF 1.4 pF

Input Common-Mode Voltage Range 0.2 3.9 V

Common-Mode Rejection Ratio (CMRR) CMRR = VOS, dm/VCM, VREF = VIN, VCM = 0.2 V to 3.9 V, G = 4 84 106 dB

OUTPUT CHARACTERISTICS

Output Voltage Swing Each single-ended output, G = 4 ±4.85 ±4.93 V

Output Current 25 mA

Capacitive Load Drive 20% overshoot, VO, dm = 200 mV p-p 20 pF

POWER SUPPLY

Operating Range 2.7 12 V

Quiescent Current 2.3 2.6 mA

Quiescent Current—Disable 12 20 µA

Power Supply Rejection Ratio (PSRR)

+PSRR PSRR = VOS, dm/ΔVS, G = 4 87 100 dB

−PSRR 87 110 dB

DISABLE

DIS Input Voltage Disabled, DIS = High ≥1.5 V

Enabled, DIS = Low ≤1.0 V

DIS Input Current Disabled, DIS = High 5.5 8 µA

Enabled, DIS = Low 4 6 µA

Turn-On Time 0.7 µs

Turn-Off Time 30 µs

Page 5: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 5/23 -

特に指定がない限り、TA = 25°C、VS = ±5 V、OUT+は FB に接続 (G = 2)、RL, dm = 1 kΩ、REF = 0 V。

表3.

Parameter Conditions Min Typ Max Unit

DYNAMIC PERFORMANCE

−3 dB Bandwidth VO = 0.1 V p-p 23 32 MHz

VO = 2.0 V p-p 5.2 7.5 MHz

Overdrive Recovery Time +Recover/−Recovery 200/650 ns

Slew Rate VO = 2 V step 26 V/µs

Settling Time 0.005% VO = 12 V p-p step 980 ns

NOISE/DISTORTION PERFORMANCE

Harmonic Distortion fC = 40 kHz, VO = 2 V p-p, HD2/HD3 −118/−119 dBc

fC = 100 kHz, VO = 2 V p-p, HD2/HD3 −109/−112 dBc

fC = 1 MHz, VO = 2 V p-p, HD2/HD3 −84/−75 dBc

RTO Voltage Noise f = 100 kHz 10.2 nV/√Hz

Input Current Noise f = 100 kHz 1.6 pA/√Hz

DC PERFORMANCE

Differential Output Offset Voltage 0.2 0.8 mV

Differential Input Offset Voltage Drift 1.0 µV/°C

Single-Ended Input Offset Voltage Amp A1 or Amp A2 0.1 0.4 mV

Single-Ended Input Offset Voltage Drift 0.3 µV/°C

Input Bias Current IN and REF 3 4.5 µA

Input Offset Current IN and REF 0.1 µA

Gain (+OUT − −OUT)/(IN − REF) 1.98 2 2.01 V/V

Gain Error −1 +1 %

Gain Error Drift 1 5 ppm

INPUT CHARACTERISTICS

Input Resistance IN and REF 24 MΩ

Input Capacitance IN and REF 1.4 pF

Input Common-Mode Voltage Range −4.8 +3.9 V

Common-Mode Rejection Ratio (CMRR) CMRR = VOS, dm/VCM, VREF = VIN, VCM = −4.8 V to +3.9 V, G = 4

85 105 dB

OUTPUT CHARACTERISTICS

Output Voltage Swing Each single-ended output, G = 4 VS − 0.25 VS ± 0.14 V

Output Current 25 mA

Capacitive Load Drive 20% overshoot, VO, dm = 200 mV p-p 20 pF

POWER SUPPLY

Operating Range 2.7 12 V

Quiescent Current 2.5 2.7 mA

Quiescent Current—Disable 15 26 µA

Power Supply Rejection Ratio (PSRR)

+PSRR PSRR = VOS, dm/ΔVS, G = 4 87 100 dB

−PSRR 87 110 dB

DISABLE

DIS Input Voltage Disabled, DIS = High ≥ −3 V

Enabled, DIS = Low ≤ −4 V

DIS Input Current Disabled, DIS = High 7 10 µA

Enabled, DIS = Low 4 6 µA

Turn-On Time 0.7 µs

Turn-Off Time 30 µs

Page 6: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 6/23 -

絶対最大定格

表4.

Parameter Rating

Supply Voltage 12 V

Power Dissipation See Figure 3

Storage Temperature Range −65°C to +125°C

Operating Temperature Range −40°C to +85°C

Lead Temperature (Soldering 10 sec) 300°C

Junction Temperature 150°C

上記の絶対最大定格を超えるストレスを加えるとデバイスに恒

久的な損傷を与えることがあります。この規定はストレス定格

の規定のみを目的とするものであり、この仕様の動作のセクシ

ョンに記載する規定値以上でのデバイス動作を定めたものでは

ありません。デバイスを長時間絶対最大定格状態に置くとデバ

イスの信頼性に影響を与えます。

熱抵抗

θJA はワーストケース条件で規定。すなわち銅プレーンに熱的に

接続された PCB 表面のパッド(存在する場合)にデバイスの露出

パドルをハンダ付けした状態で、自然空冷のもとで θJAを規定。

表5.熱抵抗

Package Type θJA θJC Unit

8-Lead SOIC on 4-Layer Board 126 28 C/W

8-Lead LFCSP with EP on 4-Layer Board 83 19 C/W

最大消費電力

ADA4941-1 のパッケージ内での安全な最大消費電力は、チップ

のジャンクション温度(TJ)上昇により制限されます。約 150の

ガラス遷移温度で、プラスチックの属性が変わります。この温

度規定値を一時的に超えた場合でも、パッケージからチップに

加えられる応力が変化して、ADA4941-1 のパラメータ性能が永

久的にシフトしてしまうことがあります。150のジャンクショ

ン温度を長時間超えると、シリコン・デバイス内に変化が発生

して、故障の原因になることがあります。

パッケージ内の消費電力(PD)は、静止消費電力と全出力での負

荷駆動に起因するパッケージ内の消費電力との和になります。

静止電力は、電源ピン(VS)間の電圧に静止電流(IS)を乗算して計

算されます。負荷駆動に起因する消費電力は、アプリケーショ

ンに依存します。各出力の負荷駆動に起因する電力は、負荷電

流とデバイスの対応する電圧降下の積として計算されます。す

べての負荷で消費される電力は、各負荷の消費電力の和に一致

します。これらの計算では RMS 電圧と RMS 電流を使用する必

要があります。

強制空冷を使うと、放熱量が増えるため、実効的に èJAがちいさ

くなります。さらに、メタル・パターン、スルー・ホール、グ

ラウンド・プレーン、電源プレーンとパッケージ・ピンが直接

接触する場合、これらのメタルによっても θJAが小さくなります。

パッケージ底面の露出パドルは、規定の θJA を実現するためには、

熱的に銅プレーンへ接続された PCB 表面のパッドへハンダ付け

する必要があります。

図 3 に、パッケージ内での安全な最大消費電力と周囲温度の関

係を、JEDEC 標準 4 層ボードに実装した 8 ピン SOIC (126/W)

パッケージと 8 ピン LFCSP (83°C/W)パッケージについて示しま

す。LFCSP の底面パドルは、PCB プレーンへ熱的に接続された

パッドへハンダ付けする必要があります。θJA値は近似値です。

2.5

0–40 120

AMBIENT TEMPERATURE (°C)

MA

XIM

UM

PO

WE

R D

ISS

IPA

TIO

N (

W)

2.0

1.5

1.0

0.5

–20 0 20 40 60 80 100

LFCSP

SOIC

05

70

4-0

02

図3.最大消費電力対温度、4 層ボード

ESD の注意

ESD (electrostatic discharge) に敏感なデバイスです。4000 V にもなる静電気は人体や装置に蓄積され、検出されずに放

電することがあります。この製品は当社独自の ESD 保護回路を内蔵していますが、高エネルギの静電放電が発生す

ると、デバイスが永久的な損傷を受けることがあります。このため、性能低下または機能損失を防止するために、

ESDに対する適切な注意が必要です。

Page 7: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 7/23 -

ピン配置およびピン機能説明

DIS

4

3

2

1 IN

OUT–OUT+

V+

REF

FB

V–

7

8

5

6

05

70

4-0

01

図4.ピン配置

表6.ピン機能の説明

ピン番号 記号 説明

1 FB 帰還入力

2 REF リファレンス電圧入力

3 V+ 正の電源

4 OUT+ 非反転出力

5 OUT− 反転出力

6 V− 負の電源

7 DIS ディスエーブル

8 IN 入力

Page 8: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 8/23 -

代表的な性能特性 特に指定がない限り、VS = 5 V、RL, dm = 1 kΩ、REF = 2.5 V、DIS = ロー・レベル、OUT+ は直接 FB へ接続 (G = 2)、TA = 25°C。

2

–16

–15

–14

–13

–12

1 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

10 100

VO, dm = 0.1V p-p

VS = +3V

VS = +5V

VS = ±5V

05

70

4-0

04

図5.さまざまな電源での小信号周波数応答

2

–16

–15

–14

–13

–12

1 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

10 100

+25°C–40°C

+85°C

VO, dm = 0.1V p-p

05

70

4-0

05

図6.さまざまな温度での小信号周波数応答

2

–151 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

10 100

RL, dm = 1kΩ

RL, dm = 5kΩRL, dm = 500Ω

1

0

–1

–2

–3

–4

–5

–6

–7

–8

–9

–10

–11

–12

–13

–14

VO, dm = 0.1V p-p

05

70

4-0

06

図7.さまざまな抵抗負荷での小信号周波数応答

2

–16

–15

–14

–13

–12

0.1 100

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

1 10

VS = +3VVO, dm = 2V p-p

VS = +5VVO, dm = 6V p-p

VS = ±5VVO, dm = 12V p-p

05

70

4-0

07

図8.さまざまな電源での大信号周波数応答

2

–16

–15

–14

–13

–12

0.1 100

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

1 10

+25°C–40°C

+85°C

VO, dm = 6V p-p

05

70

4-0

08

図9.さまざまな温度での大信号周波数応答

図10.さまざまな抵抗負荷での大信号周波数応答

Page 9: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 9/23 -

2

–16

–15

–14

–13

–12

1 100

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

10

G = +4

G = +10

G = +2

G = –2

VO, dm = 0.1V p-p

05

70

4-0

10

図11.さまざまなゲインでの小信号周波数応答

2

–16

–15

–14

–13

–12

1 10010 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

CL = 0pF

CL = 20pF

VO, dm = 0.1V p-p

05

70

4-0

11

図12.さまざまな容量負荷での小信号周波数応答

2

–16

–15

–14

–13

–12

1 10 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

VREF = 0.05V p-p

VS = +5V

VS = ±5V

VS = +3V

05

70

4-0

12

図13.さまざまな電源での REF 入力小信号周波数応答

2

–16

–15

–14

–13

–12

1 10 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D C

LO

SE

D-L

OO

P G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

100

G = +4

G = +10

G = +2

G = –2

VO, dm = 2V p-p

05

70

4-0

13

図14.さまざまなゲインでの大信号周波数応答

2

–16

–15

–14

–13

–12

0.1 101 1000

FREQUENCY (MHz)

NO

RM

AL

IZE

D G

AIN

(d

B)

1

0

–1

–2

–3

–11

–4

–5

–6

–7

–8

–9

–10

100

VO, dm = 2V p-p

VO, dm = 6V p-p

VO, dm = 0.1V p-p

05

70

4-0

14

図15. さまざまな出力振幅での周波数応答

–70

–1400.1 101 1000

FREQUENCY (kHz)

DIS

TO

RT

ION

(d

Bc)

100

05

70

4-0

15

HD3

HD2

HD2

RL = 2kΩ

RL = 1kΩ

RL = 500Ω

VO, dm = 2V p-pVREF = MIDSUPPLY

–80

–90

–100

–110

–120

–130

図16.さまざまな負荷での歪みの周波数特性

Page 10: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 10/23 -

図17.さまざまな電源での歪み対出力振幅 (G = +2)

–60

–1400.1 101 1000

FREQUENCY (kHz)

DIS

TO

RT

ION

(d

Bc)

100

05

70

4-0

17

–65

–70

–75

–80

–85

–90

–95

–100

–105

–110

–115

–120

–125

–130

–135

HD3

HD3

HD2

VS = +3V

VS = +5V

VS = ±5V

HD2

VO, dm = 2V p-pVREF = MIDSUPPLY

図18.さまざまな電源での歪みの周波数特性

–60

–1400.1 101 1000

FREQUENCY (kHz)

DIS

TO

RT

ION

(d

Bc)

100

VO = 2V p-p

VO = 6V p-p

05

70

4-0

45

–65

–70

–75

–80

–85

–90

–95

–100

–105

–110

–115

–120

–125

–130

–135

HD3

HD2 HD3

HD2

図19.さまざまな出力振幅での歪みの周波数特性

図20.さまざまな電源での歪み対出力振幅 (G = -2)

–70

–1400.1 101 1000

FREQUENCY (kHz)

DIS

TO

RT

ION

(d

Bc)

100

05

70

4-0

20

HD3 HD3

HD3 G = –2

G = +2

G = +4

VO, dm = 2V p-pVREF = MIDSUPPLY

–80

–90

–100

–110

–120

–130

HD2

HD2

図21.さまざまなゲインでの歪みの周波数特性

0.12

–0.12

OU

TP

UT

VO

LT

AG

E (

V)

50ns/DIV

VOUT = 200mV p-p

0.08

0.04

0

–0.04

–0.08

CL = 0pF

CL = 20pF

05

70

4-0

22

図22.さまざまな容量負荷での小信号過渡応答

Page 11: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 11/23 -

0.12

–0.12

OU

TP

UT

VO

LT

AG

E (

V)

50ns/DIV

VOUT = 200mV p-p

0.08

0.04

0

–0.04

–0.08

VS = +3V

VS = +5V OR VS = ±5V

05

70

4-0

18

図23.さまざまな電源での小信号過渡応答

8

–8

AM

PL

ITU

DE

(V

)

VS = ±5VVO, dm = 12V p-p

VO, dm

2 × VIN

ERROR = 2 × VIN – VO, dm

6

4

2

0

–2

–4

–6

2.4

–2.4

ER

RO

R (

mV

) 1 D

IV =

0.0

05%

1.8

1.2

0.6

0

–0.6

–1.2

–1.81µs/DIV

05

70

4-0

23

図24.セトリング・タイム (0.005%)、VS = ±5 V

12

–12

10

8

6

4

2

0

–2

–4

–6

–8

–10

OU

TP

UT

VO

LT

AG

E (

V)

1µs/DIV

INPUT × 2

OUTPUT

05

70

4-0

24

図25.入力オーバードライブ回復、VS = ±5 V

8

–8

OU

TP

UT

VO

LT

AG

E (

V)

200ns/DIV

VS = ±5VVO, dm = 12V p-p

VS = ±2.5VVO, dm = 6V p-p

VS = ±1.5VVO, dm = 2V p-p

6

4

2

0

–2

–4

–6

05

70

4-0

21

図26.さまざまな電源での大信号過渡応答

9

1

AM

PL

ITU

DE

(V

)VS = +5VVO, dm = 6V p-p

VO, dm

2 × VIN

ERROR = 2 × VIN – VO, dm

8

7

6

5

4

3

2

1.2

–1.2

ER

RO

R (

mV

) 1 D

IV =

0.0

05%

0.9

0.6

0.3

0

–0.3

–0.6

–0.91µs/DIV

05

70

4-0

26

図27.セトリング・タイム (0.005%)、VS = +5 V

8

–8

OU

TP

UT

VO

LT

AG

E (

V)

1µs/DIV

6

4

2

0

–2

–4

–6

INPUT × 2

OUTPUT

05

70

4-0

27

図28.入力オーバードライブ回復、VS = +5 V

Page 12: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 12/23 -

0

–1100.001 1000

FREQUENCY (MHz)

PS

RR

(d

B)

–10

–20

–30

–40

–50

–60

–70

–80

–90

–100

0.01 0.1 1 10 100

+PSRR

–PSRR

05

70

4-0

28

図29.電源除去比の周波数特性

3.5

1.0–40 120

TEMPERATURE (°C)

PO

WE

R S

UP

PL

Y C

UR

RE

NT

(m

A)

VS = ±5V

VS = +5V

VPD = VS–

VS = +3V

3.0

2.5

2.0

1.5

–20 0 20 40 60 80 100

05

70

4-0

29

図30.電源電流の温度特性

150

0–40 120

TEMPERATURE (°C)

DIF

FE

RE

NT

IAL

OU

TP

UT

OF

FS

ET

V)

–20 0 20 40 60 80 100

05

70

4-0

30

125

100

75

50

25

VOS_A1 10V

VOS_A2 = 3V

VOS_A1 = 3V

VOS_A2 = 5V

VOS_A1 = 5V

VOS_A2 = 10V

図31.差動出力オフセット電圧の温度特性

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04–40 120

TEMPERATURE (°C)

OU

TP

UT

SA

TU

RA

TIO

N V

OL

TA

GE

WIT

H R

ES

PE

CT

TO

RA

IL (

V)

–20 0 20 40 60 80 100

05

70

4-0

31

±5V SUPPLIES, POSITIVE RAIL

+5V SUPPLIES, POSITIVE RAIL

±5V SUPPLIES, NEGATIVE RAIL

+5V SUPPLIES, NEGATIVE RAIL

+3V SUPPLIES, POSITIVE RAIL

+3V SUPPLIES, NEGATIVE RAIL

図32.出力飽和電圧の温度特性

2.5

–0.50.6 2.0

DISABLE INPUT VOLTAGE WITH RESPECT TO VS– (V)

SU

PP

LY

CU

RR

EN

T (

mA

)

ICC @ VS = ±5V

ICC @ VS = +5V

ICC @ VS = +3V2.0

1.5

1.0

0.5

0

0.8 1.0 1.2 1.4 1.6 1.8

05

70

4-0

32

図33.電源電流対ディスエーブル電圧

140

0

–200

–180

–160

–140

–120

–100

–80

–60

–40

–20 0

20

40

60

80

100

120

140

160

180

200

OFFSET VOLTAGE (µV)

FR

EQ

UE

NC

Y

120

100

80

60

40

20

VOS1MEAN = –8µVSTD. DEV = 47µV

VOS2MEAN = 11µVSTD. DEV = 20µV

NO. OF UNITS = 611

05

70

4-0

33

図34.差動出力オフセットの分布

Page 13: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 13/23 -

100

11 100M

FREQUENCY (Hz)

DIF

FE

RE

NT

IAL

OU

TP

UT

VO

LT

AG

E N

OIS

E (

nV

/√H

z)

10

10 100 1k 10k 100k 1M 10M

05

70

4-0

34

図35.差動出力電圧ノイズの周波数特性

2.65

2.35–40 125

TEMPERATURE (°C)

INP

UT

BIA

S C

UR

RE

NT

A)

VS = ±5V

VS = +5V

VS = +3V

2.60

2.55

2.50

2.45

2.40

–25 –10 5 20 35 50 65 80 95 110

05

70

4-0

35

図36.さまざまな電源での入力バイアス電流の温度特性

3.3

2.7–40 120

TEMPERATURE (°C)

RE

FE

RE

NC

E B

IAS

CU

RR

EN

T (

µA

)

–20 0 20 40 60 80 100

05

70

4-0

36

3.2

3.1

3.0

2.9

2.8

REFERENCE IBIAS = 5V

REFERENCE IBIAS = 3V

REFERENCE IBIAS = 10V

図37.REF 入力バイアス電流の温度特性

28

01 1M

FREQUENCY (Hz)

INP

UT

CU

RR

EN

T N

OIS

E (

pA

/√H

z)

26

24

22

20

18

16

14

12

10

8

6

4

2

10 100 1k 10k 100k

05

70

4-0

37

図38.入力電流ノイズの周波数特性

3.5

1.5–0.5

10.0

INPUT VOLTAGE WITH RESPECT TO VS– (V)

INP

UT

BIA

S C

UR

RE

NT

A)

05

70

4-0

38

3.0

2.5

2.0

00.5

1.01.5

2.02.5

3.03.5

4.04.5

5.05.5

6.06.5

7.07.5

8.08.5

9.09.5

VS = ±5VVS = +5VVS = +3V

図39.入力バイアス電流対入力電圧

4.0

2.00 10.0

REFERENCE INPUT VOLTAGE WITH RESPECT TO VS– (V)

RE

FE

RE

NC

E I

NP

UT

BIA

S C

UR

RE

NT

A)

05

70

4-0

39

3.5

3.0

2.5

0.51.0

1.52.0

2.53.0

3.54.0

4.55.0

5.56.0

6.57.0

7.58.0

8.59.0

9.5

VS = ±5V

VREF = VIN

VS = +5VVS = +3V

図40.REF 入力バイアス電流対 REF 入力電圧

Page 14: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 14/23 -

10

0–40 120

TEMPERATURE (°C)

DIS

AB

LE

D S

UP

PL

Y C

UR

RE

NT

A)

–20 0 20 40 60 80 100

05

70

4-0

40

8

6

4

2

G = 4RF = 1kΩRL = ∞DIS = HIGH

VS = ±5V

VS = +5V

VS = +3V

図41.さまざまな電源でのディスエーブル電源電流の温度特性

500m

V/D

IV

40µs/DIV

VPD

VO, dm

05

70

4-0

41

図42.ディスエーブルのアサート・タイム

–40

–1100.1 1000

FREQUENCY (MHz)

ISO

LA

TIO

N (

dB

)

–50

–60

–70

–80

–90

–100

1 10 100

VIN = 50mV p-p

05

70

4-0

42

図43.ディスエーブル時の入力―出力間アイソレーションの周波数

特性

14

00 10

DISABLE INPUT VOLTAGE WITH RESPECT TO VS– (V)

DIS

AB

LE

IN

PU

T C

UR

RE

NT

A)

12

10

8

6

4

2

1 2 3 4 5 6 7 8 9

VS = ±5V

05

70

4-0

43

図44.ディスエーブル入力電流対ディスエーブル入力電圧

500m

V/D

IV

40µs/DIV

VPD

VO, dm

05

70

4-0

44

図45.ディスエーブルのディアサート・タイム

100

0.00010.001 100

FREQUENCY (MHz)

IMP

ED

AN

CE

)

VOP

VON

10

1

0.1

0.01

0.001

0.01 0.1 1 10

05

70

4-0

25

図46.シングルエンド出力インピーダンスの周波数特性

Page 15: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 15/23 -

動作原理 ADA4941-1 は、高分解能 ADC の駆動用に最適化されたシングル

エンド入力で差動出力の低消費電力アンプです。図 47 に、

ADA4941-1 の一般的な接続を示します。このアンプは、高精度

インバータ A2 を駆動する汎用アンプ A1 から構成されています。

A1 の負入力はピン 1 (FB)に接続されているため、ユーザがゲイ

ンを設定することができます。反転オペアンプ A2 が A1 出力の

正確な反転 VOP を発生して、出力信号 VON が発生されます。

1kΩ

1kΩ

RG

RF

RF || RG

500Ω

A2

A1

REFIN

VREF

2

8

4

5

FB

OUT+

+

–VOP

1

OUT–

+

–VON

VINVG

05

70

4-0

52

図47.基本接続 (電源は省略)

REF ピンに加えた電圧が、出力同相モード電圧として現れます。

REF ピンに加えた電圧は OUT+ ピンの電圧に影響を与えないこ

とに注意してください。このため、出力間には差動オフセット

が存在できますが、所望の出力同相モード電圧が入力されます。

たとえば、VOP = 3.5 Vかつ VON = 1.5 V の場合、出力同相モー

ド電圧は 2.5 V になります。これは、両出力が 2.5 Vである場合

と同じです。最初のケースでは、差動電圧 (すなわちオフセッ

ト) が 2.0 V で、後のケースでは、差動電圧が 0 V になります。

出力電圧を計算するときは、不要な差動オフセットを回避する

ために、差動モード電圧と同相モード電圧を同時に考慮する必

要があります。

基本動作

図 47では、RG と RF が外部ゲイン設定回路を構成しています。

VG と VREF は、外部から加える電圧です。VO, cmを、出力同相

モード電圧として、VO, dmを差動モード出力電圧として、それぞ

れ定義します。次式は、図 47から導出することができます。

G

F

G

F

R

RVG

R

RVINVOP 1 (1)

)(21 VREFR

RVG

R

RVINVON

G

F

G

F

(2)

)(221)(2

,

VREFR

RVG

R

RVINVONVOP

dmV

G

F

G

F

O

(3)

VREFVONVOP

cmVO

2, (4)

RF = 0 とし、かつ RG を削除すると、式 3 は次のように簡単にな

ります。

VO, dm = 2(VIN) − 2(VREF) (5)

1kΩ

1kΩ

4.99kΩ

1kΩ

825Ω500Ω

A2

A1

REFIN

2

8

4

5

FB

+5V

–5V

VS+

VS–

OUT+

+

–VOP

1

3

6

OUT–

+

–VON

VIN

05

70

4-0

53

図48.両電源、G = 2.4、シングルエンド/差動変換アンプ

図 48 に、両電源接続の例を示します。この例では、VG と

VREF を 0 V に設定し、外付けの RF と RG の回路により A1 の非

反転ゲイン = 1.2 を設定しています。この例では、レール toレ

ール出力ステージをフルに利用しています。ゲイン式は、

VOP − VON = 2.4(VIN) (6)

ピン 8 に直列抵抗 825 Ω を接続すると、A1 の入力オフセット電

流で発生する電圧誤差が補償されます。A1 と A2 のリニア出力

範囲は、各電源レールの内側 200 mV まで伸びるため、±5 V 電

源で 19.2 Vのピーク to ピーク差動出力電圧が可能になります。

1kΩ

1kΩ

500Ω

A2

A1

REFIN

2

8

4

5

FB

+5V

VS+

VS–

OUT+

+

–VOP

1

3

6

OUT–

+

–VON

+2.5V

VIN

05

70

4-0

54

図49.+5V 単電源、G=2 のシングルエンド/差動変換アンプ

図 49 に A1 をユニティ・ゲイン・ホロワとして使った 5 V 単電

源接続を示します。REF ピンを 2.5 V に設定すると、出力同相

モード電圧が 2.5 V に設定されます。したがって、伝達関数は、

VOP − VON = 2(VIN) − 5 V (7)

この場合、リニア出力電圧は A1 により制限されます。下側で

は、A1 出力の飽和が始まるため、VOP が 200 mV に近づくと線

形性の低下が生じます。上側では、A1 入力が飽和して、VIN が

4 Vを超えると(VCC から 1 V 以内)、直線性が低下します。これ

Page 16: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 16/23 -

により、図 49に示す回路のリニア差動出力電圧が約 7.6 V p-p に

制限されます。

1kΩ

1kΩ

665Ω

1.02kΩ

402Ω500Ω

A2

A1

REFIN

2

8

4

5

FB

+5V

VS+

VS–

OUT+

+

–VOP

1

3

OUT–

+

–VON

VIN +2.5V

6

05

70

4-0

55

図50.5 V 電源、G = 5、シングルエンド/差動変換アンプ

図 50 に、G = 5 の 5 V 単電源接続を示します。RFと RG により

A1 のゲインを 2.5 に設定し、REF 入力での 2.5 V により 2.5 V中

心の出力同相モード電圧を設定しています。伝達関数は次式で

表されます。

VOP − VON = 5(VIN) − 5 V (8)

A1 と A2 の出力範囲により、図 50に示す回路の差動出力電圧が

約 8.4 V p-p に制限されます。

DC 誤差の計算

1kΩ

1kΩ

RG

RF

RS–IN

IBP–A2

IBN–A2

VOS–A1500Ω

A2

A1

REFIN

2

8

4

5

FB

OUT+

+

–VOP

1

OUT–

+

–VON

VOS–A2RS–REFIBP–A1

IBN–A1

05

70

4-0

56

図51.DC 誤差の原因

図 51 に、DC 出力電圧誤差の主要な成分を示します。各出力に

ついて、総合誤差電圧は通常のオペアンプ概念を使って計算す

ることができます。式 9 は、VOP 出力に現れる DC 電圧誤差を

表します。

FBPSBPOS

G

F R_A1I_INR_A1I_A1VR

R

VOP_error

)())((1

(9)

仕様の表のデータを使う場合、誤差の計算で個々の入力バイア

ス電流の代わりに入力オフセット電流を使うと便利なことがあ

ります。入力オフセット電流は、2 つの入力バイアス電流間の

差として定義されます。この定義を使うと、各入力バイアス電

流を入力バイアス電流 IB と入力オフセット電流 IOS の平均を使

って、IBP、N = IB ± IOS/2 と表すことができます。RS = RF || RG のと

き、DC 誤差が最小になります。この場合、式 9 は次のように簡

単になります。

)||()(1 GFSFOSOS

G

F RRRRI_A1VR

RVOP_error

式 10 は、VON 出力の DC 電圧誤差を表します。

VON_error = −(VOP_error) + 2[VOS_A2 −

(IBP_A2)(RS_REF + 500)] + 1000(IBN_A2) (10)

A2 の入力オフセット電流により発生する DC 誤差を小さくする

ために、内部抵抗 500 Ω が内蔵されています。RS_REF = 0 Ω の

とき誤差が最小になります。この場合、式 10 は次のように簡単

になります。

VON_error =

−(VOP_error) + 2[VOS_A2] + (IOS)1000 (RS_REF = 0 Ω)

差動出力電圧誤差 VO_error, dm は、次式のように VOP_error と

VON_error との差になります。

VO_error, dm = VOP_error − VON_error (11)

ADA4941-1 の各アンプの出力オフセット電圧にも、有限な同相

モード除去比 (CMRR)、電源除去比 (PSRR)、DC オープン・ル

ープ・ゲイン (AVOL)の影響が含まれます。

VOL

SCMOSOS

A

VOUT

PSRR

V

CMRR

V_nomVV

ΔΔΔ (12)

ここで、

VOS_nom は、公称出力オフセット電圧 (ただし、CMRR、PSRR、

AVOLの影響を含みません)。

Δ は、状態の公称値からの変化。

VCMは入力同相モード電圧 (A1 の場合 INの電圧、A2 の場合

REF の電圧)。

VS は電源電圧。

VOUT は、いずれかのオペアンプ出力。

Page 17: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 17/23 -

表 7、表 8、表 9に、図 48、図 49、図 50に示す回路の誤差内訳

を示します。

RF = 1.0 kΩ、RG = 4.99 kΩ、RS_IN = 825 Ω、RS_REF = 0 Ω

表7.図 48に示すアンプ(G = 2.4)の出力電圧誤差内訳

Error

Source

Typical

Value VOP_error VON_error VO_dm_error

VOS_A1 0.1 mV +0.12 mV −0.12 mV +0.24 mV

IBP_A1 3 µA +2.48 mV −2.48 mV −4.96 mV

IBN_A1 3 µA −2.48 mV +2.48 mV +4.96 mV

VOS_A2 0.1 mV 0 mV +0.2 mV +0.2 mV

総合 VO_error, dm = 0.44 mV

RF = 0 Ω、RG = ∞、RS_IN = 0 Ω、RS_REF = 0 Ω

表8.図 49に示すアンプの出力電圧誤差内訳

Error

Source

Typical

Value VOP_error VON_error VO_dm_error

VOS_A1 0.1 mV +0.1 mV −0.1 mV +0.2 mV

IBP_A1 3 µA +2.48 mV −2.48 mV −4.96 mV

IBN_A1 3 µA −2.48 mV +2.48 mV +4.96 mV

VOS_A2 0.1 mV 0 mV +0.2 mV +0.2 mV

総合 VO_error, dm = 0.4 mV

RF = 1.02 kΩ、RG = 665 Ω、RS_IN = 402 Ω、RS_REF = 0 Ω

表9.図 50に示すアンプ(G = 5)の出力電圧誤差内訳

Error

Source

Typical

Value VOP_error VON_error VO_dm_error

VOS_A1 0.1 mV +0.25 mV −0.25 mV +0.5 mV

IBP_A1 3 µA +1.21 mV −1.21 mV −2.4 mV

IBN_A1 3 µA −1.21 mV +1.21 mV +2.4 mV

VOS_A2 0.1 mV 0 mV +0.2 mV +0.2 mV

総合 VO_error, dm = 0.7 mV

出力電圧ノイズ

1kΩ

1kΩ

RG

RF

RS

ip–A2

in–A2

vn–A1500Ω

A2

A1

REFIN

2

8

4

5

FB

OUT+

+

–VOP

1

OUT–

+

–VON

vn–A2RS–REFip–A1

in–A1

05

70

4-0

57

√4kT (1kΩ)

√4kT (1kΩ)

√4kT (500Ω)

√4kT (RS–REF)√4kTRS√4kTRG

√4kTRF

図52.ノイズ原因

図 52 に、ADA4941-1 の差動出力電圧誤差の主要な成分を示し

ます。差動出力ノイズの 2 乗平均電圧は、非反転チャンネル

(A1)のノイズ 2 乗平均電圧成分の 2 倍と、反転チャンネル (A2)

のノイズ 2 乗平均電圧項との和になります。

2

2

22

2

2

2

2

_41

24242

_2)_(1

2)_(12

_,

nVONkTRR

R

R

RkTRkTR

RA1inRA1ipR

R

A1vnR

R

ndmV

S

G

F

G

FGF

FS

G

F

G

F

O

(13)

ここで、VON_n2は次のように計算されます。

)(16(500)16(1000)8

)_(1000)_500)(_(4

4

22

22

_REFRkTkTkT

A2inREFRA2ip

vn_A2VON_n

S

S

(14)

ここで、

vn_A1 とvn_A2は A1 と A2 の入力電圧ノイズで、各々の値は 2.1

nV/√Hz。

in_A1、in_A2、ip_A1、ip_A2はアンプ入力電流ノイズ項で、各々

の値は 1 pA/√Hz。

RS、RF、RG は、それぞれ外部ソース抵抗、帰還抵抗、ゲイン抵

抗。

kT はボルツマン定数と絶対温度の積で、室温での値は 4.2 x 10-21

W-s。

RS_REF は、REF ピンのソース抵抗。

A1 をユニティ・ゲイン・ホロワとして使う場合、出力電圧ノイ

ズ・スペクトル密度は最小の 10 nV/√Hz になります。電圧ゲイ

ンが高くなるほど、出力電圧ノイズも大きくなります。

表 10、表 11、表 12に、それぞれ図 48、図 49、図 50に示す回路

のノイズ成分と出力電圧ノイズを示します。

Page 18: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 18/23 -

表10.図 48に示す差動アンプ(G = 2.4)の出力電圧ノイズ

Noise Source Typical Value VOP Contribution (nV√Hz) VON Contribution (nV√Hz) VO, dm Contribution (nV√Hz)

vn_A1 2.1 nV/√Hz 2.1 2.1 4.2

ip_A1 0 0 0 0

in_A1 0 0 0 0

√4 kTRF 0 0 0 0

√4 kTRG 0 0 0 0

√4 kTRS 0 0 0 0

vn_inverter 9.2 nV/√Hz 0 9.2 9.2

√RS_REF 0 0 0 0

ip_A2 × RS_REF 0 0 0 0

Totals 2.1 9.4 10

RF = 1.0 kΩ、RG = 4.99 kΩ、RS = 825 Ω、RS_REF = 0 Ω。

vn_inverter = A2、内部 1 kΩ 帰還抵抗、500 Ω オフセット電流バランス抵抗のノイズ成分。

表11.図 49に示す差動アンプ(G = 2)の出力電圧ノイズ

Noise Source Typical Value VOP Contribution (nV√Hz) VON Contribution (nV√Hz) VO, dm Contribution (nV√Hz)

vn_A1 2.1 nV/√Hz 2.1 2.1 4.2

ip_A1 0 0 0 0

in_A1 0 0 0 0

√4 kTRF 0 0 0 0

√4 kTRG 0 0 0 0

√4 kTRS 0 0 0 0

vn_inverter 9.2 nV/√Hz 0 9.2 9.2

√RS_REF 0 0 0 0

ip_A2 × RS_REF 0 0 0 0

Totals 2.1 9.4 10

RF = 0 Ω、RG = ∞、RS = 0 Ω、RS_REF = 0 Ω。

表12.図 50に示す差動アンプ(G = 5)の出力電圧ノイズ

Noise Source Typical Value VOP Contribution (nV√Hz) VON Contribution (nV√Hz) VO, dm Contribution (nV√Hz)

vn_A1 2.1 nV/√Hz 5.25 5.25 10.5

ip_A1 1 pA/√Hz 1 1 2

in_A1 1 pA/√Hz 1 1 2

√4 kTRF 4 nV/√Hz 4 4 8

√4 kTRG 3.26 nV/√Hz 4.9 4.9 9.8

√4 kTRS 2.54 nV/√Hz 6.54 6.54 13.1

vn_inverter 9.2 nV/√Hz 0 9.2 9.2

√RS_REF 0 0 0 0

ip_A2 × RS_REF 0 0 0 0

Totals 10.7 14.1 23.1

RF = 1.02 kΩ、RG = 665 Ω、RS = 402 Ω、RS_REF = 0 Ω。

Page 19: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 19/23 -

周波数応答とクローズド・ループ・ゲインの関係

ADA4941-1 で使用されているオペアンプは、図 53 に示す積分器

応答で近似できるオープン・ループ周波数応答を持つ電圧帰還

型です。

100

00.001 100

FREQUENCY (MHz)

OP

EN

-LO

OP

GA

IN (

dB

)

05

70

4-0

62

80

60

40

20

0.01 0.1 1 10

fcr = 50MHz

図53.ADA4941-1 オペアンプの

オープン・ループ・ゲイン周波数特性

各アンプについて、周波数応答は次式で近似できます。

fcr

f

R

RRR

RVIN_A1V

G

GFG

FO

1

11 (15)

(非反転応答)

fcr

f

R

RRR

RVIN_A2V

G

GFG

FO

1

1 (16)

(反転応答)

fCR は、アンプのゲイン帯域幅周波数 図 53 のオープン・ルー

プ・ゲイン = 1 の場合)。両アンプの fCRは約 50 MHz。

反転アンプ A2 は固定帰還回路を持っています。伝達関数は次

式で近似されます。

MHz251

1

MHz50

21

12_

fVOP

fVINAVO (17)

A1 の周波数応答は、式 15 で表される外部帰還回路に依存しま

す。したがって、全体の差動出力電圧は、

VO, dm = VOP − VON = VOP + VOP ×

MHz25

1

1

f (18)

MHz251

11

MHz501

11

f

f

R

RRR

RVIN, dmV

G

GFG

FO

(19)

各項を乗算して、無視できる項を除去すると、次の近似が得ら

れます。

MHz251

MHz501

2

1,

ff

R

RR

R

RVINdmV

G

GF

G

FO

(20)

この伝達関数には 2 つの極が存在し、低周波数側の極が差動ア

ンプの帯域幅を制限します。VOP を IN− に接続すると(A1 がユ

ニティ・ゲイン・ホロワ)、反転チャンネルの 25 MHz のクロー

ズド・ループ帯域幅により、全体の帯域幅が制限されます。A1

がこれより高いノイズ・ゲインで動作すると、帯域幅はノイ

ズ・ゲイン (1 + RF/RG)に反比例する A1 のクローズド・ループ帯

域幅により制限されます。たとえば、外部帰還回路によりノイ

ズ・ゲイン = 10 を設定すると、帯域幅は 5 MHz に低下します。

Page 20: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 20/23 -

アプリケーション

概要

ADA4941-1は、高分解能 ADC の駆動用に最適化された、調整可

能なゲインを持つシングルエンド/差動変換電圧アンプです。シ

ングルエンド/差動変換ゲインは、2 本の外付け抵抗 RF と RG か

らなる帰還回路により制御されます。

REF ピンの使用

REF ピンは反転パス内で出力ベース・ラインを設定し、入力信

号のリファレンスとして使われます。大部分のアプリケーショ

ンでは、REF ピンは入力信号の中心レベルに設定されます。こ

のレベルは多くの場合、電源の中心でもあります。バイポーラ

信号で両電源の場合、REF は一般にグラウンドに設定されます。

単電源アプリケーションでは、REF を入力信号中心レベルに設

定すると、差動オフセットが最小になる最適な出力ダイナミッ

クレンジ性能が得られます。REF 入力のみが反転信号パスまた

は VONに影響を与えることに注意してください。

大部分のアプリケーションでは、各出力に同じ DC 同相モー

ド・レベルを持つ差動出力信号が必要とされます。VOP―VON

間の信号が、レベルは期待通りですが、両出力間で同相モード

電圧が一致しないこともあります。このタイプの信号では、ア

ンプの出力ダイナミックレンジを最適に使用できないため使用

されません。

VIN を入力ピンに加えられた電圧として定義すると、2 つの信

号パスの式は式 21 と式 22 で与えられます。

VOP = VIN (21)

VON = −VIN + 2 (REF) (22)

REF 電圧が入力信号の中心レベルに設定されると、2 つの出力

信号は、最小オフセットを持ち、いずれか大きい方を直接表し

ます。REF 電圧をそれ以外の値に設定すると、2 つの出力間に

オフセットが発生します。

REF ピンの最適な使用方法は、10 V 電源を使用する単電源と

2V~7V で変化する入力信号を考察すると、さらに詳しく理解

できます。入力信号の中心レベルが電源の中心に一致しない 4.5

V の場合がこのケースに該当します。REF 入力を 4.5 V に設定

し、オフセットを無視すると、式 21 と式 22 を使って結果を計

算することができます。入力信号が 4.5 V の電源中心にある場

合、OUT+は VON と同様に 4.5 V になります。これは差動出力

電圧が 0 であるベース・ライン状態にあると見なすことができ

ます。入力が 7 V に上昇すると、VOP が入力に追従して 7 V に

なり、VON は 2 V に低下します。これは、差動出力電圧が 5 V

である正のピーク信号と見ることができます。入力信号が 2 V

に低下すると、VOP は再び追従して 2 Vになり、VONは 7 Vに

上昇します。これは、差動出力電圧が −5 V である負のピーク信

号と見ることができます。得られる差動出力電圧は 10 V p-p に

なります。

前の説明は、シングルエンド/差動変換ゲイン = 2 が実現される

方法を示しています。

内部帰還回路の消費電力

従来型オペアンプは帰還エレメントを内蔵していませんが、

ADA4941-1 は内部帰還ループを構成する 2 本の 1 kΩ 抵抗を内

蔵しています。これらの抵抗で消費される電力は、デバイスの

全消費電力計算に含める必要があります。状況によっては、こ

れらの抵抗で消費される電力がデバイスの静止消費電力に匹敵

することがあります。たとえば、±5 V 電源を使用し、REF ピン

をグラウンドへ、OUT−を+4 VDC へ、それぞれ接続すると、各

1 kΩ 抵抗には 4 mA 流れて、16 mW を消費し、合計 32 mW に

なります。これは静止電力に匹敵するため、デバイス全体の消

費電力計算に含める必要があります。AC 信号の場合は、rms 解

析が必要です。

ディスエーブル機能

ADA4941-1 には、デバイスが動作しないとき消費電力を小さく

するためにアサートできるディスエーブル機能があります。デ

ィスエーブル機能をアサートすると、デバイス出力が高インピ

ーダンス状態またはスリー・ステート状態にならなくなります。

ディスエーブル機能はアクティブ・ハイです。ハイ・レベルと

ロー・レベルの電圧については仕様の表を参照してください。

Page 21: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 21/23 -

3 極 Sallen-Key フィルタの追加

ADA4941-1 の非反転アンプは、Sallen-Key フィルタのバッファ

アンプとして使うことができます。ADC の前で信号帯域幅を制

限するための 3 極ローパス・フィルタをデザインすることがで

きます。入力信号は先に非反転ステージを通過して、ここでフ

ィルタされます。フィルタされた信号は反転ステージを通過して、

相補出力が発生されます。

図 54 に、−3 dB カットオフ周波数が 100 kHz の、3 極 Sallen-Key

ローパス・フィルタを示します。A1 の入力オフセット電流によ

り発生する DC 誤差を小さくするために、1.69 kΩ の抵抗が使用

されています。出力の受動 RC フィルタは、一般に駆動される

ADC コンバータが必要としています。フィルタの周波数応答を

図 55に示します。

1kΩ

1kΩ

500Ω

A2

A1

REFIN

2

8

4

2.7nF

5

FB

+5V

–5V560pF

VS+

VS–

OUT+

+

VO, dm

1

3

OUT–

VIN

562Ω562Ω562Ω

1.69kΩ

33Ω

33Ω

6

05

70

4-0

58

0.1µF

0.1µF

2.7nF

3.9nF

10nF

図54.100 kHz のカットオフ周波数を持つ Sallen-Key ローパス・フィルタ

0

–10010 100M

FREQUENCY (Hz)

VO

, d

m/V

IN (

dB

)

05

70

4-0

59

–10

–20

–30

–40

–50

–60

–70

–80

–90

100 1k 10k 100k 1M 10M

VO, dm = 3V p-p

図55.図 54に示す回路の周波数応答

Page 22: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 22/23 -

AD7687 ADC の駆動

ADA4941-1 は、AD7687のような高分解能 ADC に対する優れた

ドライバ です(図 56参照)。この例には、図 54に示す Sallen-Key

ローパス・フィルタが含まれていますが必須ではありません。

図 56に示す 回路では、0 V~3 V で変化するシングルエンド信号

を入力します。

ADR443は、AD8032 アンプの 1 つでバッファされた安定で低ノ

イズの 3 V リファレンスを提供し、AD7687 REF 入力に接続さ

れて、6 V の差動入力フルスケール・レベルを提供します。 ま

た、このリファレンス電圧は 1/2 倍され、バッファされて、

ADA4941-1 に対して 1.5 Vの電源中心 REF レベル を与えます。

ゲイン-2 の構成

ADA4941-1 は、ゲイン = −2 と呼ばれる構成で動作することがで

きます。 明らかに、ゲイン = +2 の 回路の出力を単純に交換す

ることでゲイン = −2 を実現できますが、ここで説明する構成は

これと異なります。この構成は、入力アンプ A1 が通常の非反

転モードではなく反転アンプとして動作することを強調するた

めに、負ゲインを持つと呼ばれます。名前の通り、VINから VO,

dm までの電圧ゲインは−2 V/V になります。 ±5 V 電源を使用し

たゲイン = −2 の構成については、図 57を参照してください。

ゲイン = −2 の構成は、入力同相モード電圧が一定レベルに維持

されているために、大きな入力振幅を持つアプリケーションで

最も有効です。したがって、信号サイズ は出力振幅限界により

制約されます。ゲイン = −2 では、RG に等しい入力抵抗が小さ

くなります。

1kΩ

1kΩ

GND

500Ω

A2

A1

ADA4941-1

REF

IN

IN+

IN–

2

8

4

2.7nF

5

FB

+5V

+5V

–5V560pF

VS+

VS–

OUT+

1

3

OUT–

VIN

VIN0V TO 3V

VOUT

562Ω562Ω562Ω

1.69kΩ

33Ω

33Ω

6

05

70

4-0

60

0.1µF

0.1µF

10µF

2.7nF

3.9nF

10nF

1/2AD8032

ADR443

4

8

1

4

0.1µF

0.1µF

3

3

4

2 6

2

1/2AD8032

AD7687

75

6

+5V

1kΩ

1kΩ

10µF

10µF 0.1µF 0.1µF

VDD

GND

5

REF

1

2

図56.AD7687 ADC を駆動する ADA4941-1

1kΩ

1kΩ

RF1kΩ

RG1kΩ

500Ω

500ΩA2

A1

REFIN

2

8

4

5

FB

+5V

–5V

VS+

VS–

OUT+

1

3

6

OUT–VIN

05

70

4-0

61

+

VO, dm

図57.ゲイン-2 の構成

Page 23: ADA4941-1: 単電源差動 18 ビット ADC ドライバADA4941-1 は、低電源電流で18 ビット性能を実現するアンプ を可能にする、ADI 独自の第2 世代XFCB

ADA4941-1

Rev. A - 23/23 -

外形寸法

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS

(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR

REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

COMPLIANT TO JEDEC STANDARDS MS-012-AA

01

24

07

-A

0.25 (0.0098)

0.17 (0.0067)

1.27 (0.0500)

0.40 (0.0157)

0.50 (0.0196)

0.25 (0.0099)45°

1.75 (0.0688)

1.35 (0.0532)

SEATINGPLANE

0.25 (0.0098)

0.10 (0.0040)

41

8 5

5.00 (0.1968)

4.80 (0.1890)

4.00 (0.1574)

3.80 (0.1497)

1.27 (0.0500)BSC

6.20 (0.2441)

5.80 (0.2284)

0.51 (0.0201)

0.31 (0.0122)

COPLANARITY

0.10

図58.8 ピン標準スモール・アウトライン・パッケージ[SOIC_N]

ナロー・ボディ(R-8)

寸法: mm (インチ)

図59.8 ピン・リードフレーム・チップ・スケール・パッケージ [LFCSP_VD]

3 mm × 3 mm ボディ、極薄、デュアル・リード (CP-8-2)

寸法: mm

オーダー・ガイド

Model Temperature Range Package Description Package Option Ordering Quantity Branding

ADA4941-1YRZ1 −40°C to +125°C 8-Lead SOIC_N R-8 98

ADA4941-1YRZ-RL1 −40°C to +125°C 8-Lead SOIC_N R-8 2,500

ADA4941-1YRZ-R71 −40°C to +125°C 8-Lead SOIC_N R-8 1,000

ADA4941-1YCPZ-R21 −40°C to +125°C 8-Lead LFCSP_VD CP-8-2 250 H0C

ADA4941-1YCPZ-RL1 −40°C to +125°C 8-Lead LFCSP_VD CP-8-2 5,000 H0C

ADA4941-1YCPZ-R71 −40°C to +125°C 8-Lead LFCSP_VD CP-8-2 1,500 H0C

1 Z = RoHS 準拠製品.

D05704

-0-3

/09(A

)-J