127
Ad Pu Ge Ev Tao G Energ3013 D Rosevi U.S.A. Vladim Decisi ARGO 9700 S ArgonUSA Techn Energ Octob DOE C ANL C djusta umpe enera aluat Guo, Guang y Exemplar, Douglas Blville, CA 9566 mir Koritaro on and Infor ONNE NATIO S. Cass Aven ne, IL 60439 nical Reporgy Exempla ber 30, 2013 Contract NoContract Noable S d-Sto ator ( tion b gjuan Liu, L LLC d, Suite 120 61 ov rmation Scie ONAL LABO nue, DIS/221 9 t r EE-2013- 3 . DE-FOA-0 . 2F-3110 Spee orage PSH) by PL ily Yu ences Divisio ORATORY 1 -10-30-01 0000486 ed e Hyd ) LEXO on dro- OS

Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

1 | P

a g e

AdPuGeEv Tao GEnergy3013 DRoseviU.S.A. VladimDecisiARGO9700 SArgonnUSA TechnEnergOctob DOE C

ANL C

djustaumpeeneraaluat

Guo, Guangy Exemplar, Douglas Blvdille, CA 9566

mir Koritaroon and Infor

ONNE NATIOS. Cass Avenne, IL 60439

nical Reportgy Exemplaber 30, 2013

Contract No.

Contract No.

able Sd-Sto

ator (tion bgjuan Liu, L

LLC d, Suite 12061

ov rmation ScieONAL LABOnue, DIS/2219

t r EE-2013-3

. DE-FOA-0

. 2F-3110

SpeeoragePSH)

by PLily Yu

ences DivisioORATORY 1

-10-30-01

0000486

ed e Hyd)

LEXO

on

dro-

OS

Page 2: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

2 | P a g e

Acknowledgments ANL and EE gratefully acknowledge the support of DOE’s Office of Energy Efficiency and Renewable Energy for funding this work.

And many thanks go to the members of the Advisory Working Group for their insightful comments and assistance. The Advisory Working Group members include

Alan Soneda – Pacific Gas and Electric Company (PG&E) Ali Nourai – DNV KEMA Brendan Kirby – Kirby Consult Charlton Clark – U.S. Department of Energy (DOE) Christophe Nicolet – Power Vision Engineering Dave Harpman – U.S. Department of the Interior, Bureau of Reclamation (USBR) Elliot Mainzer – Bonneville Power Administration (BPA) Greg Brownell – Sacramento Municipal Utility District (SMUD) J. Douglas Divine – Eagle Crest Energy Company Jiri Koutnik – Voith Kim Johnson – RiverBank Power Klaus Engels – E.On Kyle L. Jones – US Army Corps of Engineers Landis Kannberg – Pacific Northwest National Laboratory (PNNL) Le Tang – ABB M. Jones – Bonneville Power Administration (BPA) Matthew Hunsaker – Western Electricity Coordinating Council (WECC) Maximilian Manderla – Voith Michael Manwaring –HDR Patrick O’Connor – U.S. Department of Energy (DOE) Paul Jacobson – Electric Power Research Institute (EPRI) Rachna Handa – U.S. Department of Energy (DOE)) Rahim Amerkhail – U.S. Federal Energy Regulatory Commission (FERC) Rajesh Dham – U.S. Department of Energy (DOE) Richard Gilker – U.S. Department of Energy (DOE) Rick Jones – HDR Rick Miller – HDR Rob Hovsapian – U.S. Department of Energy (DOE) Scott Flake – Sacramento Municipal Utility District (SMUD) Stan Rosinski – Electric Power Research Institute (EPRI) Steve Aubert – ABB Tuan Bui – California Dept. of Water Resources (CDWR) Xiaobo Wang – California Independent System Operator (CAISO) Zheng Zhou – Midwest Independent System Operator (MISO)

Page 3: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

3 | P a g e

List of Acronyms ADI – Ace Diversity Interchange AGC – Automatic generation control ANL – Argonne National Laboratory AS PSH – Adjustable Speed Pumped-storage Hydro Generator AS – Ancillary Services BA – Balancing Area BAA – Balancing Area Authority BAU – Business as Usual BPA – Bonneville Power Administration CAISO – California Independent System Operator CPS – Control Performance Standards DA – Day-ahead DCS – Disturbance Control Standard DOE – U.S. Department of Energy DSM – Demand-side management DSS – Dynamic Scheduling System ECC – Enhanced Curtailment Calculator EDT – Efficient Dispatch Toolkit EIM – Energy Imbalance Market ERCOT – Electric Reliability Council of Texas EWITS – Eastern Wind Integration and Transmission Study FERC – Federal Energy Regulatory Commission FS PSH – Fixed Speed Pumped-storage Hydro Generator GW – Gigawatts HA – Hour-ahead ISO-NE – ISO New England ITAP – Intra-hour Transaction Accelerator Platform MISO – Midwest Independent Transmission System Operator NERC – North American Electric Reliability Corporation NREL – National Renewable Energy Laboratory NTTG – Northern Tier Transmission Group NWP – numerical weather prediction NYISO – New York Independent System Operator ORNL – Oak Ridge National Laboratory PNNL – Pacific Northwest National Laboratory RPS – renewable portfolio standards RT – Real Time RTO – Regional Transmission Organization SCED – Security Constrained Economic Dispatch SCUC – Security Constrained Unit Commitment SMUD – Sacramento Municipal Utility District SPP – Southwest Power Pool TEPPC – Transmission Expansion Planning and Policy Committee of the Western Electricity Coordinating Council VG – Variable Generation

Page 4: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

4 | P a g e

WAPA – Western Area Power Administration WI – Western Interconnection WECC – Western Electricity Coordinating Council WWSIS – Western Wind and Solar Integration Study

Page 5: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

5 | P

ExeEnergthrouto evaAdju

1

2

As thgeneroperacapacthe du

The agenerrenewThe P

a g e

ecutivegy Exemplar

ugh Argonnealuate the Fistable-speed

. Quantifyiand for disystem;

. Providingplants andprojects.

he renewableration variabation. Especcity adequacuck shape as

above diagraration hours.wable generaPSHs is an e

eSummr is engaged

e National Laixed-speed Pd Pumped-sto

ing the valueifferent level

g informationd recommen

e generation bility and unccially, the chcy. For exams the renewa

am illustrates. As the renation) rampsffective sink

maryin this proje

aboratory to Pumped-stororage Hydro

e of the FS anls of variable

n about the fdations for a

penetration certainty pre

hallenges mample, in CAIable generati

s the possiblewable gene up quickly

k to absorb th

ect sponsoreperform theage Hydro-g

o-generators

nd AS PSHse renewable

full range of appropriate b

increases, thesents the incanifest as theISO, the douon penetrati

le over-geneeration decrethat demandhe over-gene

d by the Depe power systegenerators (F(AS PSH) in

s under diffegeneration (

f benefits andbusiness mo

he accommocreasing cha

e issues of ovuble-peak daion increases

ration in theeases, the neds un-usuallyeration in th

partment of em operationFS PSH) andn the areas o

erent market (wind and so

d value of PSdels for futu

odation of theallenges to thver-generatioily load shaps.

e high renewt load (load y high ramp

he high renew

Energy n simulationd the of

conditions olar) in the

SH and CH ure PSH

e renewablehe system on and ramppe becomes

wable less the capacity.

wable

n

p

Page 6: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

6 | P a g e

generation hours and provides the ramp capacity to accommodate the net load ramp demand.

Energy Exemplar performed Western Interconnection (WI) system simulation for year 2022 to evaluate the impact of the proposed adjustable-speed pumped storage hydro-generators (AS PSH) in the base renewable generation renewable (14% in WI) scenario and the high-wind renewable generation renewable (33% in WI) scenario. The proposed adjustable-speed PSHs include Swan Lake, Iowa Hill and Eagle Mountain. The existing FS PSHs and the proposed AS PSHs are listed in the following table.

PSH Location Region 

Spinning Reserve Sharing Group 

Regulation Reserve Sharing Group 

Number of Units 

Total Capacity (MW) 

Generator Type

Cabin Creek  PSC  RMPP  Colorado  2  324  Fixed‐speed 

Castaic  LDWP  CALIF_SOUTH LDWP  6  1175  Fixed‐speed 

Eastwood  SCE  CALIF_SOUTH SCE  1  199  Fixed‐speed 

Elbert  WACM  RMPP  Colorado  2  200  Fixed‐speed 

Helms  PG&E_VLY  CALIF_NORTH PG&E Valley  3  1212  Fixed‐speed 

Horse Mesa  SRP  AZNMNV  Arizona  3  96  Fixed‐speed 

Lake Hodge  SDGE  CALIF_SOUTH SDGE  2  40  Fixed‐speed 

Mormon Flat  SRP  AZNMNV  Arizona  1  50  Fixed‐speed 

Eagle Mount  SCE  CALIF_SOUTH SCE  4  1400  Adjustable‐speed 

Iowa Hill  SMUD  CALIF_NORTH SMUD  3  399  Adjustable‐speed 

Swan Lake  BPA  NWPP  NWPP  4  1380  Adjustable‐speed 

Grand Total    31  6475    

The simulations are performed for three focused areas of WI, California and the Balancing Authority of Northern California (BANC). The impacts of the PSHs to the entire WI, energy market (CAISO), and a portfolio (BANC) are examined. The value streams of the PSH and their impacts to the system operations are listed in the following table.

PSH Value Stream Matrix and  

 Item PSH Contribution 

PLEXOS Simulation  Notes 

1  Regulation reserve    PSH revenue 

2  Flexibility reserve     PSH revenue 

3  Contingency spinning reserve    PSH revenue 

4  Contingency non‐spinning reserve    PSH revenue 

5  Replacement / Supplemental reserve    PSH revenue 

6  Load following    PSH revenue 

7  Load leveling / Energy arbitrage    PSH revenue 

8 Integration of variable energy resources (VER) 

  PSH revenue 

9  Generating capacity    Post process 

Page 7: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

7 | P a g e

PSH Value Stream Matrix and  

 Item PSH Contribution 

PLEXOS Simulation  Notes 

10  Portfolio effects    PSH revenue 

11  Reduced cycling of thermal units    Societal Benefit 

12  Reduced transmission congestion    Societal Benefit 

13  Reduced environmental emissions    Societal Benefit 

14  Transmission deferral    Societal Benefit 

Also, the 3-stage sequential Day-ahead (DA), Hour-ahead (HA) and Real-time (RT) simulations are performed for the 4 typical weeks of year 2022 to examine the impacts of the PSHs to the sub-hourly system operation.

The following summarizes the findings in this study.

EnergyarbitragevaluesThe WI simulations for year 2022 show that, with the three proposed adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the production cost saving is 1% of the total WI production cost in the base renewable scenario, and 1.8% in the high-wind renewable scenario. The PSH values of these three AS PSHs are $45.3/kw-year (i.e., total system production cost saving divided by the PSH capacity) in the base renewable scenario and $72.04/kw-year in the high-wind renewable scenario.

The California simulations for year 2022 show that, with the two proposed adjustable-speed PSH, Iowa Hill and Eagle Mountain, the production cost saving is 1.2% of the total production cost in California under the base renewable scenario, and 4.2% in the high-wind renewable scenario. The PSH values of these two PSHs are $33.35/kw-year in the base renewable scenario and $105.61/kw-year in the high-wind renewable scenario.

The BANC simulations for year 2022 show that, with the proposed adjustable-speed PSH, Iowa Hill, the production cost saving is 8.6% of the total BANC production cost in the base renewable scenario, and 16.45% in the high-wind renewable scenario. The PSH values of these two PSHs are $58.04/kw-year in the base renewable scenario and $126.83/kw-year in the high-wind renewable scenario.

The 3-stage simulations for four typical weeks in year 2022 in the high-wind renewable scenario show that the average production cost over four typical weeks can be reduced by

1. 1.6% from the WI RT simulations with the three proposed adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain;

2. 2.4% from the CA RT simulations with the two proposed adjustable-speed PSHs, Iowa Hill and Eagle Mountain;

3. 14.9% from the BANC RT simulations with the proposed adjustable-speed PSHs, Iowa Hill.

Contributionstoreserves:contingency,flexibilityandregulationreserves

Page 8: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

8 | P a g e

The WI simulations for year 2022 show that the three proposed adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, provide 1.7% ~ 8.19% of the total WI upward reserves and 12.0% ~ 12.9% of the total WI downward reserves in the base renewable scenario. The three adjustable-speed PSHs provide 0.6% ~ 4.2% of the total WI upward reserves and 10.6% ~ 12.3% of the total WI downward reserves for the high-wind renewable scenario.

The CA simulations for year 2022 show that the two proposed adjustable-speed PSHs, Iowa Hill and Eagle Mountain, provide 9.6% ~ 26.3% of the total CA upward reserves and 28.7% ~ 33.6% of the total CA downward reserves in the base renewable scenario. The two adjustable-speed PSHs provide 3.6% ~ 23.8% of the total CA upward reserves and 31.5% ~ 37.3% of the total CA downward reserves in the high-wind renewable scenario.

The BANC simulations for year 2022 show that the proposed adjustable-speed PSH, Iowa Hill, provides 3.4% ~ 15.8% of the total BANC upward reserves and 23.5% ~ 29.5% of the total BANC downward reserves in the base renewable scenario. The adjustable-speed PSH provides 2.0% ~ 17.6% of the total BANC upward reserves and 14.3% ~ 20.5% of the total BANC downward reserves in the high-wind renewable scenario.

The following table summarizes the reserve provisions from the PSHs in the base and high-wind renewable scenarios.

Reserve Provisions from Adjustable‐speed PSH in % of Total Reserve Requirements 

  WI Simulations  CA Simulations  BANC Simulations 

  Base Renewable 

High‐wind Renewable

Base Renewable

High‐wind Renewable

Base Renewable 

High‐wind Renewable

Non‐Spinning  8.1% 4.2% 9.6% 17.6% 15.8% 17.6%

Spinning  1.7% 0.6% 26.3% 2.4% 4.3% 2.4%

Flexi Down  12.9% 12.3% 33.6% 14.3% 29.5% 14.3%

Flexi Up  1.9% 0.4% 10.5% 2.0% 3.8% 2.0%

Reg Down  12.0% 10.6% 28.7% 20.5% 23.5% 20.5%

Reg Up  3.0% 1.3% 24.6% 1.9% 3.4% 1.9%

ContributiontotherenewablegenerationintegrationThe contribution of the adjustable-speed PSHs to the renewable generation integration includes the following two areas.

1. Reserve provisions to cover the renewable generation variability and uncertainty, and

2. The renewable generation curtailment due to the over-generation.

The reserve provisions from the adjustable-speed PSHs are listed in the above table.

With the three adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the renewable generation curtailment from the WI simulations for year 2022 is reduced from 0.77% (1,356 GWh) to 0.55% (964 GWh) of the total renewable energy in the base renewable scenario; the renewable generation curtailment is reduced from 14% (48,403

Page 9: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

9 | P a g e

GWh) to 13% (44,211 GWh) of the total renewable energy in the high-wind renewable scenario.

With the two adjustable-speed PSHs, Iowa Hill and Eagle Mountain, the renewable generation curtailment from the CA simulations for year 2022 is reduced from 46 GWh to 14 GWh in the base renewable scenario; the renewable generation curtailment is reduced from 380 GWh to 275 GWh in the high-wind renewable scenario.

There is no renewable curtailment in the base renewable scenario in the BANC system. With the adjustable-speed PSH, Iowa Hill, the renewable generation curtailment from the BANC simulations for year 2022 is reduced from 19 GWh to 1.0 GWh in the high-wind renewable scenario;

ContributiontothethermalgenerationcyclingreductionsThe WI simulations for year 2022 show that, with the three proposed adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the total thermal startup cost is reduced by 15% (20 million $) in the base renewable scenario, and 10% (16 million $) in the high-wind renewable scenario. The ramp up and down in GW is reduced by 17% (1634 GW) and 16% (2257 GW) respectively in the base renewable scenario. The ramp up and down GW is reduced by 16% (1334 GW) and 15% (1904 GW) respectively in the high-wind renewable scenario.

The CA simulations for year 2022 show that, with the two proposed adjustable-speed PSHs, Iowa Hill and Eagle Mountain, the total thermal startup cost is reduced by 22% (10 million $) in the base renewable scenario, and 20% (9 million $) in the high-wind renewable scenario. The ramp up and down in GW is reduced by 19% (699 GW) and 20% (1095 GW) respectively in the base renewable scenario. The ramp up and down in GW is reduced by 22% (683 GW) and 21% (998 GW) respectively in the high-wind renewable scenario.

The BANC simulations for year 2022 show that, with the proposed adjustable-speed PSHs, Iowa Hill, the total thermal startup cost is reduced by 45% (2 million $) in the base renewable scenario, and 42% (2 million $) in the high-wind renewable scenario. The ramp up and down in GW is reduced by 37% (136 GW) and 39% (197 GW) respectively in the base renewable scenario. The ramp up and down in GW is reduced by 32% (119 GW) and 36% (174 GW) respectively in the high-wind renewable scenario.

The 3-stage simulations for four typical weeks in year 2022 in the high-wind renewable scenario show that the average startup cost over four typical weeks can be reduced by

1. 7% from the WI RT simulations with the three proposed adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain,

2. 19% from the CA RT simulations with the two proposed adjustable-speed PSHs, Iowa Hill and Eagle Mountain,

3. 46% from the BANC RT simulations with the proposed adjustable-speed PSHs, Iowa Hill.

The start-up cost difference between the RT simulation and the DA simulation could be over 60% in some week. The higher startup cost in the RT simulations is due to the CT

Page 10: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

10 | P a g e

commitment cost to accommodate the sub-hourly load and renewable generation variability and uncertainties.

The 3-stage simulations for four typical weeks in year 2022 in the high-wind renewable scenario show that the average thermal generator ramp up and down in MW over four typical weeks can be reduced by

1. About 19% from the WI RT simulations with the three proposed adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain,

2. About 25% from the CA RT simulations with the two proposed adjustable-speed PSHs, Iowa Hill and Eagle Mountain,

3. About 25% from the BANC RT simulations with the proposed adjustable-speed PSHs, Iowa Hill.

The ramp up and down difference between the RT simulation and the DA simulation could be over 170% in some week. The higher thermal generator ramp up and down in the RT simulations indicates that the thermal generators are ramp more to meet the sub-hourly load and renewable generation variability and uncertainties.

ImpacttothemarketgeneratorparticipantsThe CA simulations show that the system generator profit (the generation and reserve revenue less the generation production cost) increases as more PSHs are introduced into the system in both the base and high-wind renewable scenarios. The profit increases are due to the LMP increases in the pumping hours, which yield higher generation revenues.

The generator profit is smaller in the high-wind renewable scenario as opposed to the base renewable scenario because of lower LMPs in the high-wind renewable scenario.

In the base renewable scenario, the reserve revenue is less than 10% of the total market revenue (energy revenue plus reserve revenue). The reserve revenue increases to 25% of the total market revenue in the high-wind renewable scenario due to higher flexibility and regulation reserve requirements.

ContributionstotheportfolioWith the adjustable-speed PSHs, Iowa Hill, the BANC simulations show substantial reductions in the BANC production cost, emission, thermal generator cycling, and the renewable generation curtailment, as opposed to the case of without the PSHs. The significant reductions in the production cost, emission, thermal generation cycling and the renewable curtailment are due to the higher ratio of the PSH capacity and the portfolio peak demand. The reduction is even higher with the higher renewable generation level.

ImpacttothetransmissioncongestionsIn the WI simulations, the WI average transmission congestion prices are reduced from $4/MWh in the case of no PSHs to $2/MWh in the cases of with FS and AS PSHs in the based renewable scenario. In both the base and high-wind renewable scenarios, the interface with the significant congestion price reduction is Intermountain Power Project DC-tie that is in the neighboring area of PSHs “Castaic” and “Eagle Mountain”.

Page 11: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

11 | P a g e

In the CA simulations, the CA average transmission congestion prices are reduced from $3.51/MWh in the case of no PSHs to $0.4/MWh in the case of with AS PSHs, and further to $0.24/MWh in the case of with FS and AS PSHs in the based renewable scenario. The CA average transmission congestion prices are reduced from $1.79/MWh in the case of no PSHs to $0.56/MWh in the case of with FS PSHs, and further to $0.37/MWh in the case of with FS and AS PSHs in the high-wind renewable scenario. Again, in both the base and high-wind renewable scenarios, the interface with the significant congestion price reduction is Intermountain Power Project DC-tie that is the neighboring area of PSHs “Castaic” and “Eagle Mountain”.

The transmission congestion price is an indicator of transmission congestion in the transmission grid. The lower transmission congestion prices with PSHs indicate that PSHs helps mitigating the transmission congestion.

Page 12: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

12 | P a g e

Table of Contents 1  Introduction ........................................................................................................................... 20 2  WI Database and Assumption Revisions .............................................................................. 21 

2.1  Introduction of Western Interconnection Database ............................................ 21 2.2  Data readiness for the simulations ..................................................................... 23 

2.2.1  Regional load representation ....................................................................... 23 2.2.2  Renewable Generation Profile Representations .......................................... 24 2.2.3  Contingency, Flexibility and Regulation Reserve Representations ............ 25 

2.3  Adjustable Speed PSH Representation .............................................................. 27 2.4  Data Assumption Revisions ............................................................................... 29 

3  Modeling Approaches ........................................................................................................... 33 3.1  PLEXOS SCUC/ED algorithm .......................................................................... 33 3.2  3-Stage DA-HA-RT Sequential Simulations ..................................................... 36 3.3  PSH Storage Modeling in 3-stage Sequential Simulations ................................ 37 3.4  Scope of Simulations .......................................................................................... 38 

4  Simulation Results ................................................................................................................ 40 4.1  WI Simulation Results ....................................................................................... 40 

4.1.1  WI System Production Costs ...................................................................... 40 4.1.2  WI System Reserve Provisions by PSHs .................................................... 43 4.1.3  WI System Emission Production ................................................................ 44 4.1.4  WI Thermal Generator Cycling .................................................................. 45 4.1.5  WI Regional LMPs ..................................................................................... 46 4.1.6  WI Transmission Congestions .................................................................... 47 

4.2  California Simulation Results ............................................................................ 56 4.2.1  Power Market Bidding Prices ..................................................................... 56 4.2.2  California System Production Costs ........................................................... 58 4.2.3  California System Reserves and Provision by PSHs .................................. 62 4.2.4  California System Emission Production ..................................................... 63 4.2.5  California Thermal Generator Cycling ....................................................... 64 4.2.6  California Regional LMPs .......................................................................... 65 4.2.7  California Generator Energy and Ancillary Services Revenue .................. 66 4.2.8  California Transmission Congestions ......................................................... 73 

4.3  SMUD Simulation Results ................................................................................. 78 4.3.1  SMUD System Production Costs ................................................................ 78 4.3.2  SMUD System Reserves ............................................................................. 81 4.3.3  SMUD System Emission Production .......................................................... 82 4.3.4  SMUD Thermal Generator Cycling ............................................................ 82 4.3.5  SMUD Regional LMPs ............................................................................... 83 4.3.6  SMUD Transmission Congestions .............................................................. 84 

5  Three-Stage DA-HA-RT Sequential Simulations ................................................................. 85 5.1  Intermittent Renewable Generation Variability and Uncertainty ...................... 85 5.2  3-stage DA-HA-RT Simulation Results for California ...................................... 89 

5.2.1  CA 3-stage Simulation Results for Four Typical Weeks in Year 2022 ...... 90 5.3  3-stage DA-HA-RT Simulation Results for WI ............................................... 102 

5.3.1  WI 3-stage Simulation Results for Four Typical Weeks in Year 2022 .... 102 

Page 13: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

13 | P a g e

5.4  3-stage DA-HA-RT Simulation Results for SMUD ........................................ 110 5.4.1  SMUD 3-stage Simulation Results for Four Typical Weeks in Year 2022 110 

6  Findings ............................................................................................................................... 118 6.1  Energy arbitrage values .................................................................................... 118 6.2  Contributions to reserves: contingency, flexibility and regulation reserves. ... 119 6.3  Contributions to the emission reductions ......................................................... 119 6.4  Contribution to the renewable generation integration ...................................... 120 6.5  Contributions to reserves: contingency, flexibility and regulation reserves .... 120 6.6  Contribution to the thermal generation cycling reductions .............................. 120 6.7  Impact to the market generator participants ..................................................... 122 6.8  Contributions to the portfolio ........................................................................... 122 6.9  Impact to the transmission congestions ............................................................ 122 6.10  Transmission Deferral ...................................................................................... 123 

7  Appendix – Transmission Expansion Assumptions for High-wind Renewable Scenario....................................................................................................................................... 124 8  References ........................................................................................................................... 127 

Page 14: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

14 | P a g e

List of Figures Figure 2-1 Diagram of the WI Load Regions ................................................................................. 21 Figure 2-2 The Average Heat Rates for Coal, CC, CT and Gas Steam Generators [4]. .............. 32 Figure 3-1 PLEXOS Security Constrained Unit Commitment and Economic Dispatch Algorithm 33 Figure 3-2 DA-HA-RT 3-stage Sequential Simulations ................................................................. 36 Figure 4-1 Comparison of WI Generation in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 ................................................................................................ 41 Figure 4-2 Comparison of WI Generation in Three Cases by Generator Type for the High-wind Renewable Scenario in Year 2022 ................................................................................................ 42 Figure 4-3 Comparison of WI Generation Cost in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 ................................................................................................ 42 Figure 4-4 Comparison of WI Generation Cost in Three Cases by Generator Type for the High-wind Renewable Scenario in Year 2022 ....................................................................................... 43 Figure 4-5 Comparison of Regional LMP in Three Cases for the Selected Regions in Year 2022 for the Base Renewable Scenario ................................................................................................. 47 Figure 4-6 Comparison of Regional LMP in Three Cases for the Selected Regions in Year 2022 for the High-wind Renewable Scenario ......................................................................................... 47 Figure 4-7 Logic flow for the Transmission Expansion Using Congestion Shadow Price Approach ....................................................................................................................................................... 52 Figure 4-8 CAISO Energy Price-cost mark-up (2009-2012) ......................................................... 56 Figure 4-9 Comparison of CA Generation in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 ................................................................................................ 60 Figure 4-10 Comparison of CA Generation in Three Cases by Generator type for the High-wind Renewable Scenario in Year 2022 ................................................................................................ 60 Figure 4-11 Comparison of CA Generation Cost in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 ................................................................................................ 61 Figure 4-12 Comparison of CA Generation Cost in Three Cases by Generator Type for the High-wind Renewable Scenario in Year 2022 ....................................................................................... 62 Figure 4-13 Comparison of Regional LMP in Three Cases for the Selected Regions in CA in Year 2022 for the Base Renewable Scenario ........................................................................................ 65 Figure 4-14 Comparison of Regional LMP in Three Cases for the Selected Regions in CA in Year 2022 for the High-wind Renewable Scenario ................................................................................ 66 Figure 4-15 SCE LMP in Week of July 17, 2022, in Three Cases for the High-wind Renewable Scenario ......................................................................................................................................... 66 Figure 4-16 Comparison of SMUD Generation of Two Cases by Generator Type for the Base Renewable Scenario in Year 2022 ................................................................................................ 79 Figure 4-17 Comparison of SMUD Generation of Two Cases by Generator Type for the High-wind Renewable Scenario in Year 2022 ................................................................................................ 80 Figure 4-18 Comparison of SMUD Generation Cost of Two Cases by Generator Type for the Base Renewable Scenario in Year 2022 ....................................................................................... 80 Figure 4-19 Comparison of SMUD Generation Cost of Two Cases by Generator Type for the High-wind Renewable Scenario in Year 2022 ............................................................................... 81 Figure 4-20 Comparison of SMUD Regional LMP in Two Cases in Year 2022 for the Base Renewable Scenario ..................................................................................................................... 84 Figure 4-21 Comparison of SMUD Regional LMP in Two Cases in Year 2022 for the High-wind Renewable Scenario ..................................................................................................................... 84 Figure 5-1 5-minute Actual Solar Generation and Hourly DA / HA Forecasts in Southern California in a Typical Winter Week of Year 2022 ......................................................................................... 85 

Page 15: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

15 | P a g e

Figure 5-2 5-minute Actual Wind Generation and Hourly DA / HA Forecasts in Southern California in a Typical Winter Week of year 2022 .......................................................................................... 86 Figure 5-3 5-minute Actual Solar Generation and Hourly DA / HA Forecasts in Southern California in a Typical Summer Week of year 2022 ...................................................................................... 87 Figure 5-4 5-minute Actual Wind Generation and Hourly DA / HA Forecasts in Southern California in a Typical Summer Week of Year 2022 ...................................................................................... 87 Figure 5-5 Wind and Solar generation forecasted error from DA to HA and HA to RT in Southern California in a typical winter week of year 2022. ........................................................................... 88 Figure 5-6 Wind and Solar generation forecasted error from DA to HA and HA to RT in Southern California in a typical winter week of year 2022. ........................................................................... 89 Figure 5-7 California Production Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance Outages in the RT Simulations) ................................................................................................................................... 91 Figure 5-8 California Startup Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance Outages in the RT Simulations) ................................................................................................................................... 93 Figure 5-9 California Thermal Generator Ramp Up (MW) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance Outages in the RT Simulations) ..................................................................................................... 95 Figure 5-10 California Thermal Generator Ramp Down (MW) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance Outages in the RT Simulations) ..................................................................................................... 96 Figure 5-11 California Production Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ..................................................................................................... 98 Figure 5-12 California Startup Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ................................................................................................................... 99 Figure 5-13 California Thermal Generator Ramp Up (MW) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ...................................................................................... 100 Figure 5-14 California Thermal Generator Ramp Down (MW) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ...................................................................................... 101 Figure 5-15 WI Production Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ................................................................................................................. 104 Figure 5-16 WI Startup Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ........................................................................................................................... 106 Figure 5-17 WI Thermal Generator Ramp Up (MW) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ................................................................................................... 108 Figure 5-18 WI Thermal Generator Ramp Down (MW) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ................................................................................................... 109 Figure 5-19 SMUD Production Cost ($000) from 3-stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ................................................................................................................. 112 

Page 16: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

16 | P a g e

Figure 5-20 SMUD Startup Cost ($000) from 3-stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ........................................................................................................................... 114 Figure 5-21 SMUD Thermal Generator Ramp Up (MW) from 3-stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ................................................................................................... 116 Figure 5-22 SMUD Thermal Generator Ramp Down (MW) from 3-stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) ...................................................................................... 117 

Page 17: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

17 | P a g e

List of Tables Table 2.1-1 Renewable Generation Assumptions by BA in WI and the USA part of WI in year 2022 ............................................................................................................................................... 23 Table 2.2-1 Comparison of the annual peaks of the load regions in years 2020 and 2022 .......... 24 Table 2.2-2 Number of renewable generators modeled in the base and high-wind renewable sceneries ....................................................................................................................................... 25 Table 2.2-3 Mapping of the load regions and the contingency reserve sharing groups ............... 26 Table 2.2-4 Mapping of the load regions and the regulation / flexibility reserve sharing groups .. 27 Table 2.3-1 Characteristics of three proposed adjustable speed PSHs ........................................ 28 Table 2.3-2 Locations and Installed Capacity of the Existing FS PHS and Proposed AS PSHs in WI .................................................................................................................................................. 29 Table 2.4-1 Assumptions revisions in the database ...................................................................... 30 Table 2.4-2 Generator Characteristic Revisions and Eligibility for the Reserve Provisions .......... 31 Table 3.4-1 Simulation Scenario Combinations ............................................................................ 38 Table 3.4-2 Three Focused Simulation Areas: WI, California and SMUD .................................... 39 Table 4.1-1 Comparison of WI Production Cost in Three Cases for the Base Renewable Scenario in Year 2022 .................................................................................................................................. 40 Table 4.1-2 Comparison of WI Production Cost in Three Cases for the High-Wind Renewable Scenario in Year 2022 ................................................................................................................... 40 Table 4.1-3 Comparison of WI Renewable Curtailment in the Base Renewable Scenario .......... 43 Table 4.1-4 Comparison of WI Renewable Curtailment in the High-wind Renewable Scenario .. 43 Table 4.1-5 Comparison of WI Reserve Requirements and Provisions by PSHs in Three Cases for the Base Renewable Scenario in Year 2022 ........................................................................... 44 Table 4.1-6 Comparison of WI Reserve Requirements and Provisions by PSHs in Three Cases for the High-wind Renewable Scenario in Year 2022.................................................................... 44 Table 4.1-7 Comparison of WI Emission Productions in Three Cases in Year 2022 for the Base Renewable Scenario ..................................................................................................................... 44 Table 4.1-8 Comparison of WI Emission Productions in Three Cases in Year 2022 for the High-Wind Renewable Scenario ............................................................................................................ 45 Table 4.1-9 Comparison of Number of Starts and Startup Costs of the WI Thermal Generators in Year 2022 for the Base Renewable Scenario ............................................................................... 45 Table 4.1-10 Comparison of Number of Starts and Startup Costs of the WI Thermal Generators in Year 2022 for the High-wind Renewable Scenario ....................................................................... 45 Table 4.1-11 Comparison of Thermal Generator Ramp Up and Down of the WI Thermal Generators in Year 2022 for the Base Renewable Scenario ........................................................ 46 Table 4.1-12 Comparison of Thermal Generator Ramp Up and Down of the WI Thermal Generators in Year 2022 for the High-Wind Renewable Scenario ................................................ 46 Table 4.1-13 Comparison of WI Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the Base Renewable Scenario in Year 2022 .................................................. 50 Table 4.1-14 Comparison of WI Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the High-wind Renewable Scenario in Year 2022 .......................................... 55 Table 4.2-1 Statistics of CAISO Historical NP15 LMP and AS Clearing Prices in Year 2012 ...... 57 Table 4.2-2 Correlation of CAISO Historical NP15 LMP and AS Clearing Prices in Year 2012 ... 57 Table 4.2-3 CA AS Bidding Price Scaling Factor by Generator Type ........................................... 58 Table 4.2-4 Comparison of CA Production Cost in Three Cases for the Base Renewable Scenario in Year 2022 .................................................................................................................................. 59 Table 4.2-5 Comparison of CA Production Cost in Three Cases for the High-Wind Renewable Scenario in Year 2022 ................................................................................................................... 59 

Page 18: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

18 | P a g e

Table 4.2-6 Comparison of CA Renewable Curtailment in the Base Renewable Scenario .......... 62 Table 4.2-7 Comparison of CA Renewable Curtailment in the High-wind Renewable Scenario .. 62 Table 4.2-8 Comparison of CA Reserve Requirements and Provisions by PSHs in Three Cases for the Base Renewable Scenario in Year 2022 ........................................................................... 62 Table 4.2-9 Comparison of CA Reserve Requirements and Provisions by PSHs in Three Cases for the High-wind Renewable Scenario in Year 2022.................................................................... 63 Table 4.2-10 Comparison of CA Emission Productions in Three Cases in year 2022 for the Base Renewable Scenario ..................................................................................................................... 63 Table 4.2-11 Comparison of CA Emission Productions in Three Cases in Year 2022 for the High-Wind Renewable Scenario ............................................................................................................ 63 Table 4.2-12 Comparison of Number of Starts and startup Costs of the CA Thermal Generators in Year 2022 for the Base Renewable Scenario ............................................................................... 64 Table 4.2-13 Comparison of Number of Starts and startup Costs of the CA Thermal Generators in Year 2022 for the high-wind Renewable Scenario ........................................................................ 64 Table 4.2-14 Comparison of Thermal Generator Ramp Up and Down of the CA Thermal Generators in Year 2022 for the Base Renewable Scenario ........................................................ 64 Table 4.2-15 Comparison of Thermal Generator Ramp Up and Down of the CA Thermal Generators in Year 2022 for the High-Wind Renewable Scenario ................................................ 65 Table 4.2-16 California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the Base Renewable Scenario in Year 2022 ............................................... 68 Table 4.2-17 California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the High-wind Renewable Scenario in Year 2022 ....................................... 69 Table 4.2-18 California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulations with FS PSHs ..................................................................................... 70 Table 4.2-19 California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulations with FS & AS PSHs ............................................................................ 71 Table 4.2-20 California PSH Net Operating Revenue for the High-Wind Renewable Scenarios in Year 2022 from the Simulation with FS PSHs ............................................................................... 72 Table 4.2-21 California PSH Net Operating Revenue for the High-Wind Renewable Scenarios in Year 2022 from the Simulation with FS&AS PSHs ....................................................................... 73 Table 4.2-22 Comparison of CA Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the Base Renewable Scenario in Year 2022 .................................................. 75 Table 4.2-23 Comparison of CA Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the High-wind Renewable Scenario in Year 2022 .......................................... 77 Table 4.3-1 Comparison of SMUD Production Cost in Two Cases for the Base Renewable Scenario in Year 2022 ................................................................................................................... 78 Table 4.3-2 Comparison of SMUD Production Cost in Two Cases for the High-Wind Renewable Scenario in Year 2022 ................................................................................................................... 78 Table 4.3-3 Comparison of SMUD Renewable Curtailment in the High-wind Renewable Scenario ....................................................................................................................................................... 81 Table 4.3-4 Comparison of SMUD Reserve Requirements and Provisions by PSH in Two Cases for the Base Renewable Scenario in Year 2022 ........................................................................... 81 Table 4.3-5 Comparison of SMUD Reserve Requirements and Provisions by PSH in Two Cases for the High-wind Renewable Scenario in Year 2022.................................................................... 82 Table 4.3-6 Comparison of SMUD Emission Productions in Two Cases in Year 2022 for the Base Renewable Scenario ..................................................................................................................... 82 Table 4.3-7 Comparison of SMUD Emission Productions in Two Cases in Year 2022 for the High-Wind Renewable Scenario ............................................................................................................ 82 

Page 19: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

19 | P a g e

Table 4.3-8 Comparison of Number of Starts and Startup Costs of the SMUD Thermal Generators in Year 2022 for the Base Renewable Scenario ........................................................................... 82 Table 4.3-9 Comparison of Number of Starts and Startup Costs of the SMUD Thermal Generators in Year 2022 for the High-wind Renewable Scenario .................................................................... 83 Table 4.3-10 Comparison of Thermal Generator Ramp Up and Down of the SMUD Thermal Generators in Year 2022 for the Base Renewable Scenario ........................................................ 83 Table 4.3-11 Comparison of Thermal Generator Ramp Up and Down of the SMUD Thermal Generators in Year 2022 for the High-wind Renewable Scenario ................................................ 83 Table 5.1-1 Max and Min Wind and Solar Forecast Errors in Southern California in a Typical Winter Week of year 2022 ............................................................................................................. 86 Table 5.1-2 Max and Min Wind and Solar Forecast Error in Southern California in a Typical Summer Week of Year 2022 ......................................................................................................... 88 Table 6.2-1 Reserve Provisions from Adjustable Speed PSH in % of Total Reserve Requirements ..................................................................................................................................................... 119 Table 6.9-1 Transmission line expansion for high-wind renewable scenario .............................. 126 Table 6.9-2 Transmission interface expansion for high-wind renewable scenario ..................... 126 

Page 20: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

20 | P a g e

1 Introduction

The work to be performed under this project is in response to the Funding Opportunity Announcement DE-FOA-0000486, which was issued by U.S. Department of Energy (DOE) on April 5, 2011. Argonne National Laboratory (Argonne) has teamed up with several project partners and submitted a proposal on June 6, 2011. In September 2011, DOE announced the selection of Argonne’s team for an award for Subtopic 2.2: Detailed Analysis to Demonstrate the Value of Advanced Pumped Storage Hydropower in the U.S.

Energy Exemplar is engaged in this project to perform the power system operation simulation to evaluate the Fixed Speed Pumped-storage Hydro-generators (FS PSH) and the Adjustable Speed Pumped-storage Hydro-generators (AS PSH) in the areas of

1. Quantifying the value of the FS and AS PSHs under different market conditions and for different levels of variable renewable generation (wind and solar) in the system;

2. Providing information about the full range of benefits and value of PSH and CH plants and recommendations for appropriate business models for future PSH projects.

This report describes the database used for the power system operation simulation, the algorithm modeling the power system, the simulation results for the different renewable generation scenarios, and the findings.

The report is organized in the following way: Section 2 describes WI Database and Assumption Revisions; Section 3 presents Modeling Approaches; Section 4 presents Simulation Results; Section 5 presents Three-Stage DA-HA-RT Sequential Simulations; Section 6 summarizes Findings.

Page 21: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

21 | P

2 W

2.1

The RThe WpoweBritisnorth

Figure 

The Bcommother

The W

The g

P a g e

WI Datab

1 Introduc

Region used WECC TEPPer systems insh Columbiahern Mexico

2‐1 Diagram of 

Balancing Amitment meer.

WI network

Over 17,0Over 22,091 interfa

generation fa

Over 3,708 existing

base and

tion of Wes

for the simuPC 2022 dat

n 39 load rega and Albertaas shown in

the WI Load Re

Authority Areeting their de

is represente

000 buses 000 transmisaces (enforce

acilities cons

00 generatorg Pumped-St

d Assum

stern Interc

ulations in thtabase is trangions in the wa in Canada,

n Figure 2-1.

gions 

eas (BAA) inemands whil

ed by

ssion lines (1ed) and 33 N

sist of

s (including torage Hydro

mption Re

onnection D

his study is tnslated into Pwest coast of and Comisi

n the WI opele performin

1045 lines arNomograms (

renewables)o Plants (20

evisions

Database

the Western PLEXOS. Tf United Station Federal d

erates indepeng the econom

re enforced)(enforced)

) units)

InterconnecThe database

tes, plus prode Electricid

endently in tmic exchang

tion (WI). covers

ovinces of dad (CFE) in

term of unit ge with each

n

 

h

Page 22: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

22 | P a g e

3 New Pumped-Storage Hydro Plants (11 units)

The gas price is = $4.6/mmBTU.

The forecasted energy and peak for the WI in year 2022 are

Energy Demand for the WI = 985,457 GWh; Energy Demand for the USA part in the WI is 786,275 GWh; 

Coincident Peak for the WI = 168,972 MW; Coincident Peak for the USA part in the WI is 146,718 MW.

The forecasted energy demand includes the transmission losses [1], [2].

Renewable Energy Mix Assumption in the USA part of the WI for year 2022 is

Based Renewable Generation Scenario: Wind and solar generation energy is 108,993 (GWh) that is 14% of the energy demand in the USA part of the WI;

High-wind Renewable Generation Scenario: Wind and solar generation energy is 273,842 (GWh) that is 34% of the energy demand in the USA part of the WI.

The renewable generations by BA for the base and high-wind renewable generation scenarios are listed in the following table.

Renewable Generation Assumptions by BA in WI and the USA part of WI in Year 2022 

BA Sum of Net Load (GWh) 

High‐wind Renewable Scenario  Base Renewable Scenario 

Wind and Solar Energy (GWh) 

Ratio of Renewable Energy and 

Load 

Wind and Solar Energy (GWh) 

Ratio of Renewable Energy and 

Load 

AESO   114,066  ‐ 0.0% ‐ 0.0% 

APS   43,062  11,582 26.9% 5,355 12.4% 

AVA   14,237  6,007 42.2% 5,566 39.1% 

BANC   16,442  6,512 39.6% 536 3.3% 

BCTC   66,095  ‐ 0.0% ‐ 0.0% 

BPA   60,804  18,153 29.9% 9,848 16.2% 

CAISO   222,675  45,771 20.6% 30,482 13.7% 

CFE   19,021  709 3.7% 686 3.6% 

CHPD   4,077  ‐ 0.0% ‐ 0.0% 

DOPD   2,047  ‐ 0.0% ‐ 0.0% 

EPE   11,161  583 5.2% 150 1.3% 

GCPD   4,924  1,035 21.0% ‐ 0.0% 

IID   4,541  4,835 106.5% 3,772 83.1% 

IPC   21,031  2,528 12.0% 1,160 5.5% 

LDWP   37,118  6,629 17.9% 5,461 14.7% 

NEVP   28,523  7,118 25.0% 1,903 6.7% 

NWMT   11,175  19,994 178.9% 2,338 20.9% 

Page 23: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

23 | P a g e

Renewable Generation Assumptions by BA in WI and the USA part of WI in Year 2022 

BA Sum of Net Load (GWh) 

High‐wind Renewable Scenario  Base Renewable Scenario 

Wind and Solar Energy (GWh) 

Ratio of Renewable Energy and 

Load 

Wind and Solar Energy (GWh) 

Ratio of Renewable Energy and 

Load 

PACE   56,175  24,830 44.2% 6,288 11.2% 

PACW   21,128  9,607 45.5% 8,643 40.9% 

PGN   23,163  55 0.2% ‐ 0.0% 

PNM   16,695  18,066 108.2% 2,149 12.9% 

PSC   39,347  11,330 28.8% 6,036 15.3% 

PSE   26,308  2,813 10.7% 704 2.7% 

SCL   10,926  118 1.1% ‐ 0.0% 

SPP   12,927  8,575 66.3% 921 7.1% 

SRP   34,546  7,795 22.6% 2,413 7.0% 

TEP   15,087  3,244 21.5% 696 4.6% 

TIDC   2,718  14 0.5% ‐ 0.0% 

TPWR   5,605  28 0.5% ‐ 0.0% 

WACM   31,332  45,541 145.3% 8,321 26.6% 

WALC   7,664  9,696 126.5% 5,890 76.9% 

WAUW   837  1,386 165.6% 361 43.1% 

WI  985,457  274,551 27.9% 109,679 11.1% 

WI‐USA  786,275  273,842 34.8% 108,993 13.9% Table 2.1‐1 Renewable Generation Assumptions by BA in WI and the USA part of WI in year 2022 

2.2 Data readiness for the simulations

2.2.1 Regional load representation

The day-ahead (DA) and hour-ahead (HA) load forecasts and 5-min actual loads in year 2020 are received from PNNL for the WECC VGS study [6]. The load forecasts and actual loads in year 2020 are translated to year 2022 with the weekly patterns synchronized in these two years. Then the DA and HA load forecasts and the RT 5-minutes actual loads in year 2022 are scaled by the peak ratios between year 2022 and year 2020. The peak ratios are calculated using the load regional peaks in the WECC TEPPC 2020 and 2022 database documents [1], [2].

The forecasted peak loads in year 2020 and year 2022 are listed in the following table.

Load Region 2022 Peak (MW) 

2020 Peak (MW) 

Peak Ratio of 2022/2020 

AESO  15867 15,049          1.05  

APS  9787 8,407          1.16  

AVA  2720 2882          0.94  

Page 24: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

24 | P a g e

BCTC  11996 11393          1.05  

BPA  10463 10377          1.01  

CFE  3461 3250          1.06  

CHPD  722 719          1.00  

DOPD  424 458          0.93  

EPEC  2244 2135          1.05  

FAR EAST  725 555          1.31  

GCPD  858 865          0.99  

IID  1201 1242          0.97  

LADWP  8200 6778          1.21  

MAGIC  1382 1170          1.18  

NEVP  6734 6583          1.02  

NWMT  1833 1866          0.98  

PACE_ID  862 834          1.03  

PACE_UT  8487 8180          1.04  

PACE_WY  1858 1871          0.99  

PACW  4266 3904          1.09  

PG&E_BAY  8940 9309          0.96  

PG&E_VLY  12126 14593          0.83  

PGN  4220 4294          0.98  

PNM  2976 2852          1.04  

PSCO  7954 9320          0.85  

PSE  5322 5355          0.99  

SCE  22311 26232          0.85  

SCL  1909 1924          0.99  

SDGE  4817 5033          0.96  

SMUD  4303 4886          0.88  

SPPC  2158 2137          1.01  

SRP  7521 8800          0.85  

TEP  3128 3660          0.85  

TID  674 787          0.86  

TPWR  1040 1031          1.01  

TREAS  2777 2504          1.11  

WACM  4724 4651          1.02  

WALC  1600 1591          1.01  

WAUM  153 118          1.30  

Sum of Non‐coincident Peak  192,743 197,595         0.98 

Sum of Coincident Peak  168,972 174,134         0.97 Table 2.2‐1 Comparison of the annual peaks of the load regions in years 2020 and 2022 

2.2.2 Renewable Generation Profile Representations

The wind and solar hourly day-ahead (DA) and 4-hour-ahead (4-HA) generation forecasts and the real-time (RT) 5-min actual generations in year 2020 are received for

Page 25: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

25 | P a g e

the base renewable generation scenario and the high-wind renewable generation scenario from the NREL WWSIS phase 2 study [5]. The wind and solar generation forecasts and actual generation profiles in year 2020 are translated into year 2022 with the weekly patterns synchronized in these two years.

The number of solar generators and wind generators for the base renewable scenario and the high-wind renewable scenario are listed in the following table.

Scenario  Number of Wind Generators  Number of Solar Generators 

Base Renewable   79 60

High‐wind Renewable  151 405Table 2.2‐2 Number of renewable generators modeled in the base and high‐wind renewable sceneries 

2.2.3 Contingency, Flexibility and Regulation Reserve Representations

2.2.3.1 Contingency Reserves

The requirements of contingency reserves, i.e. spinning and non-spinning reserves are defined for eight spinning reserve sharing groups. The mapping between the eight spinning reserve sharing groups and the thirty-nine load regions is specified in the following table.

Spinning Reserve Sharing Group 

Load Region 

AESO AESO 

AZNMNV

APS 

EPE 

NEVP 

PNM 

SRP 

TEP 

WALC 

BASIN

FAR EAST 

MAGIC VLY 

PACE_ID 

PACE_UT 

PACE_WY 

SPP 

TREAS VLY 

BCH BCH 

CALIF_NORTH

PG&E_BAY 

PG&E_VLY 

SMUD 

TIDC 

CALIF_SOUTH

CFE 

IID 

LDWP 

Page 26: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

26 | P a g e

SCE 

SDGE 

NWPP

AVA 

BPA 

CHPD 

DOPD 

GCPD 

NWMT 

PACW 

PGN 

PSE 

SCL 

TPWR 

WAUW 

RMPPPSC 

WACM Table 2.2‐3 Mapping of the load regions and the contingency reserve sharing groups 

The spinning reserve requirement in a contingency reserve sharing group is 3% of the load in the group. The spinning reserve is provided by the eligible on-line generators in the group. The eligible generators to provide the spinning reserve are specified by generator type in Table 2.4-2 Generator Characteristic Revisions.

The non-spinning reserve requirement in a contingency reserve sharing group is 3% of the load in the group. The non-spinning reserve is provided by the eligible on-line generators and the off-line quick startup generators in the group. The eligible generators to provide the non-spinning reserve are specified by generator type in Table 2.4-2 Generator Characteristic Revisions.

2.2.3.2 Flexibility and Regulation Reserves

The hourly flexibility and regulation reserve requirements for the DA, 4-HA simulations and the 5-min regulation reserve requirements for the 5-min RT simulations in year 2020 are received for the base and high-wind renewable scenarios from the NREL WWSIS phase 2 study [5]. The reserve requirements in year 2020 are translated to year 2022 with the weekly patterns synchronized in these two years.

The flexibility and regulation reserve requirements are defined for twenty flexibility / regulation reserve sharing groups. The mapping between the twenty flexibility / regulation reserve sharing groups and the thirty-nine load regions are specified in the following table.

Flex/regulation Reserve Sharing Group  Load Region 

Alberta AESO 

Arizona

APS 

SRP 

TEP 

Page 27: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

27 | P a g e

WALC 

British Columbia BCH 

California, North

PG&E_VLY 

TIDC 

California, South SCE 

Colorado

PSC 

WACM 

Idaho

FAR EAST 

MAGIC VLY 

PACE_ID 

TREAS VLY 

IID IID 

LDWP LDWP 

Mexico (CFE) CFE 

Montana

NWMT 

WAUW 

Nevada, North SPP 

Nevada, South NEVP 

New Mexico

EPE 

PNM 

Northwest

AVA 

BPA 

CHPD 

DOPD 

GCPD 

PACW 

PGN 

PSE 

SCL 

TPWR 

San Diego SDGE 

San Francisco PG&E_BAY 

SMUD SMUD 

Utah PACE_UT 

Wyoming PACE_WY Table 2.2‐4 Mapping of the load regions and the regulation / flexibility reserve sharing groups 

2.3 Adjustable Speed PSH Representation

There are eight existing Fixed Speed PSH (FS PSHs) plants in the WI. The existing PSHs can pump only at the full pumping capacity. Therefore, the existing FS PSHs cannot provide regulation reserve in the pumping mode. In the generating mode, the existing FS PSHs have the minimum generating capacity at 70% of their maximum generating capacity. Therefore the existing FS PSHs can provide reserves in the

Page 28: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

28 | P a g e

dispatchable generating capacity range of 30% of the maximum generating capacity in the generating mode.

There are three proposed Adjustable Speed PSHs (AS PSHs) to be built in California and its adjacent areas. The table below provides key technical characteristics of the three PSH projects as they were specified in PLEXOS simulation runs. Please note that these projects are still in planning stage and final project characteristics may be different.

Properties  IOWA HILL  EAGLE MOUNTAIN  SWAN LAKE North 

Units  3 4 4

Max Cap per Unit (MW)  133 350 345

Min Cap per Unit (MW)  39.9 105 103.5

Max Pump Load (MW)  133 350 345

Min Pump Load (MW)  79.8 210 207

Upper Storage (GWh)  5 25.5 10

Lower Storage (GWh)  5 25.5 10

Cycle Efficiency  80.472% 80.472% 80.472%

Connected Bus 37001_CAMINO S 

( 230KV) 28195_Red Bluff 

(500KV) 45035_CAPTJACK 

(500KV) Table 2.3‐1 Characteristics of three proposed adjustable speed PSHs 

The AS PSHs have the minimum pumping capacity at 70% of the maximum pumping capacity. Therefore the AS PSHs can provide reserves in the dispatchable pumping capacity range of 30% of the maximum pumping capacity in the pumping mode. The AS PSHs have the minimum generating capacity at 30% of the maximum generating capacity. Therefore, the AS PSHs can provide reserves in the dispatchable generating capacity range of 70% of the maximum generating capacity in the generating mode.

The location and installed capacity of the existing FS and proposed AS PSHs are summarized in the following table.

PSH Location Region 

Spinning Reserve Sharing Group 

Regulation Reserve Sharing Group 

Number of Units

Total Capacity (MW) 

Generator Type

Cabin Creek  PSC  RMPP  Colorado  2 324Fixed Speed 

Castaic  LDWP  CALIF_SOUTH LDWP  6 1175Fixed Speed 

Eastwood  SCE  CALIF_SOUTH SCE  1 199Fixed Speed 

Elbert  WACM  RMPP  Colorado  2 200Fixed Speed 

Helms  PG&E_VLY  CALIF_NORTH PG&E Valley  3 1212Fixed Speed 

Horse Mesa  SRP  AZNMNV Arizona  3 96Fixed Speed 

Lake Hodge  SDGE  CALIF_SOUTH SDGE  2 40Fixed Speed 

Mormon Flat  SRP  AZNMNV Arizona  1 50Fixed Speed 

Eagle Mount  SCE  CALIF_SOUTH SCE  4 1400Adjustable Speed

Iowa Hill  SMUD  CALIF_NORTH SMUD  3 399Adjustable Speed

Swan Lake  BPA  NWPP NWPP  4 1380Adjustable Speed

Page 29: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

29 | P a g e

Grand Total     31 6475  Table 2.3‐2 Locations and Installed Capacity of the Existing FS PHS and Proposed AS PSHs in WI 

2.4 Data Assumption Revisions

The WI database of year 2022 is translated from the WECC TEPPC 2022. Per stakeholder meetings, a few data revisions were performed to ensure that the assumptions in the database are close to the real world. The data revisions are listed in the following table.

Items  Revision Descriptions  Notes 

1 The existing FS PSHs are changed to be modeled by individual unit 

 

2 The Min Pump Capacity is changed to be the Max Pump Capacity for the existing FS PSHs 

The existing PSHs cannot provide regulation reserves in the pumping mode. 

3 The Min Generating Capacity is changed to be  70% of the Max Generating Capacity for the existing FS PSHs 

 

4 The Min Generating Capacity  is changed to 90% of the Max Generating Capacity for the nuclear generators 

 

5 The Economic Demand Responses are modeled as dispatchable with the dispatch prices in the range of $500/MWh and zero minimum capacity 

 

The Interruptible Demand Responses are modeled as dispatchable with the dispatch prices in the range of $1,200~$1,872/MWh and zero minimum capacity  

 

7 Un‐served energy penalty price is changed to $3,500/MWh. And the dump power price is changed to: ‐ $100/MWh 

 

8 Regulation reserve shortfall penalty price is set to $1,100/MW 

 

9 Spinning reserve shortfall penalty price is set to $900/MW 

 

10 Non‐spinning reserve shortfall penalty price is set to $700/MW 

 

11 Flexibility reserve shortfall penalty price is set to $600/MW 

 

12 Transmission line and interface limit penalty price is changed to $6,000/MWh 

 

13  All Co‐gen generators cannot provide reserves   

14 Fixed hydro generation profiles and renewable generation profiles can be curtailed at the penalty price of: ‐$22/MWh 

 

Page 30: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

30 | P a g e

15 

Three‐Block Heat Rate (HR) curves are created for generators of CC, Coal and CT, by escalating the HR curves from the NREL WWSIS Phase 2 study with the ratio of HR at Max Capacity in the TEPPC database over the HR at Max Capacity from NREL WWSIS phase 2 study. 

See the rest of this subsection for details 

16 

The start cost of CCs and CTs is determined by only the start‐up fuel cost from the TEPPC database. The start cost of other thermal generators is determined by the start cost from the TEPPC database. 

 

Table 2.4‐1 Assumptions revisions in the database 

Further generator characteristic revisions are listed in the following table. Their eligibilities to provide different types of reserve are listed in the table as well. The yellow marked cells indicate the data revisions.

Generator Type 

Minimum Operating Capacity (% of Max Cap)

Provide 5‐minute 

Regulation

Provide 10‐minute Spinning and non‐Spinning Reserve 

Provide 60‐min 

Flexibility Reserve 

Biomass RPS                  31      

CC Cogen             51.7      

CC Frame F             53.2  Yes   Yes   Yes 

CC Frame G             48.3  Yes   Yes   Yes 

CC G + H             55.0  Yes   Yes   Yes 

CC Old             57.1      

CC Recent             53.2  Yes   Yes   Yes 

Coal Cogen                  55      

Coal Large Old                  80 Yes   Yes   Yes 

Coal Large Recent                  80 Yes   Yes   Yes 

Coal Small                  70      

Coal Small Old                  70      

Coal Small Recent                  70 Yes   Yes   Yes 

Coal SuperC                  80 Yes   Yes   Yes 

Conventional Hydro   ~44  Yes   Yes   Yes 

Conventional Hydro_Fixeddispatch   ‐      

CT Cogen                  43      

CT Future 

50

   Yes   Yes 

CT Large     Yes   Yes 

CT LM 6000     Yes   Yes 

CT Old Gas     Yes   Yes 

CT Old Oil     Yes  Yes 

Page 31: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

31 | P a g e

CT Small     Yes   Yes 

Demand CHP                  99      

Econ DR                   0      

Geothermal                  50      

IC                  23    Yes   Yes 

Interrupt. DR                   0    Yes   Yes 

Negative Bus Load                   ‐      

Nuclear                  90      

Other Steam                  34    Yes   Yes 

PC Cogen                  50      

PC Steam                    8    Yes   Yes 

Fixed Speed Pumped Storage                  70  Yes   Yes   Yes 

Pumping Load                   ‐      

Small Hydro RPS                   ‐      

Small Hydro RPS_Fixeddispatch                   ‐      

Solar                   ‐      

Steam Cogen                  30      

Steam Large Old                  80    Yes   Yes 

Steam Large Recent                  80    Yes   Yes 

Steam Small Old                  70    Yes   Yes 

Steam Small Recent                  70    Yes   Yes 

Wind                   ‐      

Adjustable Speed  Pumped Storage           30  Yes   Yes   Yes 

Table 2.4‐2 Generator Characteristic Revisions and Eligibility for the Reserve Provisions 

For the generators of Coal, CC and CT, the heat rates are defined at the 50%, 80% and 100% of the max capacities. In the simulation, the heat rates are linearly interpolated for the load points at 50%, 80% and 100% of the max capacities. In reference [4], the typical average heat rate curves derived from the Continuous Emission Monitoring System (CEMS) are shown in the following diagram.

Page 32: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

32 | P

Figure 

Thesecapacheat r

The nchanggenerspinn

The mAdeqyear 2are geduratAnd t

P a g e

2‐2 The Average

e generator hcity from therates in the d

non-spinningged to 3% ofrators with thning off-line.

maintenancequacy modul2022 by usinenerated by tions. The mthe maintena

e Heat Rates for

heat rate cure WECC TEdatabase for

g reserve reqf the loads inhe max capa.

e outages arele (PASA) tong the user-dusing random

maintenance ance and for

r Coal, CC, CT an

rves are scaleEPPC 2022 d

this study.

quirements fon the contingacity equal to

e scheduled bo level the redefined mainm draws on outages will

rced outages

nd Gas Steam Ge

ed by the avdatabase befo

for eight contgency reservo or less than

by the PLEXegional capantenance ratethe user-def

l be modeledwill be mod

enerators [4]. 

erage heat raore being app

tingency resve sharing grn 100 MW c

XOS Projectecity reserve es and duratifined annuald for the DAdeled in the 5

ate at the maplied to the g

serve sharingroups. The Ccan provide t

ed Assessmemargin overions. The fol forced outa

A and 4-HA s5-min RT sim

aximum generator

g groups are CT the non-

ent of Supplyr the days inorced outageage rates andsimulations. mulations.

y n es d

Page 33: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

33 | P

3 M

3.1

PLEXmajorAppl

Figure 

The uoptimconstenerg

The rThe Nnomothe cotransmcontinsoluti

The s(som

One oconst

The Mbe ill

P a g e

Modeling

1 PLEXOS

XOS’ Securir logics: Uniications. Th

3‐1 PLEXOS Sec

unit commitmmization usintraints. The gy demand a

resource schNetwork Appograms. Theontingenciesmission liminues until alion of Energ

same algorithe ISO marke

of the advantraint in the M

MIP mathemustrated by t

g Approa

S SCUC/ED

ity Constrainit Commitm

he SCUC / E

curity Constraine

ment and econg Mixed IntUC/ED logi

and meet the

edules from plications loe Network As are definedits are passedll transmissiogy-AS-DC-O

hm for the Set scheduling

ntages of the MIP formula

matical formuthe followin

aches

D algorithm

ned Unit Comment using MED simulatio

ed Unit Commit

onomic dispteger Prograic commits asystem rese

the UC/ED ogic solves thApplications d. If there ard to the UC/on limit viol

OPF is reache

SCUC/ED is g software m

MIP algorita can be exa

ulation for thg formula.

mmitment (Sixed Integern algorithm

tment and Econo

patch (UC/EDmming enfo

and dispatcherve requirem

are passed the DC-OPF logic also pe

re any transm/ED logic forlations are reed.

used by manmay use AC-

thm is its tranamined and e

he Energy-A

SCUC) algorr Programmiis illustrated

omic Dispatch A

D) logic perforcing all reshes resourcesments.

to the Netwoto enforce therforms the

mission limitr the re-run oesolved. Thu

ny ISO mark-OPF in the N

nsparency. explained.

AS-DCOPF-P

rithm consising and Netwd in the follo

Algorithm 

forms the Ensource and ops to balance t

ork Applicathe power flocontingencyt violations, of UC/ED.

us the co-opt

ket schedulinNetwork Ap

Any cost co

PSH co-opti

sts of two work owing figure

nergy-AS coperation the system

ions logic. ow limits andy analysis if these The iterationtimization

ng software pplications).

omponent or

imization can

e.

o-

d

n

n

Page 34: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

34 | P a g e

min ∙ ∙ , ∙ ,

Subject to

∙ ∀ ,

(Energy Balance Constraint) ∙ ∀ ,

PSHStorageBalanceConstraint

,, ∀ , ,

AS RequirementConstraints

,,

, ,, ∀ , , ,

Generator AScapacityConstraints

, ∙ , , ∙ ∀ , ,

(GenerationandASCapacityConstraints

,, ∙ ∀ , ,

GenerationandASRampCapacityConstraint

, , ∙ , ∀ , ,

Transmissionline LimitConstraints

, , ∙ ,

, , ∀ , ,

Interface LimitConstraints Generator Chronological Constraints

Resource Constraints User-Defined Constraints

Where

- Generation from generator at interval ;

- Generation cost of generator at interval ;

- Unit commitment status of generator at interval ; 1=on-line, 0=off-line

- Startup / shut down cost of generator at interval ;

Page 35: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

35 | P a g e

, - AS provision from generator to AS at interval ;

, - AS provision cost of generator to AS at interval ;

- PSH generating efficiency;

- PSH pumping efficiency;

- PSH generation at interval ;

- PSH pump at interval ;

- Load at bus at interval ;

- Transmission losses of line at interval ; , - Min capacity of generator at interval ;

, - Max capacity of generation at interval ; , - Max ramp up / down rate;

, - Min AS requirement for AS at interval ;

,, - Min AS provision of generator for AS at interval ;

,, - Max AS provision of generator for AS at interval ;

, - Power Transfer Distribution Factor of bus to transmission line for post-contingency network ( 0 is the pre-contingency network);

, - Line flow in transmission line at interval for post-contingency network ;

, , - Min line flow of transmission line at interval for post-contingency network ;

, , - Max line flow of transmission line at interval for post-contingency network ;

- Line coefficient of transmission line in interface ;

, , - Min interface flow of interface at interval for post-contingency network ; , , - Max interface flow of interface at interval for post- contingency

network ;

The PSH pumping and generating are incorporated in Constraints “(Energy Balance Constraint)” and “(PSHStorageBalanceConstraint ”. By so doing, the PSH operation is co-optimized with other variables: energy, ancillary services, power flow, etc. This formula is different from other legacy PSH dispatch algorithm: generating a thermal cost curve, then dispatching PSH against the thermal cost curve, and finally re-dispatching

Page 36: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

36 | P

thermassumpricemark

3.2

PLEXvery variabin conthe reis des

Figure 

D

H

P a g e

mal generatormes that PSHs. Actually,

ket energy an

2 3-Stage

XOS is capabuseful whenbility and unnjunction ofeal world mascribed as fo

3‐2 DA‐HA‐RT 3

DA simulatioo Day-ao The So The tro The co

modelHA simulatio

o The 4o The h

rs with the PH is a price-t PSH can pr

nd AS prices

DA-HA-RT

ble of simuln evaluating tncertainty. Uf the day-ahearket operatiollows.

3‐stage Sequent

on mimics tahead forecaSCUC/ED opransmission ontingency, led. on mimics t-hour-aheadour-ahead fo

PSH operatiotaker facilityrovide energy will be imp

T Sequentia

ating power the ramp cap

Usually, the ead (DA) andion. The 3-s

ial Simulations

he DA SCUasted load/wiptimization wnetwork is mflexibility u

the intra-dad forecasted worecasted loa

on frozen. Ty and its opery and ancilla

pacted by the

al Simulatio

markets at apacity adequsub-hourly ed hour-aheadstage DA-HA

UC/SCED ind/solar genwindow is 24modeled at thup/down, reg

ay SCUC/SCwind / solarad time serie

This legacy Pration does nary service se PSH operat

ons

a sub-hourlyuacy for the reconomic did (HA) unit A-RT sequen

neration time4 hours at hohe nodal lev

gulation up/d

CED generation t

es are used;

PSH dispatchnot impact thsimultaneoustion.

y interval. Trenewable gispatch capabcommitmenntial simulat

e series are uourly interva

vel; down reserve

time series a

h algorithm he system sly and the

This feature igeneration bility works

nt to mimic tion approach

used; al;

es are

are used;

s

h

Page 37: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

37 | P a g e

o The SCUC/ED optimization window is 4-hour plus 20-hour look-ahead with 2-hour interval;

o The unit commitment patterns from the DA simulation are frozen for generators with Min Up/Down Time greater than 4 hours;

o The transmission network is modeled at the nodal level; o The contingency, flexibility up/down, regulation up/down reserves are

modeled. RT simulation mimics the 5-min real-time SCED

o The “Actual” 5-min load/wind/solar generation time series are used; o The SCED optimization window is twelve 5-min plus 23 look-ahead with

hourly interval; o The unit commitment patterns from the HA simulation are frozen; o The transmission network is modeled at the nodal level; o The contingency, regulation up/down reserves are modeled. However, the

flexibility up/down reserves are not modeled. The implication is that the capacity held in the HA simulation for the flexibility reserves is deployed to cover the load and renewable generation variability and uncertainty at the 5-min interval;

o CT with max capacity less than 100MW could be committed or de-committed in the 5-min RT simulation.

3.3 PSH Storage Modeling in 3-stage Sequential Simulations

In the DA simulation, the SCUC/ED is performed in a 24-hour window. The PSHs are dispatched by PLEXOS SCUC/ED according to the formulation in Section 3.1 PLEXOS SCUC/ED algorithm. The storage volume of a PSH at the end of the 24-hour optimization window is constrained to the storage volume at the beginning of the optimization window. A penalty price of $1,000/MWh is applied to the storage volume constraints.

In the HA simulation, the SCUC/ED is performed in a 4-hour plus 20-hour look-ahead window. The simulation solution in the first 4 hours is saved; then the SCUC/ED is performed for the next 4-hours in a 4-hour plus 20-hour look-ahead window, and so on. The PSHs are re-dispatched in the HA simulation according to the formulation in Section 3.1 PLEXOS SCUC/ED algorithm. The storage volume of a PSH at the end of the optimization window is constrained to the storage volume from the DA simulation. A penalty price of $1,000/MWh is applied to the storage volume constraints.

In the 5-min RT simulation, the SCUC/ED is performed in a twelve 5-minutes plus 23-hour look-ahead window. The simulation solution in the first twelve 5-minutes is saved; then the SCUC/ED is performed for the next twelve 5-minutes in a twelve 5-minutes plus 23-hour look-ahead window, and so on. The PSHs are re-dispatched in the RT simulation according to the formulation in Section 3.1 PLEXOS SCUC/ED algorithm. The storage volume of a PSH at the end of the optimization window is constrained to the storage volume from the HA simulation. A penalty price of $1,000/MWh is applied to the storage volume constraints.

Page 38: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

38 | P a g e

3.4 Scope of Simulations

The simulation scope covers the base renewable generation scenario and the high-wind renewable generation scenario with and without fixed-speed PSHs or adjustable-speed PSHs modeled. The simulation scenario combinations are listed in the following table.

Case  Renewable Scenario  FS PSHs Modeled 

AS PSHs Modeled 

Base 1  Base  No  No 

Base 2  Base  Yes  No 

Base 3  Base  Yes  Yes 

High‐wind 1  High‐wind  No  No 

High‐wind 2  High‐wind  Yes  No 

High‐wind 3  High‐wind  Yes  Yes Table 3.4‐1 Simulation Scenario Combinations 

The DA simulations are performed for the full year 2022 for all cases. However, the three-stage simulations are performed for four typical weeks for the each case: the third weeks of January, April, July and October in year 2022 starting on Sunday.

This study focuses on three areas: WI, California and SMUD. In the WECC TEPPC database, the load region SMUD represents the Balancing Authority of Northern California (BANC) that includes

Sacramento Municipal Utility District (SMUD), Modesto Irrigation District (MID), Roseville Electric, and Redding Electric Utility.

For consistency, the name of SMUD is used in the remaining of this document for BANC.

The California footprint and the SMUD footprint are carved out from the WI database. The simulations for the above mentioned cases are repeated for the carved-out California and SMUD footprints. The carved-out California footprint will be simulated as a bid-based market. The system information of the entire WI, the carved-out California footprint and the carved-out SMUD footprint is listed in Table 3.4-2 Three Focused Simulation Areas: WI, California and SMUD

Model System  WI  CA  SMUD 

Load Regions  39 9 1

Buses  over 17,000 over 4000 over 250

Transmission Lines  over 22,000  over 5952 over 300

Interfaces  91 31 0

Generator  over 3,700 0ver 700 over 60

Existing FS PSHs  8 4 0

New AS PSHs  3 2 1

Network Representation  Nodal Nodal Zonal

DA Simulation Step  24‐hour 24‐hour 24‐hour

HA Simulation Step  4 hours plus 20‐ 4 hours plus 20‐ 4 hours plus 20‐

Page 39: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

39 | P a g e

hour look‐ahead hour look‐ahead hour look‐ahead

RT Simulation Step 12 5‐minutes plus 

23‐hour look‐ahead12 5‐minutes plus 

23‐hour look‐ahead12 5‐minutes plus 

23‐hour look‐ahead

Simulation Base  Cost‐base Bid‐base Cost‐baseTable 3.4‐2 Three Focused Simulation Areas: WI, California and SMUD 

Page 40: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

40 | P a g e

4 Simulation Results

The simulation results for three focus areas, WI, California, and SMUD, are presented in this section for the cases of without PSHs, with FS PSHs and with additional AS PSHs, and the base and high-wind renewable scenarios.

4.1 WI Simulation Results

The assumptions and settings for the WI simulations are reiterated as follows.

1. DA forecasted load/wind/solar: 24 to 48 hours ahead 2. 24 hours SCUC/ED with hourly interval 3. Nodal network representation 4. Contingency, flexibility up down, regulation up/down reserves modeled 5. Three cases, without PSHs, with the existing FS PSHs, with the existing FS and

new AS PSHs, are simulated 6. The simulations are performed for the base and high-wind renewable scenarios 7. For the high-wind renewable scenario, the simplified transmission expansion is

performed to deliver the renewable generations to the load buses 8. The WI simulations are cost-based.

4.1.1 WI System Production Costs

The production cost of three cases for year 2022: without PSHs, with the existing FS PSHs, and with the additional AS PSHs, are listed in the following tables for both the base renewable scenario and the high-wind renewable scenario.

Base Renewable 

Total Generation Energy 

PSH Generation Energy 

Production Cost 

Annual Cost Reduction 

Annual Cost Savings due to 

PSHs  

GWh  GWh  million $ million 

$  % Capacity MW 

$/kW‐year 

No PSH  997,546  ‐ 14,737 ‐ ‐ ‐  ‐

With FS PSH  1,003,204  4,106 14,569 167 1.14% 3,296  50.82

With FS&AS PSH  1,008,135  8,244 14,426 311 2.11% 6,475  48.06

Table 4.1‐1 Comparison of WI Production Cost in Three Cases for the Base Renewable Scenario in Year 2022 

High‐Wind Renewable 

Total Generation Energy 

PSH Generation Energy 

Production Cost 

Annual Cost Reduction 

Annual Cost Savings due to PSHs  

GWh  GWh  million $  million $ % Capacity (MW) 

$/kw‐year 

No PSH  997,538  ‐ 12,646 ‐ ‐  ‐  ‐

With FS PSH  1,007,140  6,925 12,398 248 1.96%  3,296  75.29

With FS&AS PSH  1,015,512  13,811 12,169 477 3.77%  6,475  73.67

Table 4.1‐2 Comparison of WI Production Cost in Three Cases for the High‐Wind Renewable Scenario in Year 2022 

Page 41: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

41 | P a g e

With the existing PSHs, the WI total production cost is saved by 1.14% and 1.96% for the base renewable scenario and the high-wind renewable scenario respectively. With the additional AS PSHs are introduced in the system, the WI total production cost saving increases further to 2.11% and 3.77% for the base renewable scenario and the high-wind renewable scenario respectively.

With the renewable generation penetration level increases to 33% of the WI demand, the production cost savings due to the PSHs operation increase. The PSHs are more valuable in the high renewable penetration level.

The comparisons of the generation by generator type for the base and high-wind renewable scenarios are shown in the following two charts.

In the base renewable scenario, The CC and CT generation is reduced as more PSHs are introduced into the system due to the fact that the PSHs generation replaces the CC and CT generation. However the Coal generation is increased to provide the PSHs pumping energy. Also the renewable generation is increased as more PSHs are introduced into the system due to less renewable generation being curtailed.

Figure 4‐1 Comparison of WI Generation in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 

In the high-wind renewable scenario, both CC and Coal generations are reduced as more PSHs are introduced into the system due to the fact that the PSHs generation replaces the CC and Coal generation. Also the renewable generation is increased as more PSHs are introduced into the system due to less renewable generation being curtailed.

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

GWh

Generation by Generator Type (GWh)‐Yearly for Base Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 42: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

42 | P a g e

Figure 4‐2 Comparison of WI Generation in Three Cases by Generator Type for the High‐wind Renewable Scenario in Year 2022 

The comparisons of the production cost in the WI by generator type for the base and high-wind renewable scenarios are shown in the following two charts.

In the base renewable scenario, the CC and CT production cost is reduced as more PSHs are introduced into the system. And the Coal production cost is increased slightly as more PSHs introduced into the system.

Figure 4‐3 Comparison of WI Generation Cost in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000GWh

Generation by Generator Type (GWh)‐Yearly for High‐wind Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

Million $

Total Generation Cost by Generator Type ($M)‐Yearly for Base Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 43: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

43 | P a g e

In the high-wind renewable scenario, both CC and Coal production costs are reduced as more PSHs are introduced into the system.

Figure 4‐4 Comparison of WI Generation Cost in Three Cases by Generator Type for the High‐wind Renewable Scenario in Year 2022 

Due to the PSHs operations, the renewable curtailments in the WI system are reduced as shown in the following two tables for the base and high-wind renewable scenarios.

WI Renewable Curtailment in the Base Renewable Scenario 

      Renewable Curtailment Reduction 

Case  GWh  GWh  % 

No PSH  1,921 ‐  0%

With FS PSH  1,356 565  29%

With FS&AS PSH  964 958  50%Table 4.1‐3 Comparison of WI Renewable Curtailment in the Base Renewable Scenario 

WI Renewable Curtailment in the High‐wind Renewable Scenario 

      Renewable Curtailment Reduction 

Case  GWh  GWh  % 

No PSH  56,885 ‐  0%

With FS PSH  48,403 8,482  15%

With FS&AS PSH  44,211 12,675  22%Table 4.1‐4 Comparison of WI Renewable Curtailment in the High‐wind Renewable Scenario 

4.1.2 WI System Reserve Provisions by PSHs

The system reserve requirements and provisions from the PSHs are compared with the three cases for the base renewable scenario and the high-wind renewable scenario in the following two tables.

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

Million $

Total Generation Cost by Gnerator Type ($M)‐Yearly for High‐wind Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 44: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

44 | P a g e

Base Renewable 

Base ‐ No PSH  With FS PSH  With FS&AS PSH 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Non‐Spinning Reserve  29,564  ‐ 29,564 1,364 29,564  3,757

Spinning Reserve  29,564  ‐ 29,564 182 29,564  679

Flexibility Down  10,732  ‐ 10,732 74 10,732  1,463

Flexibility Up  10,732  ‐ 10,732 100 10,732  299

Regulation Down  12,423  ‐ 12,423 163 12,423  1,652

Regulation Up  12,441  ‐ 12,441 205 12,441  580Table 4.1‐5 Comparison of WI Reserve Requirements and Provisions by PSHs in Three Cases for the Base Renewable Scenario in Year 2022 

High‐wind Renewable 

Base ‐ No PSH  With FS PSH  With FS&AS PSH 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Non‐Spinning Reserve  29,564                 ‐ 29,564  766  29,564          2,017 

Spinning Reserve  29,564                     ‐ 29,564              22  29,564              187 

Flexibility Down   23,062    ‐  23,062                240  23,062          3,072 

Flexibility Up  23,062  ‐ 23,062                  35  23,062              119 

Regulation Down  17,487  ‐ 17,487               485  17,487          2,333 

Regulation Up    17,448          ‐ 17,448           95  17,448              319 Table 4.1‐6 Comparison of WI Reserve Requirements and Provisions by PSHs in Three Cases for the High‐wind Renewable Scenario in Year 2022 

The reserve provisions from the adjustable speed PSHs increases substantially as opposed to the reserve provisions from the fixed speed PSHs. The reserve provision increase from the adjustable speed PSHs is due to

1. The larger dispatchable capacity in the generating mode. 2. The reserve provision in the pumping mode.

4.1.3 WI System Emission Production

The system emission productions for the three cases in the base renewable scenario and the high-wind renewable scenario are listed in the following two tables.

Base Renewable 

CO2  NOx  SO2  Emission Reduction (ton)Emission 

Reduction (%) 

ton  ton  ton  CO2  NOx  SO2  CO2  NOx  SO2

No PSH  388,463,385  573,025  410,404  ‐ ‐  ‐ 0.0%  0.0%  0.0%

With FS PSH  391,262,476  581,329  417,728 ‐2,799,091 ‐8,304 ‐7,324 ‐0.7% ‐1.4% ‐1.8%

With FS&AS PSH  393,954,399  589,914  425,151 ‐5,491,014 ‐16,888 ‐14,747 ‐1.4% ‐2.9% ‐3.6%Table 4.1‐7 Comparison of WI Emission Productions in Three Cases in Year 2022 for the Base Renewable Scenario 

Page 45: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

45 | P a g e

High‐wind Renewable 

CO2  NOx  SO2  Emission Reduction (ton)Emission 

Reduction (%) 

ton  ton  ton  CO2  NOx  SO2  CO2  NOx  SO2

No PSH  318,768,466  467,931  326,318          ‐          ‐   ‐ 0.0%  0.0%  0.0%

With FS PSH  312,657,135  458,360  320,234  6,111,331  9,571   6,084  1.9%  2.0%  1.9%

With FS&AS PSH  311,549,087  459,379  322,211  7,219,379  8,552  4,107  2.3%  1.8%  1.3%Table 4.1‐8 Comparison of WI Emission Productions in Three Cases in Year 2022 for the High‐Wind Renewable Scenario 

In the base renewable scenario, the coal generation is increased to provide pumping energy so that the emission production is increased. In the high-wind renewable scenario, the coal generation is decreased so that the emission production is decreased. However, the allover emission production is reduced from the base renewable scenario to the high-wind renewable scenario.

4.1.4 WI Thermal Generator Cycling

The number of starts and startup cost of the thermal generators in the three cases for the base renewable scenario and the high-wind renewable scenario are listed in the following two tables.

Base Renewable 

Total Number of Thermal Starts

Total Thermal Start Cost  Cost Reduction 

million $  million $  % 

No PSH               37,804                    153                       ‐                      ‐

With FS PSH               31,797                    130                      24  15.46%

With FS&AS PSH               27,548                    109                      44  28.57%Table 4.1‐9 Comparison of Number of Starts and Startup Costs of the WI Thermal Generators in Year 2022 for the Base Renewable Scenario 

High‐Wind Renewable 

Total Number of Thermal Starts

Total Thermal Start Cost  Cost Reduction 

million $  million $  % 

No PSH               40,852                    176                       ‐                      ‐

With FS PSH               36,024                    161                      15  8.48%

With FS&AS PSH               31,925                    145                      31  17.70%Table 4.1‐10 Comparison of Number of Starts and Startup Costs of the WI Thermal Generators in Year 2022 for the High‐wind Renewable Scenario 

In both the base and high-wind renewable scenarios, the number of starts and startup costs of the thermal generators are reduced substantially as more PSHs are introduced into the system. However, the allover number of starts and startup costs are increased from the base renewable scenario to the high-wind renewable scenario.

The comparisons of the ramp up and down of thermal generators in the three cases for the base and high-wind renewable scenarios are listed in the following two tables.

Page 46: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

46 | P a g e

Base Renewable 

Total Thermal Generator Ramp Up 

Total Thermal Generator Ramp Down Ramp Up Reduction 

Ramp Down Reduction 

GW  GW  GW  %  GW  % 

No PSH             11,501  16,508  ‐   ‐ ‐  ‐

With FS PSH            9,716     13,948       1,786  15.53%          2,560  15.51%

With FS&AS PSH        8,081       11,691        3,420  29.74%          4,817  29.18%Table 4.1‐11 Comparison of Thermal Generator Ramp Up and Down of the WI Thermal Generators in Year 2022 for the Base Renewable Scenario 

High‐Wind Renewable 

Total Thermal Generator Ramp Up 

Total Thermal Generator Ramp Down Ramp Up Reduction 

Ramp Down Reduction 

GW  GW  GW  %  GW  % 

No PSH  9,325  14,188      ‐           ‐                  ‐                 ‐

With FS PSH           8,394       12,682               931  9.98%      1,506  10.62%

With FS&AS PSH     7,060  10,778    2,265  24.29%     3,410  24.04%Table 4.1‐12 Comparison of Thermal Generator Ramp Up and Down of the WI Thermal Generators in Year 2022 for the High‐Wind Renewable Scenario 

In both the base and high-wind renewable scenarios, the thermal generator ramp up and down are reduced substantially as more PSHs are introduced into the system.

4.1.5 WI Regional LMPs

The comparisons of the average regional LMP for the selected regions for the base renewable scenario is shown in following chart. As more PSHs are introduced into the system, the average regional LMP is reduced uniformly for all selected regions.

 ‐

 10.00

 20.00

 30.00

 40.00

 50.00

APS BPA PG&E_VLY SCE SDGE

$/M

Wh

Average Regional Price‐Year 2022 for Base Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 47: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

47 | P a g e

Figure 4‐5 Comparison of Regional LMP in Three Cases for the Selected Regions in Year 2022 for the Base Renewable Scenario 

The comparisons of the average regional LMP for the selected regions for the high-wind renewable scenario is shown in following chart. Some regional price increases and some regional price decreases as more PSHs are introduced into the system. However, overall, the regional LMP in the high-wind renewable scenario is reduced substantially as opposed to the base renewable scenario.

For the analysis of the higher LMP with more PSHS introduced into the system for the high-wind renewable scenario, please refer to subsection 4.2.6 California Regional LMPs.

Figure 4‐6 Comparison of Regional LMP in Three Cases for the Selected Regions in Year 2022 for the High‐wind Renewable Scenario 

4.1.6 WI Transmission Congestions

4.1.6.1 WI Transmission Congestions in the Base Renewable Scenario

The annual transmission interface congestion hours and average congestion prices for the base renewable scenario are listed in Table 4.1-13 Comparison of WI Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the Base Renewable Scenario in Year 2022.

The average WI interface forward congestion shadow price is reduced from $4/MWh to $2/MWh as the FS and AS PSHs are introduced into the system. The average WI interface backward congestion shadow price is reduced from $2/MWh to $1/MWh as the FS and AS PSHs are introduced into the system.

The most congested interfaces include

“Interstate WA-BC East”, “Intrastate AB DC2”, “P18 Montana-Idaho”, “P27 Intermountain Power Project DC Line”, “P45 SDG&E-CFE”,

 ‐

 10.00

 20.00

 30.00

 40.00

 50.00

APS BPA PG&E_VLY SCE SDGE

$/M

Wh

Average Regional Price‐Year 2022 for High‐wind Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 48: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

48 | P a g e

“P52 Silver Peak-Control 55 kV”.

Comparing the congestion prices of the three cases, No PSHs, with FS PSHs and with FS&AS PSHs, the most transmission congestion price reduction happens in Interfaces

“P27 Intermountain Power Project DC Line”, “P45 SDG&E-CFE”, and “P52 Silver Peak-Control 55 kV”.

These interfaces are in the neighboring areas where PSHs “Castaic”, “Lake Hodge”, and “Eagle Mountain” are located.

Page 49: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

49 | P a g e

    No PSH    With FS PSH    With FS&AS PSH 

Interfaces 

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW) 

Shadow Price Back ($/MW) 

Hours Congested 

(hrs) 

Hours Congested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

Interstate WA‐BC East  1,395 0 15 0 1,413 0 12 0 1,489 0 15 0

Interstate WA‐BC West  0 1,171 0 5 0 1,201 0 4 0 1,238 0 3

Intrastate AB DC1  6,873 1,887 0 0 7,386 1,374 0 0 7,440 1,320 0 0

Intrastate AB DC2  8,760 0 17 0 7,862 898 0 0 8,083 677 0 0

Intrastate AZ Palo Verde East  51 0 0 0 49 0 0 0 79 0 1 0

Intrastate WA North of Hanford  0 2 0 0 1 1 0 0 2 2 0 0

P01 Alberta‐British Columbia  5 2,094 0 32 7 2,089 0 32 8 2,098 0 32

P03 Northwest‐British Columbia  0 87 0 0 0 76 0 0 0 63 0 0

P08 Montana to Northwest  132 0 0 0 187 0 0 0 272 0 0 0

P09 West of Broadview  3 0 0 0 5 0 0 0 7 0 0 0

P14 Idaho to Northwest  0 18 0 0 0 23 0 0 0 13 0 0

P18 Montana‐Idaho  428 0 12 0 435 0 11 0 389 0 9 0P23 Four Corners 345/500 Qualified Path  0 0 0 0 0 1 0 0 0 0 0 0

P24 PG&E‐Sierra  84 0 2 0 115 0 3 0 132 0 2 0P25 PacifiCorp/PG&E 115 kV Interconnection  0 111 0 19 0 117 0 26 0 128 0 15

P26 Northern‐Southern California  42 321 0 1 49 318 0 1 39 362 0 0P27 Intermountain Power Project DC Line  6,096 0 36 0 5,617 0 3 0 6,096 0 3 0

P30 TOT 1A  142 0 1 0 142 0 1 0 164 0 0 0

P31 TOT 2A  8 10 0 0 2 7 0 0 2 4 0 0

P33 Bonanza West  59 0 0 0 77 0 0 0 74 0 0 0

P36 TOT 3  74 0 2 0 73 0 1 0 50 0 1 0

P39 TOT 5  32 0 0 0 27 0 0 0 16 0 0 0

Page 50: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

50 | P a g e

    No PSH    With FS PSH    With FS&AS PSH 

Interfaces 

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW) 

Shadow Price Back ($/MW) 

Hours Congested 

(hrs) 

Hours Congested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

P40 TOT 7  15 0 0 0 5 0 0 0 3 0 0 0

P41 Sylmar to SCE  0 0 0 0 0 0 0 0 0 1 0 0

P42 IID‐SCE  39 0 0 0 46 0 0 0 81 0 0 0

P45 SDG&E‐CFE  7,274 0 166 0 7,279 0 159 0 7,304 0 139 0

P47 Southern New Mexico (NM1)  247 0 9 0 201 0 7 0 196 0 5 0

P52 Silver Peak‐Control 55 kV  0 1,341 0 86 0 1,112 0 83 0 1,017 0 68

P55 Brownlee East  2 0 0 0 0 0 0 0 1 0 0 0P59 WALC Blythe ‐ SCE Blythe 161 kV Sub  146 0 1 0 151 0 0 0 107 0 0 0

P61 Lugo‐Victorville 500 kV Line  2 0 0 0 7 0 0 0 6 0 0 0

P66 COI  232 0 1 0 366 0 1 0 245 0 0 0

P73 North of John Day  0 0 0 0 0 0 0 0 1 0 0 0

P75 Hemingway‐Summer Lake  0 223 0 9 0 222 0 5 0 286 0 5

P80 Montana Southeast  9 0 0 0 6 0 0 0 4 0 0 0

Grand Total  40,910 7,265 4 2 40,268 7,439 2 2 41,050 7,209 2 1Table 4.1‐13 Comparison of WI Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the Base Renewable Scenario in Year 2022 

Page 51: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

51 | P a g e

4.1.6.2 Transmission Expansion for the High-wind Renewable Scenario

The transmission in the existing TEPPC 2022 network was not adequate to accommodate the High-wind renewable Scenario, so some transmission expansion assumptions had to be made. The transmission expansion assumptions were added to allow the simulations to deliver the renewable energy at the high-wind renewable level. Without the transmission expansion assumptions, the simulation would not have been able to generate results for the High-wind renewable scenario.

Given that this study is not a transmission expansion study, it is important to note that the transmission expansion methodology was simplistic. And the transmission expansion methodology did not include detailed economic or reliability analyses. Nor did it take into account issues such as rights of way, environmental concerns, policy constraints, or any other factor that might normally be considered in detailed transmission planning activities.

The following steps were taken to generate the transmission expansion assumptions:

1. Perform PLEXOS nodal simulation with the renewable generation at the high-wind renewable penetration level,

2. For any congested transmission line with the yearly average shadow price greater than $10/MWh, build a parallel transmission with the exact same characteristics of the congested transmission line,

3. For a congested transmission interface with the yearly average shadow price greater than $10/MWh, increase the transmission interface rating by 500 MW and build a parallel transmission line in the transmission interface if necessary,

4. Perform PLEXOS nodal simulation again and repeat the process until all monitored transmission lines and interfaces have the congestion prices less than $10/MWh.

The transmission expansion steps can be illustrated in the following diagram.

Page 52: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

52 | P

Figure 

The tin Ap

The sneederenew

The ahigh-InterfRene

The m

CompFS&A“P27 wher

P a g e

4‐7 Logic flow f

transmissionppendix – Tr

solutions of ted to deliverwable scenar

4.1.6.3 W

annual transm-wind renewface Congeswable Scena

most congest

“P08 Mon“P27 Inte“P30 TOT“P33 Bon

paring the coAS PSHs, thIntermounta

e PSHs “Cas

or the Transmis

n expansion aransmission

the transmisr the renewabrio.

WI Transmiss

mission interable scenarition Hours aario in Year

ted interface

ntana to Norrmountain PT 1A”, nanza West”,

ongestion prhe most transain Power Prstaic”, “Lake

ssion Expansion 

assumptionsExpansion A

sion expansible generatio

ion Congest

rface congeso are listed i

and Congesti2022.

es include

rthwest”, Power Projec

,

rices of the thsmission conroject DC Lie Hodge”, an

Using Congestio

for the highAssumptions

ion indicate on to the loa

tions in the H

stion hours ain Table 4.1-ion Prices in

ct DC Line”,

hree cases, Nngestion pricine”. This innd “Eagle M

on Shadow Pric

h-wind renews for High-w

that there isad centers un

High-wind R

and average -14 Comparin Three Case

,

No PSHs, wice reduction nterface is in

Mountain” ar

e Approach 

wable scenarwind Renewa

s more transfnder the High

Renewable Sc

congestion pison of WI Tes for the Hi

ith FS PSHshappens in I

n the neighbore located.

rio are listedable Scenario

fer capacity h-wind

cenario

prices for theTransmissiongh-wind

s and with Interface oring area

d o.

e n

Page 53: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

53 | P a g e

No PSH  With FS PSH  With FS&AS PSH 

Interface 

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Interstate WA‐BC East  ‐ 556 ‐ 4.64 ‐ 539 ‐ 4.51 ‐ 540 ‐ 3.96

Interstate WA‐BC West  ‐ 91 ‐ 0.16 ‐ 90 ‐ 0.17 ‐ 102 ‐ 0.13

Intrastate AB DC1  8,284 476 ‐ ‐ 8,248 512 0.00 ‐ 7,766 994 ‐ ‐

Intrastate AB DC2  8,358 402 0.00 ‐ 8,637 123 20.13 ‐ 8,760 ‐ 0.01 ‐

Intrastate Aeolus South  ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 1 ‐ 0.00 ‐

Intrastate AZ Palo Verde East  11 ‐ 0.65 ‐ 8 ‐ 0.07 ‐ 14 ‐ 0.06 ‐

Intrastate WA North of Hanford  ‐ 39 ‐ 0.02 ‐ 30 ‐ 0.02 ‐ 34 ‐ 0.03

P01 Alberta‐British Columbia  3 382 0.00 0.14 2 334 0.00 0.13 ‐ 224 ‐ 0.06

P03 Northwest‐British Columbia  74 213 0.02 0.60 58 197 0.02 0.31 24 161 0.01 0.33

P08 Montana to Northwest  5,102 ‐ 21.82 ‐ 5,249 ‐ 23.65 ‐ 5,443 ‐ 25.83 ‐

P09 West of Broadview  238 ‐ 0.29 ‐ 306 ‐ 0.36 ‐ 247 ‐ 0.27 ‐

P14 Idaho to Northwest  1 66 0.00 1.60 ‐ 65 ‐ 1.14 2 63 0.00 0.71

P15 Midway‐LosBanos  334 13 0.93 0.02 302 20 0.79 0.03 288 23 0.76 0.03

P16 Idaho‐Sierra  18 105 0.39 1.09 38 111 0.80 1.00 35 121 0.31 0.91

P18 Montana‐Idaho  ‐ ‐ ‐ ‐ ‐ 1 ‐ 0.00 ‐ 2 ‐ 0.02

P19 Bridger West  76 ‐ 0.14 ‐ 119 ‐ 0.21 ‐ 150 ‐ 0.26 ‐

P20 Path C  ‐ 46 ‐ 0.70 ‐ 51 ‐ 0.37 ‐ 47 ‐ 0.30

P22 Southwest of Four Corners  27 ‐ 0.07 ‐ 83 ‐ 0.23 ‐ 115 ‐ 0.36 ‐P23 Four Corners 345/500 Qualified Path  248 10 1.77 0.01 321 17 1.94 0.04 358 17 1.79 0.10

P24 PG&E‐Sierra  2 56 0.01 0.37 3 97 0.14 0.65 1 190 0.00 1.56P25 PacifiCorp/PG&E 115 kV Interconnection  ‐ 147 ‐ 16.40 ‐ 104 ‐ 11.03 ‐ 65 ‐ 6.54

P26 Northern‐Southern California  594 197 1.45 0.26 600 181 1.77 0.22 576 176 0.90 0.24

P27 Intermountain Power Project  3,216 ‐ 42.50 ‐ 3,216 ‐ 35.08 ‐ 6,072 ‐ 26.24 ‐

Page 54: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

54 | P a g e

No PSH  With FS PSH  With FS&AS PSH 

Interface 

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

DC Line 

P28 Intermountain‐Mona 345 kV  ‐ 54 ‐ 0.07 ‐ 38 ‐ 0.69 ‐ 33 ‐ 0.24

P29 Intermountain‐Gonder 230 kV  52 417 1.42 2.14 33 432 0.79 2.63 40 423 0.80 2.60

P30 TOT 1A  1,524 ‐ 10.19 ‐ 1,516 9 9.82 2.00 1,565 ‐ 9.60 ‐

P31 TOT 2A  ‐ 37 ‐ 1.18 ‐ 62 ‐ 3.77 ‐ 38 ‐ 1.23P32 Pavant‐Gonder InterMtn‐Gonder 230 kV  19 ‐ 0.10 ‐ 12 ‐ 0.06 ‐ 21 ‐ 0.12 ‐

P33 Bonanza West  3,275 ‐ 27.05 ‐ 3,506 ‐ 26.97 ‐ 3,840 ‐ 28.88 ‐

P35 TOT 2C  ‐ 2 ‐ 0.01 ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

P36 TOT 3  1,025 ‐ 1.18 ‐ 1,284 ‐ 1.91 ‐ 1,329 ‐ 1.48 ‐

P37 TOT 4A  292 ‐ 0.87 ‐ 288 ‐ 0.77 ‐ 315 ‐ 0.78 ‐

P39 TOT 5  35 224 0.01 0.11 36 311 0.62 0.11 25 355 0.09 0.14

P40 TOT 7  2 ‐ 0.00 ‐ 1 2 0.00 0.00 7 ‐ 0.00 ‐

P41 Sylmar to SCE  ‐ 4 ‐ 0.04 ‐ 7 ‐ 0.04 ‐ 1 ‐ 0.01

P42 IID‐SCE  138 ‐ 0.27 ‐ 150 ‐ 0.24 ‐ 168 ‐ 0.21 ‐

P45 SDG&E‐CFE  52 ‐ 0.59 ‐ 37 ‐ 0.68 ‐ 50 ‐ 0.59 ‐

P47 Southern New Mexico (NM1)  701 ‐ 6.07 ‐ 632 ‐ 7.34 ‐ 605 ‐ 5.72 ‐

P48 Northern New Mexico (NM2)  ‐ 121 ‐ 0.12 ‐ 214 ‐ 0.18 ‐ 221 ‐ 0.22

P52 Silver Peak‐Control 55 kV  5 ‐ 0.15 ‐ 2 ‐ 0.06 ‐ 4 ‐ 0.09 ‐

P61 Lugo‐Victorville 500 kV Line  37 ‐ 1.18 ‐ 80 ‐ 0.45 ‐ 58 ‐ 0.24 ‐

P65 Pacific DC Intertie (PDCI)  ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ 0.81 ‐

P66 COI  1,148 ‐ 4.17 ‐ 1,446 ‐ 5.01 ‐ 1,675 ‐ 5.06 ‐

P73 North of John Day  8 ‐ 0.76 ‐ 4 ‐ 0.83 ‐ 16 ‐ 0.90 ‐

P75 Hemingway‐Summer Lake  ‐ 196 0.19 8.02 2 212 0.25 8.30 1 227 0.29 4.34

Page 55: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

55 | P a g e

No PSH  With FS PSH  With FS&AS PSH 

Interface 

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

Hours Congested (hrs) 

HoursCongested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back($/MW)

P76 Alturas Project  ‐ 826 0.15 4.03 ‐ 997 0.31 4.69 ‐ 1,211 0.40 5.58

P78 TOT 2B1  ‐ 5 ‐ 0.05 ‐ 3 ‐ 0.02 ‐ ‐ ‐ ‐

P79 TOT 2B2  17 2 1.13 0.01 14 ‐ 0.69 ‐ 20 ‐ 0.85 ‐

P80 Montana Southeast  213 5 4.01 0.01 227 4 3.75 0.01 187 4 1.56 0.01

Grand Total  43,889 4,692 2.22 0.46 45,220 4,763 2.11 0.46 48,538 5,272 2.27 0.32Table 4.1‐14 Comparison of WI Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the High‐wind Renewable Scenario in Year 2022  

Page 56: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

56 | P

4.2

In thiCaliftransmfor th

Thenbetwe

The pderegCAISclose

4

A cripricebiddifrom

The C2.2 “Opricemonimarkmark

Figure 

P a g e

2 Californi

is simulationfornia footprimission line

he base renew

n the Californeen Californ

purpose of thgulated markSO, the entirly interming

4.2.1 Powe

tical factor is for the gening price detthe simulati

4.2.1.1 En

CAISO 2012Overall Mars are close totoring. The

ket marginal ket clearing p

4‐8 CAISO Energ

ia Simulatio

n task, the Caint, the entirs at the bordwable scenar

nia grid is cania and the re

he Californiaket. Though re California gled with the

er Market Bi

in the powernerator energermination aions against

nergy Marke

2 annual marrket Competio the cost-baprice-cost mcost. The ne

price is lowe

gy Price‐cost ma

on Results

alifornia foore WI is simuder of Califorrio and the h

arved out froest of the WI

a simulation a few utilitifootprint is

e CAISO grid

idding Price

r market simugy and ancilladopted in ththe CAISO h

et Bidding Pr

rket report [3itiveness” ofased simulatmark-up is thegative pricer than the av

ark‐up (2009‐20

otprint is simulated to prornia with the

high-wind re

om the WI grI is frozen in

is to examinies, such as Smodeled sind.

es

ulation is to lary serviceshis study is thistorical ma

rices

3] is reviewef the report sions by the C

he differencee-cost mark-verage marke

012) 

mulated. Befoduce the poe rest of the enewable sce

rid. The pown the Califor

ne the PSHs SMUD, LADnce the grid o

determine ths. The approto benchmarkarket prices.

ed. The charshows that thCAISO depae of the mark-up indicateset marginal

fore simulatiwer flows foWI. The WI

enario.

wer flow excrnia simulati

impact to thDWP, etc., aof these utili

he generatoroach of the gk the region.

rt extracted fhe average eartment of mket clearing ps the averagecost.

ing the or all I is simulated

changes ons.

he are not part oities are

r bidding generator al prices

from sectionenergy markemarket

price and thee CAISO

d

of

n et

e

Page 57: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

57 | P a g e

Therefore, for the energy market simulation, the generator marginal cost price is used as the energy bidding price.

4.2.1.2 Ancillary Service Market Bidding Prices

The historical AS market clearing prices in year 2012 are analyzed. The analysis shows that the AS market clearing price is closely correlated with the energy market LMP that, in turn, is closely correlated with the regional load. The statistics and correlation of the CAISO NP15 LMP and AS clearing prices in year 2012 are shown in the following table.

Statistics of CAISO Historical NP15 LMP and AS Clearing Price in Year 2012 

     NP15 LMP 

AS Clearing Prices 

Non‐Spinning  Spinning 

Regulation Down  Regulation Up 

Mean  36.77  0.60 4.07 4.98 5.62

Max  113.15  66.36 66.36 74.75 66.36

Min  (10.45)  ‐ ‐ ‐ ‐

STDEV  10.49  2.45 4.80 4.13 5.28

STDEV %  29%  410% 118% 83% 94%Table 4.2‐1 Statistics of CAISO Historical NP15 LMP and AS Clearing Prices in Year 2012 

The following table shows strong correlations between the ancillary service prices and NP15 LMP.

Correlation of CAISO Historical NP15 LMP and AS Clearing Prices in Year 2012 

NP15 LMP 

AS Clearing Prices 

Non‐Spinning  Spinning 

Regulation Down 

Regulation Up 

NP15 LMP  0.93 0.34 0.28 (0.43)  0.24

AS Clearing 

Prices 

Non‐Spinning  0.71 0.49 (0.05)  0.43

Spinning  0.71 0.13  0.91

Regulation Down  0.69  0.17

Regulation Up  0.67Table 4.2‐2 Correlation of CAISO Historical NP15 LMP and AS Clearing Prices in Year 2012 

From the analysis, the following approach is adopted to mimic the generator AS bidding price in the simulations.

1. The hourly upward AS bidding prices follow the hourly California load profiles, and the hourly downward AS bidding prices follows the inverse of the hourly California load profiles;

2. The generators with a higher generation marginal cost will have lower AS bidding prices and the generators with a lower generation marginal cost will have higher AS bidding prices. The reason so doing is that the generators with higher generation marginal cost have lower energy profit margin, and the generators with lower generation marginal cost have higher energy profit margin.

3. The final hourly AS bidding price for a generator is the normalized hourly AS bidding price profiles times the AS bidding price scaling factor. The normalized hourly AS bidding price profiles is the normalized hourly California load profile

Page 58: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

58 | P a g e

for the upward AS, and the inverse of the normalized hourly California load profile for the downward AS.

4. The generator AS bidding price scaling factor has a higher value for higher quality reserves.

5. Hydro generators and PSHs have fast ramp capability, and are assumed to provide the AS before the thermal generators.

The AS bidding price scaling factors, proportional to the generator energy profit margin, by generator type and by AS type are shown in the following table.

AS Bidding Price Scaling Factor by Generator Type ($/MW) 

Generator Type  Non‐Spin  Spin  Flex Dn  Flex Up  Reg Dn  Reg Up 

CC  3  9 15 15 30  30

Coal  5  15 35 35 60  60

CT  2  6 10 10      

DR  2  6 10 10      

Hydro  1  3 5 5 10  10

IC  2  6 10 10      

PSH  1  3 5 5 10  10

STEAM  2  6 10 10      Table 4.2‐3 CA AS Bidding Price Scaling Factor by Generator Type 

The assumptions and settings for the California simulations are reiterated as follows.

1. DA forecasted load/wind/solar: 24 to 48 hours ahead 2. 24 hours SCUC/ED with hourly interval 3. Nodal network representation 4. Contingency, flexibility up/down, regulation up/down reserves modeled 5. Three cases, no PSH, with the existing PSH, with existing and new PSH, are

simulated 6. The simulations are performed for the base and high-wind renewable scenarios 7. For the high-wind renewable scenario, the simplified transmission expansion is

performed to deliver the renewable generations to the load buses 8. The California simulations are bid-based.

Since the exchange powers between California and the rest of WI are frozen in the simulations, the exchanges powers are not included in the following simulation results.

4.2.2 California System Production Costs

The production cost of three cases for year 2022: No PSHs, with the existing FS PSHs, and with the additional AS PSHs, are listed in the following two tables for the base renewable scenario and the high-wind renewable scenario.

Base Renewable 

Total Generation Energy 

PSH Generation Energy 

Production Cost 

Annual Cost Reduction 

Annual Cost Savings due to PSHs  

GWh  GWh  million $  million $  % Capacity MW 

$/kW‐year 

Page 59: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

59 | P a g e

No PSH  265,538 ‐ 5,078 ‐ ‐ ‐ ‐

With FS PSH  267,001 2,725 4,967 111 2.18% 2626 42.10

With FS&AS PSH  269,374 5,313 4,907 171 3.36% 4425 38.60

Table 4.2‐4 Comparison of CA Production Cost in Three Cases for the Base Renewable Scenario in Year 2022 

High‐Wind Renewable 

Total Generation Energy 

PSH Generation Energy 

Production Cost 

Annual Cost Reduction 

Annual Cost Savings due to PSHs  

GWh  GWh  million $  million $  % Capacity (MW) 

$/kw‐year 

No PSH  253,872  ‐ 4,120 ‐ ‐  ‐  ‐

With FS PSH  256,069  5,299 3,934 186 4.52%  2626  70.91

With FS&AS PSH  257,018  9,456 3,745 376 9.12%  4425  84.97

Table 4.2‐5 Comparison of CA Production Cost in Three Cases for the High‐Wind Renewable Scenario in Year 2022 

With the FS PSHs, the California system production cost is reduced by 2.18% and 4.52% for the base renewable scenario and the high-wind renewable scenario respectively. With the additional AS PSHs, the California system production cost is reduced further by 3.36% and 9.12% for the base renewable scenario and the high-wind renewable scenario respectively.

With the renewable generation increases to 33%, the production cost savings due to the PSHs operation increases. The PSHs are more valuable in the high renewable penetration level.

The comparisons of the generation by generator type for the base and high-wind renewable scenarios are shown in the following two charts.

In the base renewable scenario, both CC and CT generations are reduced as more PSHs are introduced into the system due to the fact that the PSHs generation replaces the CC and CT generation. However the Coal generation is slightly increased to provide the PSHs pumping energy. Also the renewable generation is increased as more PSHs are introduced into the system due to less renewable generation being curtailed.

Page 60: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

60 | P a g e

 

Figure 4‐9 Comparison of CA Generation in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 

In the high-wind renewable scenario, The CC, CT and Coal generations are reduced as more PSHs are introduced into the system due to the fact that the PSHs generation replaces the CC, CT and Coal generation. Also the renewable generation is increased as more PSHs are introduced into the system due to less renewable generation being curtailed.

 

Figure 4‐10 Comparison of CA Generation in Three Cases by Generator type for the High‐wind Renewable Scenario in Year 2022 

 ‐

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000GWh

Generation by Generator Type (GWh)‐Yearly for Base Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

 ‐ 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

 100,000

GWh

Generation by Generator Type (GWh)‐Yearly for High‐wind Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 61: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

61 | P a g e

The comparisons of the production cost in California by generator type for the base and high-wind renewable scenarios are shown in the following two charts.

In the base renewable scenario, the CC and CT production cost is reduced as more PSHs are introduced into the system. And the Coal production cost is increased slightly as more PSHs introduced into the system.

 

Figure 4‐11 Comparison of CA Generation Cost in Three Cases by Generator Type for the Base Renewable Scenario in Year 2022 

In the high-wind renewable scenario, the CC, CT and Coal production cost is reduced as more PSHs are introduced into the system.

 

 ‐

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

Million $

Total Generation Cost by Generator Type ($M)‐Yearly for Base Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

 ‐

 500

 1,000

 1,500

 2,000

 2,500

Million $

Total Generation Cost by Generator Type ($M)‐Yearly for High‐wind Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 62: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

62 | P a g e

Figure 4‐12 Comparison of CA Generation Cost in Three Cases by Generator Type for the High‐wind Renewable Scenario in Year 2022 

Due to the PSHs operations, the California renewable curtailments are reduced as shown in the following two tables for the base and high-wind renewable scenarios.

CA Renewable Curtailment in the Base Renewable Scenario 

      Renewable Curtailment Reduction 

Case  GWh  GWh  % 

No PSH  155 ‐ 0%

With FS PSH  46 108 70%

With FS&AS PSH  14 141 91%Table 4.2‐6 Comparison of CA Renewable Curtailment in the Base Renewable Scenario 

CA Renewable Curtailment in the High‐wind Renewable Scenario 

      Renewable Curtailment Reduction 

Case  GWh  GWh  % 

No PSH  618 ‐ 0%

With FS PSH  380 238 39%

With FS&AS PSH  275 343 55%Table 4.2‐7 Comparison of CA Renewable Curtailment in the High‐wind Renewable Scenario 

4.2.3 California System Reserves and Provision by PSHs

The system reserve requirements and provisions from the PSHs are compared in the three cases for the base and high-wind renewable scenarios in the following two tables.

Base Renewable 

Base ‐ No PSH  With FS PSH  With FS&AS PSH 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Non‐Spinning Reserve  8,505  ‐ 8,505 7,090 8,505  7,905

Spinning Reserve  8,505  ‐ 8,505 224 8,505  2,463

Flexibility Down  3,130  ‐ 3,130 47 3,130  1,098

Flexibility Up  3,130  ‐ 3,130 13 3,130  341

Regulation Down  3,810  ‐ 3,810 171 3,810  1,264

Regulation Up  3,839  ‐ 3,839 164 3,839  1,109Table 4.2‐8 Comparison of CA Reserve Requirements and Provisions by PSHs in Three Cases for the Base Renewable Scenario in Year 2022 

High‐wind Renewable 

Base ‐ No PSH  With FS PSH  With FS&AS PSH 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Non‐Spinning Reserve  8,505  ‐ 8,505 4,774 8,505  5,492

Spinning Reserve  8,505  ‐ 8,505 247 8,505  2,022

Page 63: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

63 | P a g e

Flexibility Down  4,804  ‐ 4,804 141 4,804  1,934

Flexibility Up  4,804  ‐ 4,804 26 4,804  200

Regulation Down  4,394  ‐ 4,394 377 4,394  1,761

Regulation Up  4,442  ‐ 4,442 144 4,442  1,201Table 4.2‐9 Comparison of CA Reserve Requirements and Provisions by PSHs in Three Cases for the High‐wind Renewable Scenario in Year 2022 

In both the base renewable scenario and the high-wind renewable scenario, the FS and AS PSHs provide around ¼ of the AS requirements for most AS. The reserve provisions from the adjustable speed PSHs increases substantially as opposed to the reserve provisions from the fixed speed PSHs. The reserve provision increase from the adjustable speed PSHs is due to

1. The larger dispatchable capacity in the generating mode. 2. The reserve provision in the pumping mode.

4.2.4 California System Emission Production

The system emission productions in the three cases for the base and high-wind renewable scenarios are listed in the following two tables.

Base Renewable  CO2  NOx  SO2  Emission Reduction (ton)

Emission Reduction (%) 

Ton  ton  ton  CO2  NOx  SO2  CO2  NOx  SO2

No PSH  65,429,529  53,681 6,006 ‐ ‐ ‐ 0.0%  0.0%  0.0%

With FS PSH  64,741,362  53,512 6,093 688,166 170 (87) 1.1%  0.3% ‐1.5%

With FS&AS PSH  64,625,964  53,568 6,165 803,565 113 (160) 1.2%  0.2% ‐2.7%Table 4.2‐10 Comparison of CA Emission Productions in Three Cases in year 2022 for the Base Renewable Scenario 

High‐wind Renewable  CO2  NOx  SO2  Emission Reduction (ton)

Emission Reduction (%) 

Ton  ton  ton  CO2  NOx  SO2  CO2  NOx  SO2

No PSH  51,515,736  44,936 5,334 ‐ ‐ ‐ 0.0%  0.0%  0.0%

With FS PSH  49,692,105  44,010 5,350 1,823,631 925 (16) 3.5%  2.1% ‐0.3%

With FS&AS PSH  47,904,187  43,177 5,427 3,611,549 1,759 (93) 7.0%  3.9% ‐1.7%Table 4.2‐11 Comparison of CA Emission Productions in Three Cases in Year 2022 for the High‐Wind Renewable Scenario 

In both the base renewable scenario and the high-wind renewable scenario, Emission CO2 and NOx are reduced and Emission SO2 is increased. However, the allover emission production is reduced from the base renewable scenario to the high-wind renewable scenario.

Page 64: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

64 | P a g e

4.2.5 California Thermal Generator Cycling

The number of starts and startup cost of the thermal generators in the three cases for the base and high-wind renewable scenarios are listed in the following two tables.

Base Renewable Total Number of Thermal Starts

Total Thermal Start Cost  Cost Reduction 

million $  million $  % 

No PSH  18,514 56 ‐ ‐

With FS PSH  14,646 46 10 17.35%

With FS&AS PSH  12,134 36 20 35.40%Table 4.2‐12 Comparison of Number of Starts and startup Costs of the CA Thermal Generators in Year 2022 for the Base Renewable Scenario 

High‐Wind Renewable Total Number of Thermal Starts

Total Thermal Start Cost  Cost Reduction 

million $  million $  % 

No PSH  17,862 54 ‐ ‐

With FS PSH  14,351 44 11 19.56%

With FS&AS PSH  11,864 35 20 36.42%Table 4.2‐13 Comparison of Number of Starts and startup Costs of the CA Thermal Generators in Year 2022 for the high‐wind Renewable Scenario 

In both the base and high-wind renewable scenarios, the number of starts and startup costs of the thermal generators are reduced substantially as more PSHs are introduced to the system.

The comparisons of the ramp up and down of thermal generators in the three cases for the base and high-wind renewable scenarios are listed in the following two tables.

Base Renewable 

Total Thermal Generator Ramp Up 

Total Thermal Generator Ramp Down Ramp Up Reduction 

Ramp Down Reduction 

GW  GW  GW  %  GW  % 

No PSH  4,273  6,603 ‐ ‐ ‐  ‐

With FS PSH  3,623  5,552 650 15.20% 1,052  15.93%

With FS&AS PSH  2,924  4,456 1,349 31.56% 2,147  32.51%Table 4.2‐14 Comparison of Thermal Generator Ramp Up and Down of the CA Thermal Generators in Year 2022 for the Base Renewable Scenario 

High‐Wind Renewable 

Total Thermal Generator Ramp Up 

Total Thermal Generator Ramp Down Ramp Up Reduction 

Ramp Down Reduction 

GW  GW  GW  %  GW  % 

Page 65: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

65 | P a g e

No PSH  3,609  5,681 ‐ ‐ ‐  ‐

With FS PSH  3,078  4,737 531 14.71% 945  16.63%

With FS&AS PSH  2,396  3,738 1,214 33.63% 1,943  34.20%Table 4.2‐15 Comparison of Thermal Generator Ramp Up and Down of the CA Thermal Generators in Year 2022 for the High‐Wind Renewable Scenario 

In both the base and high-wind renewable scenarios, the thermal generator ramp up and down are reduced substantially as more PSHs are introduced into the system.

4.2.6 California Regional LMPs

The comparisons of the average regional LMP for the selected regions for the base renewable scenario is shown in following chart. As more PSHs are introduced into the system, the average regional LMP is increased for all selected regions.

 

Figure 4‐13 Comparison of Regional LMP in Three Cases for the Selected Regions in CA in Year 2022 for the Base Renewable Scenario 

The comparisons of the average regional LMP for the selected regions for the high-wind renewable scenario is shown in following chart. For all selected regions, the regional price increases as more PSHs introduced into the system. However, overall, the regional LMP in the high-wind renewable scenario is reduced substantially as opposed to the base renewable scenario.

 ‐

 5.00

 10.00

 15.00

 20.00

 25.00

 30.00

 35.00

PG&E_VLY SCE SDGE

$/M

Wh

Average Regional Price‐Year 2022 for Base Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

Page 66: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

66 | P a g e

 

Figure 4‐14 Comparison of Regional LMP in Three Cases for the Selected Regions in CA in Year 2022 for the High‐wind Renewable Scenario 

By examining the hourly LMP in SCE in the week of July 17, 2022 from the simulation shown in the following diagram, it is observed that PSHs pump in the low LMP hours and drive the LMP up in these pumping hours. There are some price reductions in the high LMP hours due to the generation from PSHs. However the magnitude of the price increase in the low LMP hours is much higher than the magnitude of the price reduction in the high LMP hours. This observation explains the reason that the average regional LMP increases as more PSHs are introduced into the system.

Figure 4‐15 SCE LMP in Week of July 17, 2022, in Three Cases for the High‐wind Renewable Scenario 

4.2.7 California Generator Energy and Ancillary Services Revenue

The impacts of PSHs to the California generation and Ancillary Service Revenue for the base and high-wind renewable scenarios are shown in the following two tables.

 ‐

 5.00

 10.00

 15.00

 20.00

PG&E_VLY SCE SDGE

$/M

Wh

Average Regional Price‐Year 2022 for High‐wind Renewable Scenario

Base ‐ No PSH

With FS PSH

With FS&AS PSH

‐30

‐20

‐10

0

10

20

30

40

50

1

10

19

28

37

46

55

64

73

82

91

100

109

118

127

136

145

154

163

$/M

Wh

SCE LMP in Week of July 17, 2022 in High‐wind Renewable Scenario

No PSH

With FS PSH

With FS&AS PSH

Page 67: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

67 | P a g e

The power exchanges between California and the rest of WI are not included in the following tables. The ancillary service revenue may be higher than in the real world due to the introduction of the flexibility up and down reserves.

The simulations are performed for the entire California footprint. The revenues and profits include the non-CAISO utilities in California footprint. The forecasted generation costs and revenues should be treated an indicator how PSHs can impact a bid-based market.

It can be observed from the tables that

1. Overall, the CA system Net Operating Revenue (the energy and AS revenues less the generation cost) increases as more PSHs are introduced to the system in both the base and high-wind renewable scenarios.

2. The energy revenue increases as more PSHs are introduced into the system due to the fact that the LMP increase as more PSHs are introduced into the system as shown in the previous subsection.

3. The AS revenue does not show a pattern as more PSHS are introduced into the system.

4. The energy revenues are reduced in the high-wind renewable scenario as opposed to the base renewable scenario due to the fact that the LMPs are reduced in the high-wind renewable scenario.

5. The reserve revenues are increased in the high-wind renewable scenario as opposed to the base renewable scenario due to the fact the higher flexibility and regulation requirements in the high-wind renewable scenario yield higher AS prices.

6. In the base renewable scenario, the reserve revenue is less than 10% of the total market revenue (energy revenue plus reserve revenue). The reserve revenue increased to 25% of the total market revenue in the high-wind renewable scenario due to the fact of higher flexibility and regulation reserve requirements in the high-wind renewable scenario.

7. It should be pointed out that there are many generators that have negative profit, such as CCs, CTs, Steams, and even Nuclear in the high-wind renewable scenario cases. There are many hours that the over-generations and negative LMPs occur, especially in the high-wind renewable scenario. Also the LMPs do not reflect the generator startup cost and no-load cost. CAISO compensates these generators for the startup and no-load cost [3]. The profits in the following tables do not include this type of compensations.

Please note that, in Table 4.2-16 California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the Base Renewable Scenario in Year 2022and Table 4.2-17 California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the High-wind Renewable Scenario in Year 2022, the pumping cost is not subtracted from the PSH profit. However, the pumping cost is subtracted from the PSH profit in Table 4.2-18 to Table 4.2-21.

Page 68: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

68 | P a g e

California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the Base Renewable Scenario 

No PSH  With FS PSH  With FS&AS PSH 

Generator Type 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

CC  76,184 2,889,437 2,398,856 449,040 (41,541) 74,151 2,785,726 2,384,914 461,270 60,458 73,279 2,725,054 2,388,034 411,989 74,969

Coal  15,459 192,999 605,524 7,925 420,450 15,588 194,690 918,118 7,860 731,289 15,632 195,320 800,265 8,865 613,810

CoGen  8,134 246,545 237,723 ‐ (8,822) 8,185 247,069 247,283 ‐ 214 8,376 251,955 260,483 ‐ 8,528

CT  6,535 480,617 189,683 187,170 (103,764) 6,158 461,234 184,953 171,255 (105,026) 5,804 445,010 180,763 163,484 (100,763)

Hydro  38,682 1,048 1,077,887 102,187 1,179,026 38,702 964 1,125,789 98,138 1,222,963 38,710 901 1,184,057 53,831 1,236,988

Nuclear  37,271 524,535 1,015,093 ‐ 490,559 37,465 527,262 1,074,099 ‐ 546,836 37,638 529,702 1,134,143 ‐ 604,441

Other  7,398 4,314 200,984 1,123 197,792 7,397 4,163 211,870 740 208,447 7,378 3,240 222,362 313 219,435

RPS  67,161 258,062 1,729,433 ‐ 1,471,371 67,908 266,297 1,862,716 ‐ 1,596,420 68,537 277,600 1,999,881 ‐ 1,722,281

Steam  8,712 478,901 238,647 49,994 (190,260) 8,722 479,213 251,879 49,946 (177,389) 8,705 477,742 263,563 44,300 (169,880)

DR  2 1,054 1,054 17,412 17,412 1 330 330 13,873 13,873 0 178 178 1,890 1,890

FS PSH  ‐ 2,725 ‐ 102,302 18,205 120,507 1,551 ‐ 53,826 14,831 68,657

AS PSH  ‐ ‐ 3,763 ‐ 127,728 37,074 164,802

Total  265,538 5,077,510 7,694,883 814,849 3,432,222 267,001 4,966,947 8,364,252 821,287 4,218,593 269,374 4,906,701 8,615,283 736,576 4,445,158

Table 4.2‐16 California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the Base Renewable Scenario in Year 2022 

California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the High‐wind Renewable Scenario 

No PSH  With FS PSH  With FS&AS PSH 

Generator Type 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

CC  52,802 2,053,833 1,081,713 655,103 (317,017) 48,666 1,873,071 1,070,992 677,108 (124,970) 44,339 1,692,346 1,055,120 542,556 (94,670)

Coal  13,518 170,464 455,827 26,231 311,594 13,496 169,973 215,339 25,965 71,332 13,508 170,130 290,909 26,634 147,413

Page 69: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

69 | P a g e

California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the High‐wind Renewable Scenario 

No PSH  With FS PSH  With FS&AS PSH 

Generator Type 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

Generation 

(GWh) 

Total Generation Cost ($000) 

Energy Revenue ($000) 

Reserves Revenue ($000) 

Net Operatin

g Revenue($000) 

CoGen  6,715 207,040 115,144 ‐ (91,896) 6,636 203,757 121,289 ‐ (82,468) 6,599 200,964 127,397 ‐ (73,567)

CT  6,641 497,018 84,280 278,700 (134,039) 6,519 491,018 85,483 268,850 (136,685) 6,279 478,730 91,018 264,313 (123,399)

Hydro  37,805 2,755 517,907 179,687 694,839 37,983 2,799 555,414 200,595 753,210 38,228 3,359 626,609 86,044 709,294

Nuclear  36,164 508,959 439,944 ‐ (69,015) 36,338 511,405 490,219 ‐ (21,187) 36,718 516,753 542,632 ‐ 25,879

Other  7,242 4,730 89,704 2,524 87,498 7,257 4,895 99,163 2,117 96,386 7,258 3,893 109,737 1,624 107,468

RPS  84,324 193,104 796,763 ‐ 603,659 85,218 195,940 909,511 ‐ 713,572 86,058 201,095 1,061,961 ‐ 860,865

Steam  8,659 480,878 109,182 76,998 (294,698) 8,656 481,331 123,460 77,732 (280,139) 8,574 476,971 135,780 71,432 (269,759)

DR  3 1,655 1,655 27,858 27,858 0 30 30 25,083 25,083 1 384 384 9,990 9,990

FS PSH  5,299 ‐ 147,285 32,122 179,407 4,480 ‐ 98,534 27,166 125,700

AS PSH  4,976 ‐ 118,769 58,985 177,754

Total  253,872 4,120,437 3,692,120 1,247,100 818,783 256,069 3,934,218 3,818,185 1,309,572 1,193,539 257,018 3,744,626 4,258,850 1,088,744 1,602,968

Table 4.2‐17 California Generator Generation, Generation Cost, Energy Revenue and Ancillary Service Revenue for the High‐wind Renewable Scenario in Year 2022 

Page 70: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

70 | P a g e

The Net Operating Revenue of the fixed speed and adjustable speed PSHs for the base and high-wind renewable scenarios are listed in the following tables.

California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulation With FS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Energy 

Generation (GWh) 2,725 2,725 

Pump Energy (GWh) 3,840 3,840 

Generation Cost ($000) ‐ ‐ 

Pump Cost ($000) 65,768 65,768 

Energy Revenue ($000) 102,302 102,302 

Subtotal Energy Net Profile ($000) 36,533 36,533 

Non Spinning Reserve 

AS provision (GWh) 7,090 7,090 

AS Revenue ($000) 7,557 7,557 

Spinning Reserve 

AS provision (GWh) 224 224 

AS Revenue ($000) 1,218 1,218 

Flexible Down 

AS provision (GWh) 47 47 

AS Revenue ($000) 389 389 

Flexible Up 

AS provision (GWh) 13 13 

AS Revenue ($000) 43 43 

Regulation Down 

AS provision (GWh) 171 171 

AS Revenue ($000) 4,562 4,562 

Regulation Up 

AS provision (GWh) 164 164 

AS Revenue ($000) 4,436 4,436 

Total AS Provision (GWh)  7,709 7,709 

Subtotal AS Revenue ($000)  18,205 18,205 

Total Profit ($000)  54,739 54,739 

Capacity (MW)  2,626 2,626 

Annual Profit Rate ($/kW‐Year)  20.84 20.84 Table 4.2‐18 California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulations with FS PSHs 

California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulation With FS&AS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Energy 

Page 71: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

71 | P a g e

California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulation With FS&AS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Generation (GWh)  1,551  3,763  5,313 

Pump Energy (GWh)  2,180  4,676  6,856 

Generation Cost ($000)  ‐  ‐  ‐ 

Pump Cost ($000)  43,985  120,523  164,508 

Energy Revenue ($000)  53,826  127,728  181,554 

Subtotal Energy Net Profile($000)  9,841  7,205  17,046 

Non Spinning Reserve 

AS provision (GWh)  7,469  436  7,905 

AS Revenue ($000)  8,310  253  8,563 

Spinning Reserve 

AS provision (GWh)  126  2,337  2,463 

AS Revenue ($000)  769  7,819  8,588 

Flexible Down 

AS provision (GWh)  20  1,078  1,098 

AS Revenue ($000)  165  5,564  5,728 

Flexible Up 

AS provision (GWh)  19  322  341 

AS Revenue ($000)  74  657  731 

Regulation Down 

AS provision (GWh)  103  1,161  1,264 

AS Revenue ($000)  2,661  17,698  20,360 

Regulation Up 

AS provision (GWh)  104  1,005  1,109 

AS Revenue ($000)  2,852  5,083  7,935 

Total AS Provision (GWh)  7,841  6,339  14,180 

Subtotal AS Revenue ($000)  14,831  37,074  51,905 

Total Profit ($000)  24,671  44,279  68,951 

Capacity (MW)  2,626 1,799 4,425 

Annual Profit Rate ($/kW‐Year)  9.40 24.61 15.58 Table 4.2‐19 California PSH Net Operating Revenue for the Base Renewable Scenarios in Year 2022 from the Simulations with FS & AS PSHs 

California PSH Net Operating Revenue for the High‐Wind Renewable Scenarios in Year 2022 from the Simulation With FS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Energy 

Generation (GWh) 5,299 5,299 

Pump Energy (GWh) 7,501 7,501 

Generation Cost ($000) ‐ ‐ 

Page 72: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

72 | P a g e

California PSH Net Operating Revenue for the High‐Wind Renewable Scenarios in Year 2022 from the Simulation With FS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Pump Cost ($000) (13,229) (13,229) 

Energy Revenue ($000) 147,285 147,285 

Subtotal Energy Net Profile ($000) 160,514 160,514 

Non Spinning Reserve 

AS provision (GWh) 141 141 

AS Revenue ($000) 1,626 1,626 

Spinning Reserve 

AS provision (GWh) 26 26 

AS Revenue ($000) 80 80 

Flexible Down 

AS provision (GWh) 4,774 4,774 

AS Revenue ($000) 5,246 5,246 

Flexible Up 

AS provision (GWh) 377 377 

AS Revenue ($000) 19,511 19,511 

Regulation Down 

AS provision (GWh) 144 144 

AS Revenue ($000) 4,144 4,144 

Regulation Up 

AS provision (GWh) 247 247 

AS Revenue ($000) 1,515 1,515 

Total AS Provision (GWh)  5,709 5,709 

Subtotal AS Revenue ($000)  32,122 32,122 

Total Profit ($000)  192,636 192,636 

Capacity (MW)  2,626 2,626 

Annual Profit Rate ($/kW‐Year)  73.36 73.36 Table 4.2‐20 California PSH Net Operating Revenue for the High‐Wind Renewable Scenarios in Year 2022 from the Simulation with FS PSHs 

California PSH Net Operating Revenue for the High‐Wind Renewable Scenarios in Year 2022 from the Simulation With FS&AS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Energy 

Generation (GWh) 4,480 4,976 9,456 

Pump Energy (GWh) 6,338 6,183 12,521 

Generation Cost ($000) ‐ ‐ ‐ 

Pump Cost ($000) (6,028) 31,074 25,045 

Energy Revenue ($000) 98,534 118,769 217,302 

Subtotal Energy Net Profile ($000) 104,562 87,695 192,257 

Page 73: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

73 | P a g e

California PSH Net Operating Revenue for the High‐Wind Renewable Scenarios in Year 2022 from the Simulation With FS&AS PSHs 

Product  FS PSHs  AS PSHs  Grand Total 

Non Spinning Reserve 

AS provision (GWh) 139 1,795 1,934 

AS Revenue ($000) 1,695 13,239 14,934 

Spinning Reserve 

AS provision (GWh) 45 155 200 

AS Revenue ($000) 148 265 412 

Flexible Down 

AS provision (GWh) 5,359 133 5,492 

AS Revenue ($000) 6,125 59 6,184 

Flexible Up 

AS provision (GWh) 272 1,489 1,761 

AS Revenue ($000) 13,830 36,055 49,885 

Regulation Down 

AS provision (GWh) 137 1,064 1,201 

AS Revenue ($000) 3,868 4,660 8,528 

Regulation Up 

AS provision (GWh) 254 1,768 2,022 

AS Revenue ($000) 1,501 4,707 6,208 

Total AS Provision (GWh)  6,206 6,405 12,611 

Subtotal AS Revenue ($000)  27,166 58,985 86,151 

Total Profit ($000)  131,728 146,680 278,408 

Capacity (MW)  2,626 1,799 4,425 

Annual Profit Rate ($/kW‐Year)  50.16 81.53 62.92 Table 4.2‐21 California PSH Net Operating Revenue for the High‐Wind Renewable Scenarios in Year 2022 from the Simulation with FS&AS PSHs 

From the above tables the followings can be observed.

1. In the high-wind renewable scenario, the pumping energy cost is priced at the negative. This indicates that PSHs pumping using the curtailed hydro and renewable energy so that the PSHs help the renewable generation integration.

2. The adjustable speed PSHs have much higher reserve revenue due to the fact that AS PSHs can provision reserves in the pumping mode and the generation dispatchable capacity has wider range than the FS PSHs.

4.2.8 California Transmission Congestions

The annual transmission interface congestion hours and average congestion prices for the base renewable scenario are listed in Table 4.2-22 Comparison of CA Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the Base Renewable Scenario in Year 2022.

Page 74: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

74 | P a g e

The power flows in the interties between California and the rest of WI are modeled as fixed exchanges, and the congestion of those interties are not reported.

Comparing the case “With FS PSHs” and “With FS&AS PSHs” with the case “No PSHs”, the average CA transmission congestion price (in Green Columns) are reduced as more PSHs introduced into the system. Interface “P27 Intermountain Power Project DC Line” has the most congestion price reduction.

Page 75: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

75 | P a g e

    No PSH    With FS PSH    With FS&AS PSH 

Interfaces 

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

Hours Congested 

(hrs) 

Hours Congested Back (hrs) 

Shadow Price 

($/MW) 

Shadow Price Back 

($/MW)

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

P26 Northern‐Southern California 297 355 0.13 0.68 345 376 0.27 0.63 370 430 0.31 0.50P27 Intermountain Power Project 

DC Line 4,632 ‐ 87.40 ‐ 2,413 ‐ 9.57 ‐ 1,782 ‐ 5.35 ‐

P42 IID‐SCE 44 ‐ 0.09 ‐ 64 ‐ 0.13 ‐ 105 ‐ 0.21 ‐

P61 Lugo‐Victorville 500 kV Line 11 ‐ 0.02 ‐ 6 ‐ 0.01 ‐ 8 ‐ 0.02 ‐

Grand Total 4,984 355 3.51 0.03 2,828 376 0.40 0.03 2,265 430 0.24 0.02Table 4.2‐22 Comparison of CA Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the Base Renewable Scenario in Year 2022 

Page 76: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

76 | P a g e

4.2.8.1 Transmission Expansion for the High-wind Renewable Scenario

The transmission in the existing TEPPC 2022 network was not adequate to accommodate the High-wind renewable Scenario, so some transmission expansion assumptions had to be made. The transmission expansion assumptions were added to allow the simulations to deliver the renewable energy at the high renewable penetration level. Without the transmission expansion assumptions, the simulation would not have been able to generate results for the High-wind renewable scenario.

Given that this study is not a transmission expansion study, it is important to note that the transmission expansion methodology was simplistic. And the transmission expansion methodology did not include detailed economic or reliability analyses. Nor did it take into account issues such as rights of way, environmental concerns, policy constraints, or any other factor that might normally be considered in detailed transmission planning activities.

The same transmission expansion assumptions in the WI simulations for the high-wind renewable scenario are used for the California simulations for the high-wind renewable scenario.

The annual transmission interface congestion hours and average congestion prices for the high-wind renewable scenario are listed in the following table.

Comparing the case “With FS PSHs” and “With FS&AS PSHs” with the case “No PSHs”, the average CA transmission congestion price (in Green Columns) is reduced as both FS and AS PSHs are introduced into the system. Again, Interface “P27 Intermountain Power Project DC Line” has the most congestion price reduction.

Page 77: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

77 | P a g e

No PSH  With FS PSH  With FS&AS PSH 

Interface 

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

Hours Congested 

(hrs) 

Hours Congested Back (hrs) 

Shadow Price 

($/MW)

Shadow Price Back 

($/MW)

Hours Congested 

(hrs) 

Hours Congested Back (hrs)

Shadow Price 

($/MW) 

Shadow Price Back 

($/MW)

P15 Midway‐LosBanos  343 15 0.81 0.03 343 20 0.79 0.02 386 18 0.89 0.02

P26 Northern‐Southern California  656 133 0.93 0.22 644 133 1.46 0.20 587 134 1.38 0.23P27 Intermountain Power Project 

DC Line  3,216 ‐ 40.55 ‐ 1,752 ‐ 8.26 ‐ 3,864 ‐ 5.85 ‐

P41 Sylmar to SCE  ‐ ‐ ‐ ‐ ‐ 2 ‐ 0.01 ‐ 2 ‐ 0.02

P42 IID‐SCE  187 ‐ 0.43 ‐ 176 ‐ 0.32 ‐ 204 ‐ 0.35 ‐

P44 South of San Onofre  ‐ ‐ ‐ ‐ 1 ‐ 0.00 ‐ 2 ‐ 0.00 ‐

P61 Lugo‐Victorville 500 kV Line  83 1 1.95 ‐ 104 ‐ 3.07 ‐ 68 ‐ 0.82 ‐

Grand Total        4,485            149  1.79  0.01        3,020            155  0.56  0.01        5,111            154          0.37  0.01 Table 4.2‐23 Comparison of CA Transmission Interface Congestion Hours and Congestion Prices in Three Cases for the High‐wind Renewable Scenario in Year 2022    

Page 78: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

78 | P a g e

4.3 SMUD Simulation Results

In this simulation task, the SUMD footprint is simulated. Before simulating the SMUD footprint, the entire WI is simulated to produce the power flows in all transmission lines at the border of SMUD and the rest of the WI grid. The WI is simulated for the base renewable scenario and the high-wind renewable scenario.

Then the SMUD grid is carved out from the WI grid. The power exchanges between SMUD and the rest of the WI are frozen for the SMUD simulations. Since there is no serious transmission congestion in the SMUD footprint, the SMUD grid is modeled at a regional level, i.e., the SMUD grid is represented by a single node.

The purpose of the SMUD simulation is to examine the PSHs impact to the utility portfolio.

The assumptions and settings for the SMUD simulations are reiterated as follows.

1. DA forecasted load / wind / solar: 24 to 48 hours ahead 2. 24 hours SCUC / ED with hourly interval 3. Regional network representation 4. Contingency, Flexibility up / down, Regulation up / down reserves modeled 5. Since there is no existing PSHs in the SMUD footprint, two cases, no PSH and

with new Adjustable Speed PSH, namely Iowa Hill, are simulated 6. The simulations are performed for the base and high-wind renewable scenarios 7. The SMUD simulations are cost-based.

Since the exchange powers between SMUD and the rest of WI are frozen in the simulation, the exchanges powers are not included in the following simulation results.

4.3.1 SMUD System Production Costs

The production cost of two cases for year 2022: No PSHs and with the new AS PSHs, are listed in the following tables for both the base renewable scenario and the high-wind renewable scenario.

Base Renewable 

Total Generation Energy 

PSH Generation Energy 

Production Cost 

Annual Cost Reduction 

Annual Cost Savings due to PSHs  

GWh  GWh  million $  million $  % Capacity MW 

$/kW‐year 

No PSH  16,100 ‐ 269 ‐ ‐ ‐ ‐

With AS PSH  16,273 467 246 23 8.62% 400 58.04Table 4.3‐1 Comparison of SMUD Production Cost in Two Cases for the Base Renewable Scenario in Year 2022 

High‐Wind Renewable 

Total Generation Energy 

PSH Generation Energy 

Production Cost 

Annual Cost Reduction 

Annual Cost Savings due to PSHs  

GWh  GWh  million $  million $  % Capacity (MW) 

$/kw‐year 

No PSH  20,318  ‐ 308 ‐ ‐  ‐  ‐

With AS PSH  19,952  440 258 51 16.45%  400  126.83Table 4.3‐2 Comparison of SMUD Production Cost in Two Cases for the High‐Wind Renewable Scenario in Year 2022 

Page 79: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

79 | P a g e

The SMUD production cost is reduced by 8.62% and 16.45% for the base renewable scenario and the high-wind renewable scenario respectively.

With the renewable generation increases to 33%, the production cost savings due to the PSHs operation increases. The PSHs is more valuable in the high renewable penetration level.

The comparisons of the generation by generator type for the base and high-wind renewable scenarios are shown in the following two charts.

In the base renewable scenario, The CC and CT generation is reduced as the new AS PSHs are introduced into the system due to the fact that the PSH generation replaces the CC and CT generation. Also the renewable generation is increased as the new AS PSHs are introduced into the system due to less renewable generation being curtailed.

Figure 4‐16 Comparison of SMUD Generation of Two Cases by Generator Type for the Base Renewable Scenario in Year 2022 

In the high-wind renewable scenario, The CC and CT generation is reduced as the new AS PSHs are introduced into the system due to the fact that the PSH generation replaces the CC and CT generation. Also the renewable and hydro generation is increased as the new AS PSHs are introduced into the system due to less renewable and hydro generation being curtailed.

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

GWh

Generation by Generator Type (GWh)‐Yearly for Base Renewable Scenario

No PSH

With AS PSH

Page 80: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

80 | P a g e

Figure 4‐17 Comparison of SMUD Generation of Two Cases by Generator Type for the High‐wind Renewable Scenario in Year 2022 

The comparisons of the production cost in SMUD by generator type for the base and high-wind renewable scenarios are shown in the following two charts.

In both the base and high-wind renewable scenarios, all thermal generator production cost is reduced as the new AS PSHs are introduced into the system.

Figure 4‐18 Comparison of SMUD Generation Cost of Two Cases by Generator Type for the Base Renewable Scenario in Year 2022 

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

CC CT Hydro Other RPS CoGen PumpedStorage

Wind Solar

GWh

Generation by Generator Type (GWh)‐Yearly for High‐wind Renewable Scenario

No PSH

With AS PSH

 ‐

 50

 100

 150

 200

 250

Million $

Total Generation Cost by Generator Type ($M)‐Yearly for Base Renewable Scenario

No PSH

With AS PSH

Page 81: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

81 | P a g e

Figure 4‐19 Comparison of SMUD Generation Cost of Two Cases by Generator Type for the High‐wind Renewable Scenario in Year 2022 

There is no renewable curtailment in the base renewable scenario in the SMUD system. In the high-wind renewable scenario, the SMUD renewable curtailment is reduced from 19GWh in the case of PSHs to 1 GWh in the case with Iowa Hill as shown in the following table.

SMUD Renewable Curtailment in the High‐wind Renewable Scenario 

      Renewable Curtailment Reduction 

Case  GWh  GWh  % 

No PSH  19 ‐ 0%

With Iowa Hill  1 18 95%Table 4.3‐3 Comparison of SMUD Renewable Curtailment in the High‐wind Renewable Scenario 

4.3.2 SMUD System Reserves

The system reserve requirements and provisions from the PSH are compared in the two cases for the base and the high-wind renewable scenarios in the following two tables.

Base Renewable 

Base ‐ No PSH  With AS PSH 

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Non‐Spinning Reserve  493 ‐ 493 78 

Spinning Reserve  493 ‐ 493 21 

Flexibility Down  156 ‐ 156 46 

Flexibility Up  156 ‐ 156 6 

Regulation Down  238 ‐ 238 56 

Regulation Up  237 ‐ 237 8 Table 4.3‐4 Comparison of SMUD Reserve Requirements and Provisions by PSH in Two Cases for the Base Renewable Scenario in Year 2022 

High‐wind Renewable  Base ‐ No PSH  With AS PSH 

 ‐

 50

 100

 150

 200

 250

 300

CC CT Hydro Other RPS CoGen PumpedStorage

Wind Solar

Million $

Total Generation Cost by Generator Type ($M)‐Yearly for High‐wind Renewable Scenario

No PSH

With AS PSH

Page 82: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

82 | P a g e

Total Req. (GWh) 

PSH Provision (GWh) 

Total Req. (GWh) 

PSH Provision (GWh) 

Non‐Spinning Reserve  493 ‐ 493 87 

Spinning Reserve  493 ‐ 493 12 

Flexibility Down  601 ‐ 601 86 

Flexibility Up  601 ‐ 601 12 

Regulation Down  439 ‐ 439 90 

Regulation Up  467 ‐ 467 9 Table 4.3‐5 Comparison of SMUD Reserve Requirements and Provisions by PSH in Two Cases for the High‐wind Renewable Scenario in Year 2022 

4.3.3 SMUD System Emission Production

The system emission productions in the two cases for the base and high-wind renewable scenarios are listed in the following two tables.

Base Renewable 

CO2  NOx  SO2  Emission Reduction (ton)Emission Reduction 

(%) 

Ton  ton  ton  CO2  NOx  SO2  CO2  NOx  SO2 

No PSH  2,856,489  1,880 3 ‐ ‐ ‐ ‐  ‐  ‐

With AS PSH  2,683,737  1,777 1 172,752 103 2 6.0%  5.5% 69.3%Table 4.3‐6 Comparison of SMUD Emission Productions in Two Cases in Year 2022 for the Base Renewable Scenario 

High‐wind Renewable  CO2  NOx  SO2  Emission Reduction (ton)

Emission Reduction (%) 

Ton  ton  ton  CO2  NOx  SO2  CO2  NOx  SO2 

No PSH  3,299,928  2,168 3 ‐ ‐ ‐ ‐  ‐  ‐

With AS PSH  2,814,536  1,872 1 485,392 296 3 14.7% 13.7% 83.2%Table 4.3‐7 Comparison of SMUD Emission Productions in Two Cases in Year 2022 for the High‐Wind Renewable Scenario 

In both the base renewable scenario and the high-wind renewable scenario, all emission productions are reduced as the PSHs are introduced into the SMUD system.

4.3.4 SMUD Thermal Generator Cycling

The number of starts and startup cost of the thermal generators in the two cases for the base and high-wind renewable scenarios are listed in the following two tables.

Base Renewable 

Total Number of Thermal Starts

Total Thermal Start Cost  Cost Reduction 

million $  million $  % 

No PSH  1,812 5 ‐ ‐

With AS PSH  828 3 2 44.83%Table 4.3‐8 Comparison of Number of Starts and Startup Costs of the SMUD Thermal Generators in Year 2022 for the Base Renewable Scenario 

High‐Wind Renewable Total Number of  Total Thermal  Cost Reduction 

Page 83: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

83 | P a g e

Thermal Starts Start Cost 

million $  million $  % 

No PSH  2,159 5 ‐ ‐

With AS PSH  773 3 2 41.87%Table 4.3‐9 Comparison of Number of Starts and Startup Costs of the SMUD Thermal Generators in Year 2022 for the High‐wind Renewable Scenario 

In both the base and high-wind renewable scenarios, the number of starts and startup costs of the thermal generators are reduced substantially as the PSHs are introduced into the SMUD system.

The comparisons of the thermal generator ramp up and down in the two cases for the base and high-wind renewable scenarios are listed in the following two tables.

Base Renewable 

Total Thermal Generator Ramp Up 

Total Thermal Generator Ramp Down Ramp Up Reduction 

Ramp Down Reduction 

GW  GW  GW  %  GW  % 

No PSH  367  502 ‐ ‐ ‐  ‐

With AS PSH  231  305 136 37.03% 197  39.29%Table 4.3‐10 Comparison of Thermal Generator Ramp Up and Down of the SMUD Thermal Generators in Year 2022 for the Base Renewable Scenario 

High‐Wind Renewable 

Total Thermal Generator Ramp Up 

Total Thermal Generator Ramp Down Ramp Up Reduction 

Ramp Down Reduction 

GW  GW  GW  %  GW  % 

No PSH  369  489 ‐ ‐ ‐  ‐

With AS PSH  250  315 119 32.16% 174  35.59%Table 4.3‐11 Comparison of Thermal Generator Ramp Up and Down of the SMUD Thermal Generators in Year 2022 for the High‐wind Renewable Scenario 

In both the base and high-wind renewable scenarios, the thermal generator ramp up and down are reduced substantially as the PSHs are introduced into the SMUD system.

4.3.5 SMUD Regional LMPs

The comparison of the average SMUD LMP in the two cases for the base renewable scenario is shown in following chart. As the AS PSHs are introduced into the SMUD system, the average SMUD LMP is reduced.

Page 84: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

84 | P

Figure 

The crenewthe A

Figure 

4

Sincemode

P a g e

4‐20 Compariso

comparisonswable scenar

AS PSHs are

4‐21 Compariso

4.3.6 SMU

e the SMUDeled.

on of SMUD Reg

s of the averario is shown introduced i

on of SMUD Reg

UD Transmiss

is modeled

gional LMP in Tw

age SMUD Lin followinginto the syst

gional LMP in Tw

sion Conges

at the region

wo Cases in Year

LMP in the tg chart. Theem.

wo Cases in Year

stions

nal level, no

r 2022 for the Ba

two cases foe average SM

r 2022 for the H

transmissio

ase Renewable 

or the high-wMUD LMP in

igh‐wind Renew

on interfaces

Scenario 

wind ncreases as

wable Scenario

and lines arre

Page 85: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

85 | P a g e

5 Three-Stage DA-HA-RT Sequential Simulations

5.1 Intermittent Renewable Generation Variability and Uncertainty

The intermittent renewable generation variability and uncertainty places challenges to the power system planning and operation. One of the questions that the power industry needs to answer is: what is the impact of the sub-hourly renewable generation variable and uncertainty to the system operation?

The following four charts show the 5-minute solar and wind generation variability and uncertainty in the Southern California in the high-wind renewable generation scenario in a typical winter week and a typical summer week of year 2022. The source of the data is the WWSIS Phase 2 study by NREL.

Figure 5‐1 5‐minute Actual Solar Generation and Hourly DA / HA Forecasts in Southern California in a Typical Winter Week of Year 2022  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

82

163

244

325

406

487

568

649

730

811

892

973

1054

1135

1216

1297

1378

1459

1540

1621

1702

1783

1864

1945

MW

Southern California Solar RT Generation and DA/HA Forecasts in Week of January 16 of 2022

RT

HA

DA

Page 86: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

86 | P a g e

Figure 5‐2 5‐minute Actual Wind Generation and Hourly DA / HA Forecasts in Southern California in a Typical Winter Week of year 2022 

The maximum and minimum forecast errors in this winter week are listed in the following table.

Forecast Error(MW) in a Typical Winter Week 

  Solar Generation  Wind Generation 

RT‐HA  HA‐DA  RT‐HA  HA‐DA 

Max  3002  53  1524 3167

Min  ‐3220  ‐995  ‐2142 ‐1353

Table 5.1‐1 Max and Min Wind and Solar Forecast Errors in Southern California in a Typical Winter Week of year 2022 

0

1000

2000

3000

4000

5000

6000

7000

8000

185

169

253

337

421

505

589

673

757

841

925

1009

1093

1177

1261

1345

1429

1513

1597

1681

1765

1849

1933

MW

Southern California Wind RT Generation and DA/HA Forecasts in Week of January 16 of 2022

RT

HA

DA

Page 87: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

87 | P a g e

Figure 5‐3 5‐minute Actual Solar Generation and Hourly DA / HA Forecasts in Southern California in a Typical Summer Week of year 2022 

Figure 5‐4 5‐minute Actual Wind Generation and Hourly DA / HA Forecasts in Southern California in a Typical Summer Week of Year 2022 

The maximum and minimum forecast errors in a typical summer week are listed in the following table.

Forecast Error(MW) in a Typical Summer Week 

  Solar Generation  Wind Generation 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

185

169

253

337

421

505

589

673

757

841

925

1009

1093

1177

1261

1345

1429

1513

1597

1681

1765

1849

1933

MW

Southern California Solar RT Generation and DA/HA Forecasts in Week of July 17 of 2022

RT

HA

DA

0

1000

2000

3000

4000

5000

6000

185

169

253

337

421

505

589

673

757

841

925

1009

1093

1177

1261

1345

1429

1513

1597

1681

1765

1849

1933

MW

Southern California Wind RT Generation and DA/HA Forecasts in Week of July 17 of 2022

RT

HA

DA

Page 88: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

88 | P a g e

  RT‐HA  HA‐DA  RT‐HA  HA‐DA 

Max  2863  727  3969 991

Min  ‐2163  ‐1697  ‐2969 ‐3558

Table 5.1‐2 Max and Min Wind and Solar Forecast Error in Southern California in a Typical Summer Week of Year 2022 

The following two figures show the wind and solar forecast errors between RT and HA, and between HA and DA in the typical weeks of winter and summer of 2022. It is obvious that the wind and solar generation forecast error from HA to RT has higher frequency and magnitude (blue curves).

Figure 5‐5 Wind and Solar generation forecasted error from DA to HA and HA to RT in Southern California in a typical winter week of year 2022. 

‐4000

‐3000

‐2000

‐1000

0

1000

2000

3000

4000

185

169

253

337

421

505

589

673

757

841

925

1009

1093

1177

1261

1345

1429

1513

1597

1681

1765

1849

1933

MW

Southern California Wind and Solar Generation RT‐HA and HA‐DA Forecast Errors in Week of January 16 of 2022

RT‐HA

HA‐DA

‐4000

‐3000

‐2000

‐1000

0

1000

2000

3000

4000

185

169

253

337

421

505

589

673

757

841

925

1009

1093

1177

1261

1345

1429

1513

1597

1681

1765

1849

1933

MW

Southern California Wind and Solar Generation RT‐HA and HA‐DA Forecast Errors in Week of July 17 of 2022

RT‐HA

HA‐DA

Page 89: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

89 | P a g e

Figure 5‐6 Wind and Solar generation forecasted error from DA to HA and HA to RT in Southern California in a typical winter week of year 2022. 

To meet the sub-hourly renewable generation variability and uncertainty, the system needs to ramp generators more and/or to cycle the quick-startup generators more. This project task examines the hourly security constrained unit commitment and the sub-hourly security constrained dispatch to quantify the PSH impact to the system production cost and the sub-hourly generator ramping and cycling. The simulation approach adopted is the 3-stage DA-HA-RT sequential simulation as described in Section 3.2 3-Stage DA-HA-RT Sequential Simulations. The 3-stage simulations are performed for three cases: No PSH, With FS PSH and With FS&AS PSH in the base and high-wind renewable scenarios. The 3-stage simulations will cover the three study footprint areas: WI, California and SMUD.

In the following three subsections, the system production cost and the generator ramp and cycle from the DA, HA and RT simulations are presented. First the simulation solutions in the California footprint are presented.

5.2 3-stage DA-HA-RT Simulation Results for California

Before simulating the California system, the WI simulations are performed to produce the power flows for the interties between California and the rest of WI for both the base and high-wind renewable scenarios. Then the power flows for these intertie lines are frozen in the California DA, HA and RT simulations.

The assumptions and settings for the California 3-stage simulations are reiterated as follows.

1. Four typical weeks are simulated for the California footprint: the 3rd week of January, April, July and October;

2. DA simulations: a. DA forecasted load / wind / solar: 24 to 48 hours ahead b. 24-hours SCUC / ED with hourly interval c. Nodal network representation d. Contingency, Flexibility up / down, Regulation up / down reserves

modeled e. Generator maintenance outages are modeled

3. HA simulations: a. 4-HA forecasted load / wind / solar: 4 hours ahead b. 4-hours plus 20-hours look-ahead SCUC / ED with hourly interval c. Nodal network representation d. Contingency, Flexibility up / down, Regulation up / down reserves

modeled e. Unit Commitment patterns from the DA simulation are frozen for the

generators with the min down time greater than 4 hours f. Generator maintenance outages are modeled

4. RT 5-min simulations: a. 5-min actual load / wind / solar generation b. 12 5-minutes plus 23-hours look-ahead SCUC / ED with 5-minutes

interval

Page 90: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

90 | P a g e

c. Nodal network representation d. Contingency, regulation up / down reserves modeled. Flexibility up /

down reserves are deployed e. Unit Commitment patterns from the HA simulation are frozen for the

generators with the min down time greater than 1 hour. The CT generator with the min down time of 1 hour or less than 1 hour can be committed or de-committed

f. Generator maintenance outages (and forced outages) are modeled 5. Three cases, no PSH, with the existing FS PSHs, with existing FS PSHs and two

new adjustable speed PSHs (Iowa Hill and Eagle Mountain), are simulated; 6. The simulations are performed for the high-wind renewable scenario; 7. For the high-wind renewable scenario, the simplified transmission expansion is

performed to deliver renewable generation to load buses; 8. The California simulations are bid-based (For the energy and AS bidding price

determinations, please refer to subsection 4.2.1 Power Market Bidding Prices).

5.2.1 CA 3-stage Simulation Results for Four Typical Weeks in Year 2022

To focus on the PSH impact to the system operation and the difference between the 5-min SCUC/ED and the hourly SCUC/ED, the results of the 3-stage DA-HA-RT simulations with only the generator maintenance outages are examined first. These simulations are performed for the four typical weeks and the high-wind renewable scenario.

The California system cost is presented in the following chart. In this chart, the production costs are labeled by “case name” and “simulation stage”. For example, the production cost for the case of no PSH from the DA simulation is labeled as “No PSH DA”.

From the following chart we can have the following observations.

1. In general, the production cost from the HA simulations (the red columns) is higher than that from the DA simulations (the blue columns), and the production cost from the RT simulations (the green columns) is higher than that from the DA and HA simulations. The average production cost over four weeks from the RT simulations (the green columns) is 6% higher than that from the DA simulations (the blue columns). The higher production cost in the RT simulations is due to more thermal generator ramping and more quick-startup CT commitment to meet the sub-hourly load and renewable generation variability and uncertainty.

2. The production costs from the DA-HA-RT simulations are reduced as PSHs are introduction to the system.

a. With the fixed speed PSHs, the average production cost from the RT simulations over four weeks (the solid green columns) is reduced by 4% as opposed to that from the RT simulations without PSHs (the dotted green columns).

b. With the additional adjustable speed PSHs, the average production cost from the RT simulations over four weeks (the tilted strip green columns) is reduced by 6% as opposed to that from the RT simulation without PSHs (the dotted green columns).

Page 91: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

91 | P a g e

Figure 5‐7 California Production Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 70,345 62,365 113,498 74,921

No PSH HA 73,183 66,020 121,994 76,456

No PSH RT 72,255 67,653 124,247 76,832

FS PSH DA 65,730 61,555 112,887 70,960

FS PSH HA 68,099 65,319 121,098 71,728

FS PSH RT 67,910 66,104 122,881 71,920

FS&AS PSH DA 64,901 56,624 112,063 69,672

FS&AS PSH HA 66,715 60,374 120,478 71,041

FS&AS PSH RT 66,300 62,263 122,150 70,953

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

 110,000

 120,000

 130,000

$000

California Production Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance Outages in 

the RT Simulations)

Page 92: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

92 | P a g e

The startup costs from the 3-stage simulations for the three cases and four typical weeks with only maintenance outages in the DA, HA and RT simulations are presented in the following chart.

The followings can be observed from the chart.

1. The start-up cost from the RT simulations (the green columns) is higher than that from the DA and HA simulations (the blue and red columns) due to the additional CT commitment in the RT simulations to meet the sub-hourly load and renewable generation variability and uncertainty.

2. Comparing the startup costs between the RT simulations and the DA simulations, the followings are observed.

a. Without PSHs, the average startup cost from the RT simulations over four weeks (the dotted green columns) is 36% higher than that from the DA simulations (the dotted blue columns).

b. With the fixed speed PSHs, the average startup cost from the RT simulations over four weeks (the solid green columns) is 18.9% higher than that from the DA simulations (the solid blue columns).

c. With the fixed speed and adjustable speed PSHs, the average startup cost from the RT simulations over four weeks (the tilted strip green columns) is 21.2% higher than that from the DA simulations (the titled strip blue columns).

3. Comparing the startup costs from the RT simulations without and with PSHs, the followings are observed.

a. With the fixed speed PSHs, the average startup cost from the RT simulation over four weeks (the solid green columns) is reduced by 31% as opposed to the RT simulations without PSHs (the dotted green columns).

b. With the additional adjustable speed PSHs, the average startup cost from the RT simulation over four weeks (the tilted strip green columns) is reduced by 47% as opposed to the RT simulations without PSHs (the dotted green columns).

These observations indicate that the PSHs reduce the additional CT commitment and the associated startup cost.

Page 93: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

93 | P a g e

Figure 5‐8 California Startup Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 1,032 821 1,595 990

No PSH HA 1,138 954 1,750 1,024

No PSH RT 1,468 1,267 2,103 1,206

FS PSH DA 595 753 1,344 799

FS PSH HA 667 781 1,468 686

FS PSH RT 876 969 1,536 771

FS&AS PSH DA 439 489 1,157 559

FS&AS PSH HA 464 578 1,313 541

FS&AS PSH RT 544 737 1,341 582

 ‐

 500

 1,000

 1,500

 2,000

 2,500

$000

California Start & Shutdown Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance 

Outages in the RT Simulations)

Page 94: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

94 | P a g e

The thermal generator ramp up and down from the 3-stage simulations for the three cases and four typical weeks with only maintenance outages in the DA, HA and RT simulation are presented in the following two charts.

The followings can be observed from the two charts.

1. The thermal generator ramp up and down (MW) from the RT simulations (the green columns) is substantially higher than the DA and HA simulations (the blue and red columns) due to the thermal generator ramp to meet the sub-hourly load and renewable generation variability and uncertainty.

2. Comparing the ramp up and down between the RT simulations and DA simulations, the followings are observed.

a. Without PSHs, the average thermal generator ramp up and down from the RT simulations over four weeks (the dotted green columns) is 597,120 (MW) and 663,359 (MW) higher than that from the DA simulations (the dotted blue columns) respectively.

b. With the fixed speed PSHs, the average thermal generator ramp up and down from the RT simulations over four weeks (the solid green columns) is 508,451 (MW) and 532,650 (MW) higher than that from the DA simulations (the solid blue columns) respectively.

c. With the additional adjustable speed PSHs, the average thermal generator ramp up and down (MW) from the RT simulations over four weeks (the tilted strip green columns) is 391,860 (MW) and 412,259 (MW) higher than that from the DA simulations (the tilted blue columns) respectively.

3. Comparing the thermal generator ramp up and down from the RT simulations without and with PSHs, the followings are observed.

a. With the fixed speed PSHs, the average thermal generator ramp up and down in MW from the RT simulations over four weeks (the solid green columns) is reduced by 17% and 20% as opposed to the RT simulations without PSHs (the dotted green columns) respectively.

b. With the additional adjustable speed PSHs, the average thermal generator ramp up and down in MW from the RT simulations over four weeks (the titled strip green columns) is reduced by 36% and 38% as opposed to the RT simulations without PSHs (the dotted green columns) respectively.

These observations indicate that the PSHs reduce the thermal generator ramp substantially.

Page 95: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

95 | P a g e

Figure 5‐9  California Thermal Generator Ramp Up (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 90,243 73,114 103,422 98,910

No PSH HA 97,857 84,188 108,668 98,186

No PSH RT 231,484 212,432 288,633 230,260

FS PSH DA 56,852 62,980 92,600 79,716

FS PSH HA 74,210 75,666 86,781 84,791

FS PSH RT 190,215 178,966 221,568 209,850

FS&AS PSH DA 44,186 47,275 78,141 58,612

FS&AS PSH HA 53,161 60,795 81,030 72,222

FS&AS PSH RT 144,449 135,476 177,903 162,247

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

MW

California Thermal Ramp Up (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance 

Outages in the RT Simulations)

Page 96: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

96 | P a g e

Figure 5‐10 California Thermal Generator Ramp Down (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 126,251 105,086 162,019 139,545

No PSH HA 136,165 123,375 170,400 148,735

No PSH RT 278,692 262,414 365,607 289,547

FS PSH DA 78,908 92,754 137,761 112,699

FS PSH HA 98,170 108,153 136,473 117,426

FS PSH RT 219,470 215,182 274,207 245,913

FS&AS PSH DA 62,994 65,165 119,140 82,934

FS&AS PSH HA 71,026 82,397 125,830 99,613

FS&AS PSH RT 164,784 161,190 224,567 191,951

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

MW

California Thermal Ramp Down (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario 

(Maintenance Outages in the RT Simulations)

Page 97: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

97 | P a g e

In the real world system operations, the unexpected generator forced outages occur at real time. To closely mimic the system operations, the generator maintenance outages are modeled in the DA and HA simulations; the generator maintenance and forced outage are modeled in the RT simulations. The production costs, startup cost, and thermal generator ramp up and down from the 3-stage DA-HA-RT simulations with the forced outages modeled in the RT simulations for the four typical weeks and the high-wind renewable scenario are presented in following four charts.

When the forced outages are modeled in the RT simulations, the followings can be observed.

1. The average production cost from the RT simulations (the green columns) over four typical weeks is increased further by additional 7.3%, 5.6% and 5.4% as opposed to the DA simulations in the three cases: No PSH, with fixed speed PSHs, and with fixed and adjustable speed PSHs (the blue columns) respectively.

2. The average startup cost from the RT simulations (the green columns) over four typical weeks is increased further by additional 25.2%, 29.7% and 36.9% as opposed to the DA simulations in the three cases: No PSH, with fixed speed PSHs, and with fixed and adjustable speed PSHs (the blue columns) respectively. The additional startup costs include the startup costs from the generators whose unit commitment frozen in the RT simulation due to the forced outages.

3. However, the thermal generator ramp up and down in MW does not change substantially as opposed to that without the forced outages modeled in the RT simulations.

Page 98: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

98 | P a g e

Figure 5‐11 California Production Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 70,345 62,365 113,498 74,921

No PSH HA 73,183 66,020 121,994 76,456

No PSH RT 73,025 66,910 146,355 78,183

FS PSH DA 65,730 61,555 112,887 70,960

FS PSH HA 68,099 65,319 121,098 71,728

FS PSH RT 69,166 65,690 136,580 74,787

FS&AS PSH DA 64,901 56,624 112,063 69,672

FS&AS PSH HA 66,715 60,374 120,478 71,041

FS&AS PSH RT 67,950 61,806 134,365 73,865

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

$000

California Production Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance & Forced 

Outages in the RT Simulations)

Page 99: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

99 | P a g e

 

Figure 5‐12 California Startup Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 1,032 821 1,595 990

No PSH HA 1,138 954 1,750 1,024

No PSH RT 1,690 1,320 2,580 1,575

FS PSH DA 595 753 1,344 799

FS PSH HA 667 781 1,468 686

FS PSH RT 1,104 1,027 1,973 1,085

FS&AS PSH DA 439 489 1,157 559

FS&AS PSH HA 464 578 1,313 541

FS&AS PSH RT 695 819 1,796 870

 ‐

 500

 1,000

 1,500

 2,000

 2,500

 3,000

$000

California Start & Shutdown Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance & 

Forced Outages in the RT Simulations)

Page 100: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

100 | P a g e

Figure 5‐13 California Thermal Generator Ramp Up (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 90,243 73,114 103,422 98,910

No PSH HA 97,857 84,188 108,668 98,186

No PSH RT 190,172 183,622 279,121 223,804

FS PSH DA 56,852 62,980 92,600 79,716

FS PSH HA 74,210 75,666 86,781 84,791

FS PSH RT 180,138 173,451 238,585 198,983

FS&AS PSH DA 44,186 47,275 78,141 58,612

FS&AS PSH HA 53,161 60,795 81,030 72,222

FS&AS PSH RT 141,633 123,405 182,166 139,780

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

MW

California Thermal Ramp Up (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance Forced 

Outages in the RT Simulations)

Page 101: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

101 | P a g e

Figure 5‐14 California Thermal Generator Ramp Down (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 126,251 105,086 162,019 139,545

No PSH HA 136,165 123,375 170,400 148,735

No PSH RT 242,776 235,879 374,331 294,266

FS PSH DA 78,908 92,754 137,761 112,699

FS PSH HA 98,170 108,153 136,473 117,426

FS PSH RT 212,500 212,259 306,593 242,682

FS&AS PSH DA 62,994 65,165 119,140 82,934

FS&AS PSH HA 71,026 82,397 125,830 99,613

FS&AS PSH RT 163,926 152,739 243,329 176,124

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

MW

California Thermal Ramp Down (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance & 

Forced Outages in the RT Simulations)

Page 102: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

102 | P a g e

5.3 3-stage DA-HA-RT Simulation Results for WI

The assumptions and settings for the WI 3-stage simulations are reiterated as follows.

1. Four typical weeks are simulated: the 3rd week of January, April, July and October in year 2022;

2. DA simulations: a. DA forecasted load / wind / solar: 24 to 48 hours ahead b. 24-hours SCUC / ED with hourly interval c. Nodal network representation d. Contingency, Flexibility up / down, Regulation up / down reserves

modeled e. Generator maintenance outages are modeled

3. HA simulations: a. 4-HA forecasted load / wind / solar: 4 hours ahead b. 4-hours plus 20-hours look-ahead SCUC / ED with hourly interval c. Nodal network representation d. Contingency, Flexibility up / down, Regulation up / down reserves

modeled e. Unit Commitment patterns from the DA simulation are frozen for the

generators with the min down time greater than 4 hours f. Generator maintenance outages are modeled

4. RT 5-min simulations: a. 5-min actual load / wind / solar generation b. 12 5-minutes plus 23-hours look-ahead SCUC / ED with 5-minutes

interval c. Nodal network representation d. Contingency, Regulation up / down reserves modeled. Flexibility up /

down reserve are deployed e. Unit Commitment patterns from the HA simulation are frozen for the

generators with the min down time greater than 1 hour. The CT generator with the min down time of 1 hour or less than 1 hour can be committed or de-committed

f. Generator maintenance and forced outages are modeled 5. Three cases, no PSH, with the existing FS PSHs, with the existing FS PSHS and

three proposed adjustable speed PSHs (Swan Lake, Iowa Hill and Eagle Mountain), are simulated;

6. The simulations are performed for the high-wind renewable scenarios; 7. For the high-wind renewable scenario, the simplified transmission expansion is

performed to deliver the renewable generations to the load buses; 8. The WI simulations are cost-based.

5.3.1 WI 3-stage Simulation Results for Four Typical Weeks in Year 2022

In the following simulations, the generator maintenance outages are modeled in the DA and HA simulations, and the generator maintenance and forced outages are modeled in the RT simulations.

Page 103: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

103 | P a g e

The WI production cost ($000) from 3-stage simulations for three cases and four typical weeks in year 2022 in the high-wind renewable scenario is listed in the following chart.

The followings can be observed from the chart.

1. In general, the production cost from the HA simulations (the red columns) is higher than that from the DA simulations (the blue columns), and the production cost from the RT simulations (the green columns) is higher than that from the DA and HA simulations. The average production cost over four weeks from the RT simulations (the green columns) is about 5% higher than that from the DA simulations (the blue columns). The higher production cost from the RT simulations indicates that the generators ramp more and the quick-startup CT generators are committed more to meet the sub-hourly load and renewable generation variability and uncertainty.

2. The production costs from the DA-HA-RT simulations are reduced as PSHs are introduction to the system.

a. With the fixed speed PSHs, the average production cost from the RT simulations over four weeks (the solid green columns) is reduced by 2% as opposed to that from the RT simulations without PSHs (the dotted green columns).

b. With the additional adjustable speed PSHs, the average production cost from the RT simulations over four weeks (the tilted strip green columns) is reduced by 4% as opposed to that from the RT simulation without PSHs (the dotted green columns).

Page 104: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

104 | P a g e

 

Figure 5‐15 WI Production Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 228,695 214,661 313,533 229,191

No PSH HA 233,654 216,952 331,003 230,707

No PSH RT 225,001 215,732 368,063 228,507

FS PSH DA 222,854 209,927 311,589 225,023

FS PSH HA 226,743 212,886 329,238 225,451

FS PSH RT 219,813 212,271 360,280 224,063

FS&AS PSH DA 219,878 202,987 307,278 222,105

FS&AS PSH HA 218,699 207,623 325,511 222,560

FS&AS PSH RT 213,990 208,154 355,829 222,013

 20,000

 70,000

 120,000

 170,000

 220,000

 270,000

 320,000

 370,000

 420,000

$000

WI Production Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and Forced 

Outages in the RT Simulations)

Page 105: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

105 | P a g e

The WI startup costs from the 3-stage simulations for the three cases and four typical weeks are presented in the following chart.

The followings can be observed from the chart.

1. The start-up cost from the RT simulations (the green columns) is higher than that from the DA and HA simulations (the blue and red columns) due to

a. The additional CT commitment in the RT simulations to meet the load and renewable generation variability and uncertainty;

b. The additional start up because of the forced outages in the RT simulations from the generators whose unit commitments are frozen.

2. Comparing the startup costs between the RT simulations and DA simulations, the followings are observed.

a. Without PSHs, the average startup cost from the RT simulations over four weeks (the dotted green columns) is 50% higher than that from the DA simulations (the dotted blue columns).

b. With the fixed speed PSHs, the average startup cost from the RT simulations over four weeks (the solid green columns) is 41.9% higher than that from the DA simulations (the solid blue columns).

c. With the additional adjustable speed PSHs, the average startup cost from the RT simulations over four weeks (the tilted strip green columns) is 43.8% higher than that from the DA simulations (the tilted strip blue columns).

3. Comparing the startup costs between the RT simulations without and with PSHs, the followings are observed.

a. With the fixed speed PSHs, the average startup cost from the RT simulation over four weeks (the solid green columns) is reduced by 11% as opposed to the RT simulations without PSHs (the dotted green columns).

b. With the additional adjustable speed PSHs, the average startup cost from the RT simulation over four weeks (the tilted strip green columns) is reduced by 18% as opposed to the RT simulations without PSHs (the dotted green columns).

These observations indicate that the PSHs reduce the additional CT commitment and the associated startup cost.

Page 106: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

106 | P a g e

Figure 5‐16 WI Startup Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 2,309 3,096 4,904 3,546

No PSH HA 2,429 3,049 4,711 3,438

No PSH RT 3,938 4,516 6,949 5,387

FS PSH DA 2,198 2,999 4,440 3,373

FS PSH HA 2,399 3,108 4,308 3,207

FS PSH RT 3,558 4,263 5,715 4,924

FS&AS PSH DA 2,221 2,716 3,836 3,122

FS&AS PSH HA 2,362 2,731 3,851 3,124

FS&AS PSH RT 3,429 3,815 5,262 4,603

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

$000

WI Start & Shutdown Cost ($000) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and 

Forced Outages in the RT Simulations)

Page 107: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

107 | P a g e

The WI thermal generator ramp up and down in MW from the 3-stage simulations for the three cases and four typical weeks are presented in the following two charts.

The followings can be observed form the two charts.

1. The thermal generator ramp up and down (MW) from the RT simulations (the green columns) is substantially higher than the DA and HA simulations (the blue and red columns) due to the thermal generator ramp to meet the load and renewable generation variability and uncertainty.

2. Comparing the thermal generator ramp up and down in MW between the RT simulations and DA simulations, the followings are observed.

a. Without PSHs, the average thermal generator ramp up and down from the RT simulations over four weeks (the dotted green columns) is 979,290 (MW) and 1,129,793 (MW) higher than that from the DA simulations (the dotted blue columns) respectively.

b. With the fixed speed PSHs, the average thermal generator ramp up and down (MW) from the RT simulations over four weeks (the solid green columns) is 946,998 (MW) and 1,051,968 (MW) higher than that from the DA simulations (the solid blue columns) respectively.

c. With the additional adjustable speed PSHs, the average thermal generator ramp up and down (MW) from the RT simulations over four weeks (the tilted green columns) is 767,880 (MW) and 850,045 (MW) higher than that from the DA simulations (the titled blue columns) respectively.

3. Comparing the thermal generator ramp up and down in MW between the RT simulations without and with PSHs, the followings are observed.

a. With the fixed speed PSHs, the average thermal generator ramp up and down in MW from the RT simulations over four weeks (the solid green columns) is reduced by 5% and 8% as opposed to the RT simulations without PSHs (the dotted green columns) respectively.

b. With the additional adjustable speed PSHs, the average thermal generator ramp up and down in MW from the RT simulations over four weeks (the tilted strip green columns) is reduced by 23% and 25% as opposed to the RT simulations without PSHs (the dotted green columns) respectively.

These observations indicate that the PSHs, specially the adjustable speed PSHs, reduce the thermal generator ramp substantially.

Page 108: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

108 | P a g e

Figure 5‐17 WI Thermal Generator Ramp Up (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 165,526 185,239 278,785 216,093

No PSH HA 182,007 177,998 237,843 212,766

No PSH RT 331,426 390,611 647,133 455,762

FS PSH DA 145,704 168,637 266,402 197,938

FS PSH HA 157,300 162,739 221,009 202,610

FS PSH RT 332,571 382,242 548,575 462,291

FS&AS PSH DA 107,822 136,537 215,443 172,903

FS&AS PSH HA 128,817 137,314 196,595 185,905

FS&AS PSH RT 290,773 285,918 445,140 378,754

 ‐

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

MW

WI Thermal Ramp Up (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and Forced 

Outages in the RT Simulations)

Page 109: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

109 | P a g e

 

Figure 5‐18 WI Thermal Generator Ramp Down (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 247,543 266,399 413,835 308,090

No PSH HA 265,926 260,447 358,439 305,085

No PSH RT 438,213 504,762 834,943 587,742

FS PSH DA 219,455 238,935 382,624 277,453

FS PSH HA 236,387 232,198 329,386 284,025

FS PSH RT 433,287 474,351 691,397 571,401

FS&AS PSH DA 171,946 197,419 315,295 242,889

FS&AS PSH HA 188,335 198,574 291,804 254,916

FS&AS PSH RT 371,701 365,393 573,253 467,245

 ‐

 100,000

 200,000

 300,000

 400,000

 500,000

 600,000

 700,000

 800,000

 900,000

MW

WI Thermal Ramp Down (MW) from 3‐stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance adn Forced 

Outages in the RT Simulations)

Page 110: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

110 | P a g e

5.4 3-stage DA-HA-RT Simulation Results for SMUD

Before simulating SMUD, the WI simulations are performed to produce the power exchanges between the SMUD footprint and the rest of WI for both the base and high-wind renewable scenarios. Then the power exchanges are frozen in the SMUD DA, HA and RT simulations.

The assumptions and settings for the SMUD 3-stage simulations are reiterated as follows.

1. Four typical weeks are simulated for the SMUD footprint: the 3rd week of January, April, July and October in year 2022.

2. DA simulations: a. DA forecasted load / wind / solar: 24 to 48 hours ahead b. 24-hours SCUC / ED with hourly interval c. Regional network representation d. Contingency, Flexibility up / down, Regulation up / down reserves

modeled e. Generator maintenance outages are modeled

3. HA simulations: a. 4-HA forecasted load / wind / solar: 4 hours ahead b. 4-hours plus 20-hours look-ahead SCUC / ED with hourly interval c. Regional network representation d. Contingency, Flexibility up / down, Regulation up / down reserves

modeled e. Unit Commitment patterns from the DA simulation are frozen for the

generators with the min down time greater than 4 hours f. Generator maintenance outages are modeled

4. RT 5-min simulations: a. 5-min actual load / wind / solar generation b. 12 5-minutes plus 23-hours look-ahead SCUC / ED with 5-minutes

interval c. Regional network representation d. Contingency, Regulation up / down reserves modeled. Flexibility up /

down reserve are deployed e. Unit Commitment patterns from the HA simulation are frozen for the

generators with the min down time greater than 1 hour. The CT generator with the min down time of 1 hour or less than 1 hour can be committed or de-committed

f. Generator maintenance and forced outages are modeled 5. Two cases, no PSH, and with the new Adjustable Speed PSHs (Iowa Hill), are

simulated; 6. The simulations are performed for the high-wind renewable scenarios; 7. The SMUD simulations are cost-based.

5.4.1 SMUD 3-stage Simulation Results for Four Typical Weeks in Year 2022

The SMUD production cost ($000) from 3-stage simulations for two cases and four typical weeks in year 2022 in the high-wind renewable scenario is listed in the following chart.

Page 111: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

111 | P a g e

The followings can be observed from the chart.

1. In general, the production cost from the HA simulations (the red columns) is higher than that from the DA simulations (the blue columns), and the production cost from the RT simulations (the green columns) is higher than that from the DA and HA simulations.

a. Without the PSHs, the average production cost over four weeks from the RT simulations (the dotted green columns) is about 10.5% higher than that from the DA simulations (the dotted blue columns).

b. With the adjustable speed PSHs (Iowa Hill), the average production cost over four weeks from the RT simulations (the tilted strip green columns) is about 40% higher than that from the DA simulations (the tilted strip blue columns).

2. The production costs from the DA-HA-RT simulations are reduced as PSHs are introduction to the system.

3. With the adjustable speed PSHs (Iowa Hill), the average production cost from the RT simulations over four weeks (the tilted strip green columns) is reduced by 14.3% as opposed to that from the RT simulation without PSHs (the dotted green columns).

Page 112: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

112 | P a g e

Figure 5‐19 SMUD Production Cost ($000) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 4,389 2,617 4,802 2,253

No PSH HA 4,343 2,716 6,673 2,390

No PSH RT 4,245 2,562 6,334 2,390

FS&AS PSH DA 3,055 1,481 3,448 1,523

FS&AS PSH HA 3,022 1,190 5,277 1,644

FS&AS PSH RT 3,748 2,369 5,258 1,934

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

$000

SMUD Production Cost ($000) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and 

Forced Outages in the RT Simulations)

Page 113: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

113 | P a g e

The SMUD startup costs from the 3-stage simulations for the two cases and four typical weeks are presented in the following chart.

The followings can be observed from the chart.

1. In general, the start-up cost from the RT simulations (the green columns) is higher than that from the DA and HA simulations (the blue and red columns) due to

a. The additional CT commitment in the RT simulations to meet the load and renewable generation variability and uncertainty;

b. The additional start up because of the forced outages in the RT simulation from the generators whose unit commitments are frozen.

2. Comparing the startup costs between the RT simulations and DA simulations, the followings are observed.

a. Without PSHs, the average startup cost from the RT simulations over four weeks (the dotted green columns) is increased to $499,000 from $421,000 from the DA simulations (the dotted blue columns).

b. With the adjustable speed PSHs (Iowa Hill), the average startup cost from the RT simulations over four weeks (the tilted strip green columns) is increased to $446,000 from $193,000 from the DA simulations (the tilted strip blue columns).

3. With the adjustable speed PSHs (Iowa Hill), the average startup cost from the RT simulations over four weeks (the titled strip green columns) is reduced by 10.6% as opposed to the RT simulations without PSHs (the dotted green columns).

This observation indicates that the PSHs reduce the additional CT commitment and the associated startup cost.

 

Page 114: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

114 | P a g e

Figure 5‐20 SMUD Startup Cost ($000) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 124 114 68 115

No PSH HA 120 135 101 146

No PSH RT 127 138 94 140

FS&AS PSH DA 20 60 77 36

FS&AS PSH HA 64 31 70 59

FS&AS PSH RT 121 131 79 115

 ‐

 20

 40

 60

 80

 100

 120

 140

 160

$000

SMUD Start & Shutdown Cost ($000) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and Forced 

Outages in the RT Simulations)

Page 115: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

115 | P a g e

The SMUD thermal generator ramp up and down in MW from the 3-stage simulations for the two cases and four typical weeks are presented in the following two charts.

The followings can be observed from these two charts.

1. The thermal generator ramp up and down (MW) from the RT simulations (the green columns) is substantially higher than that from the DA and HA simulations (the blue and red columns) due to the thermal generator ramp to meet the sub-hourly load and renewable generation variability and uncertainty.

2. Comparing the Ramp Up and Down in MW between the RT simulations and DA simulations, the followings are observed.

a. Without PSHs, the average thermal generator ramp up and down from the RT simulations over four weeks (the dotted green columns) is 12,225 (MW) and 14,290 (MW) higher than that from the DA simulations (the dotted blue columns) respectively.

b. With the adjustable speed PSHs, the average thermal generator ramp up and down (MW) from the RT simulations over four weeks (the tilted green columns) is 14,037 (MW) and 18,613 (MW) higher than that from the DA simulations (the titled blue columns) respectively.

3. With the adjustable speed PSHs, the average thermal generator ramp up and down from the RT simulations over four weeks (the tilted strip green columns) is reduced by 22.1% and 22.9% as opposed to the RT simulations without PSHs (the dotted green columns) respectively.

This observation indicates that the adjustable speed PSHs reduce the thermal generator ramp substantially.

 

Page 116: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

116 | P a g e

Figure 5‐21 SMUD Thermal Generator Ramp Up (MW) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 4,710 3,224 4,627 3,128

No PSH HA 4,790 3,283 6,479 3,872

No PSH RT 7,772 3,181 9,916 7,046

FS&AS PSH DA 3,242 741 2,882 854

FS&AS PSH HA 3,644 648 3,607 2,068

FS&AS PSH RT 7,092 258 9,041 5,365

 ‐

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

MW

SMUD Thermal Ramp Up (MW) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and 

Forced Outages in the RT Simulations)

Page 117: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

117 | P a g e

Figure 5‐22 SMUD Thermal Generator Ramp Down (MW) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind renewable scenario (Maintenance and Forced Outages in the RT Simulations) 

1/22/2022 4/23/2022 7/23/2022 10/22/2022

No PSH DA 7,886 6,051 5,995 5,565

No PSH HA 7,613 6,430 8,638 6,712

No PSH RT 10,797 6,520 12,155 10,315

FS&AS PSH DA 3,957 2,287 4,604 1,228

FS&AS PSH HA 5,636 1,463 4,513 3,231

FS&AS PSH RT 9,913 3,318 10,148 7,310

 ‐

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

MW

SMUD Thermal Ramp Down (MW) from 3‐stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High‐wind Renewable Scenario (Maintenance and 

Forced Outages in the RT Simulations)

Page 118: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

118 | P a g e

6 Findings

The findings from the simulation result analyses are listed as follows.

6.1 Energy arbitrage values

The WI simulations for year 2022 show that, with the three proposed adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the production cost saving is 1% of the total WI production cost in the base renewable scenario, and 1.8% in the high-wind renewable scenario. The PSH values of these three PSHs are $45.3/kw-year in the base renewable scenario and $72.04/kw-year in the high-wind renewable scenario.

The California simulations for year 2022 show that, with the two proposed adjustable speed PSH, Iowa Hill and Eagle Mountain, the production cost saving is 1.2% of the total production cost in California under the base renewable scenario, and 4.2% in the high-wind renewable scenario. The PSH values of these two PSHs are $33.35/kw-year in the base renewable scenario and $105.61/kw-year in the high-wind renewable scenario.

The SMUD simulations for year 2022 show that, with the proposed adjustable speed PSH, Iowa Hill, the production cost saving is 8.6% of the total SMUD production cost in the base renewable scenario, and 16.45% in the high-wind renewable scenario. The PSH values of these two PSHs are $58.04/kw-year in the base renewable scenario and $126.83/kw-year in the high-wind renewable scenario.

The 3-stage simulations for four typical weeks in year 2022 in the high-wind renewable scenario show that the average production cost over four typical weeks can be reduced by

1. 1.6% from the WI RT simulations with the three proposed adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain (the cost difference between “FS PSH RT” and “FS&AS PSH RT” in Figure 5-15 WI Production Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations));

2. 2.4% from the CA RT simulations with the two proposed adjustable speed PSHs, Iowa Hill and Eagle Mountain (the cost difference between “FS PSH RT” and “FS&AS PSH RT” in Figure 5-11 California Production Cost ($000) from 3-stage Simulations for Three Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations));

3. 14.9% from the SMUD RT simulations with the proposed adjustable speed PSHs, Iowa Hill (the cost difference between “No PSH RT” and “FS&AS PSH RT” in Figure 5-19 SMUD Production Cost ($000) from 3-stage Simulations for Two Cases and Four Typical Weeks in Year 2022 in High-wind renewable scenario (Maintenance and Forced Outages in the RT Simulations)).

Though the production cost savings in percentage from the RT simulations are comparable to the production cost savings from the DA simulations, the production cost from the RT simulations are higher than that from the DA simulations. The production cost difference between the RT simulation and the DA simulation could be over 50% in some week. The higher production cost in the RT simulations is due to the sub-hourly

Page 119: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

119 | P a g e

thermal dispatch at less economic loading points and the CT commitment cost to accommodate the sub-hourly load and renewable generation variability and uncertainties.

6.2 Contributions to reserves: contingency, flexibility and regulation reserves.

The WI simulations for year 2022 show that the three proposed adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, provide 1.7% ~ 8.19% of the total WI upward reserves and 12.0% ~ 12.9% of the total WI downward reserves in the base renewable scenario. The three adjustable speed PSHs provide 0.6% ~ 4.2% of the total WI upward reserves and 10.6% ~ 12.3% of the total WI downward reserves for the high-wind renewable scenario.

The CA simulations for year 2022 show that the two proposed adjustable speed PSHs, Iowa Hill and Eagle Mountain, provide 9.6% ~ 26.3% of the total CA upward reserves and 28.7% ~ 33.6% of the total CA downward reserves in the base renewable scenario. The two adjustable speed PSHs provide 3.6% ~ 23.8% of the total CA upward reserves and 31.5% ~ 37.3% of the total CA downward reserves in the high-wind renewable scenario.

The SMUD simulations for year 2022 show that the proposed adjustable speed PSH, Iowa Hill, provides 3.4% ~ 15.8% of the total SMUD upward reserves and 23.5% ~ 29.5% of the total SMUD downward reserves in the base renewable scenario. The adjustable speed PSH provides 2.0% ~ 17.6% of the total SMUD upward reserves and 14.3% ~ 20.5% of the total SMUD downward reserves in the high-wind renewable scenario.

The following table summarizes the reserve provisions from the PSHs in the base and high-wind renewable scenarios.

Reserve Provisions from Adjustable Speed PSH in % of Total Reserve Requirements 

  WI Simulations  CA Simulations  SMUD Simulations 

  Base Renewable 

High‐wind Renewable

Base Renewable

High‐wind Renewable

Base Renewable 

High‐wind Renewable

Non‐Spinning  8.1% 4.2% 9.6% 17.6% 15.8% 17.6%

Spinning  1.7% 0.6% 26.3% 2.4% 4.3% 2.4%

Flexi Down  12.9% 12.3% 33.6% 14.3% 29.5% 14.3%

Flexi Up  1.9% 0.4% 10.5% 2.0% 3.8% 2.0%

Reg Down  12.0% 10.6% 28.7% 20.5% 23.5% 20.5%

Reg Up  3.0% 1.3% 24.6% 1.9% 3.4% 1.9%Table 6.2‐1 Reserve Provisions from Adjustable Speed PSH in % of Total Reserve Requirements 

6.3 Contributions to the emission reductions

The regional simulations, WI and California, do not show significant emission reduction with the Adjustable Speed PSHs introduced in the system in both the base and high-wind renewable scenarios. However, the emission productions are reduced from the base renewable scenario to the high-wind renewable scenario.

The SMUD portfolio simulations show a significant emission reductions when the adjustable speed PSHs, Iowa Hill, is introduced to the system in both the base and high-wind renewable scenarios.

Page 120: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

120 | P a g e

6.4 Contribution to the renewable generation integration

The contribution of the adjustable-speed PSHs to the renewable generation integration includes the following two areas.

1. Reserve provisions to cover the renewable generation variability and uncertainty, and

2. The renewable generation curtailment due to the over-generation.

The reserve provisions from the adjustable-speed PSHs are listed in the above Table 6.2-1 Reserve Provisions from Adjustable Speed PSH in % of Total Reserve Requirements.

With the three adjustable-speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the renewable generation curtailment from the WI simulations for year 2022 is reduced from 0.77% (1,356 GWh) to 0.55% (964 GWh) of the total renewable energy in the base renewable scenario; the renewable generation curtailment is reduced from 14% (48,403 GWh) to 13% (44,211 GWh) of the total renewable energy in the high-wind renewable scenario.

With the two adjustable-speed PSHs, Iowa Hill and Eagle Mountain, the renewable generation curtailment from the CA simulations for year 2022 is reduced from 46 GWh to 14 GWh in the base renewable scenario; the renewable generation curtailment is reduced from 380 GWh to 275 GWh in the high-wind renewable scenario.

There is no renewable curtailment in the base renewable scenario in the BANC system. With the adjustable-speed PSH, Iowa Hill, the renewable generation curtailment from the BANC simulations for year 2022 is reduced from 19 GWh to 1.0 GWh in the high-wind renewable scenario;

6.5 Contributions to reserves: contingency, flexibility and regulation reserves

With the three adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the renewable generation curtailment from the WI simulations for year 2022 is reduced from 0.77% (1,356 GWh) to 0.55% (964 GWh) of the total renewable energy in the base renewable scenario; the renewable generation curtailment is reduced from 14% (48,403 GWh) to 13% (44,211 GWh) of the total renewable energy in the high-wind renewable scenario.

With the two adjustable speed PSHs, Iowa Hill and Eagle Mountain, the renewable generation curtailment from the CA simulations for year 2022 is reduced from 46 GWh to 14 GWh in the base renewable scenario; the renewable generation curtailment is reduced from 380 GWh to 275 GWh in the high-wind renewable scenario.

There is no renewable curtailment in the base renewable scenario in the SMUD system. With the adjustable speed PSH, Iowa Hill, the renewable generation curtailment from the SMUD simulations for year 2022 is reduced from 19 GWh to 1.0 GWh in the high-wind renewable scenario.

6.6 Contribution to the thermal generation cycling reductions

The WI simulations for year 2022 show that, with the three proposed adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain, the total thermal startup cost is reduced by 15% (20 million $) in the base renewable scenario, and 10% (16 million $) in

Page 121: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

121 | P a g e

the high-wind renewable scenario. The ramp up and down in GW is reduced by 17% (1634 GW) and 16% (2257 GW) respectively in the base renewable scenario. The ramp up and down GW is reduced by 16% (1334 GW) and 15% (1904 GW) respectively in the high-wind renewable scenario.

The CA simulations for year 2022 show that, with the two proposed adjustable speed PSHs, Iowa Hill and Eagle Mountain, the total thermal startup cost is reduced by 22% (10 million $) in the base renewable scenario, and 20% (9 million $) in the high-wind renewable scenario. The ramp up and down in GW is reduced by 19% (699 GW) and 20% (1095 GW) respectively in the base renewable scenario. The ramp up and down in GW is reduced by 22% (683 GW) and 21% (998 GW) respectively in the high-wind renewable scenario.

The SMUD simulations for year 2022 show that, with the proposed adjustable speed PSHs, Iowa Hill, the total thermal startup cost is reduced by 45% (2 million $) in the base renewable scenario, and 42% (2 million $) in the high-wind renewable scenario. The ramp up and down in GW is reduced by 37% (136 GW) and 39% (197 GW) respectively in the base renewable scenario. The ramp up and down in GW is reduced by 32% (119 GW) and 36% (174 GW) respectively in the high-wind renewable scenario.

The 3-stage simulations for four typical weeks in year 2022 in the high-wind renewable scenario show that the average startup cost over four typical weeks can be reduced by

1. 7% from the WI RT simulations with the three proposed adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain,

2. 19% from the CA RT simulations with the two proposed adjustable speed PSHs, Iowa Hill and Eagle Mountain,

3. 46% from the SMUD RT simulations with the proposed adjustable speed PSHs, Iowa Hill.

Though the startup cost savings in percentage from the RT simulations are comparable to the startup cost savings from the DA simulations, the startup cost from the RT simulations are higher than that from the DA simulations. The startup cost difference between the RT simulation and the DA simulation could be over 60% in some week. The higher startup cost in the RT simulations is due to the CT commitment cost to accommodate the sub-hourly load and renewable generation variability and uncertainties.

The 3-stage simulations for four typical weeks in year 2022 in the high-wind renewable scenario show that the average thermal generator ramp up and down in MW over four typical weeks can be reduced by

1. About 19% from the WI RT simulations with the three proposed adjustable speed PSHs, Swan Lake, Iowa Hill and Eagle Mountain,

2. About 25% from the CA RT simulations with the two proposed adjustable speed PSHs, Iowa Hill and Eagle Mountain,

3. About 25% from the SMUD RT simulations with the proposed adjustable speed PSHs, Iowa Hill.

Though the thermal generator ramp up and down reduction in percentage from the RT simulations are comparable to the ramp up and down reduction from the DA simulations, the ramp up and down from the RT simulations are higher than that from the DA

Page 122: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

122 | P a g e

simulations. The ramp up and down difference between the RT simulation and the DA simulation could be over 170% in some week. The higher thermal generator ramp up and down in the RT simulations indicates that the thermal generators are ramp more to meet the sub-hourly load and renewable generation variability and uncertainties.

6.7 Impact to the market generator participants

The CA simulations show that the system generator profit (the generation and reserve revenue less the generation production cost) increases as more PSHs are introduced into the system in both the base and high-wind renewable scenarios. The profit increases are due to the LMP increases in the pumping hours, which yield higher generation revenues.

The generator profit is smaller in the high-wind renewable scenario as opposed to the base renewable scenario because of lower LMPs in the high-wind renewable scenario.

In the base renewable scenario, the reserve revenue is less than 10% of the total market revenue (energy revenue plus reserve revenue). The reserve revenue increases to 25% of the total market revenue in the high-wind renewable scenario due to higher flexibility and regulation reserve requirements.

6.8 Contributions to the portfolio

With the adjustable speed PSHs, Iowa Hill, the SMUD simulations show substantial reductions in the SMUD production cost, emission, thermal generator cycling, and the renewable generation curtailment, as opposed to the case of without the PSHs. The significant reductions in the production cost, emission, thermal generation cycling and the renewable curtailment are due to the higher ratio of the PSH capacity and the portfolio peak demand. The reduction is even higher with the higher renewable generation level.

6.9 Impact to the transmission congestions

In the WI simulations, the WI average transmission congestion prices are reduced from $4/MWh in the case of no PSHs to $2/MWh in the cases of with FS and AS PSHs in the based renewable scenario. Since the preliminary transmission expansion was performed for the high-wind renewable scenario, there is no significant WI average transmission congestion price reduction. However, in both the base and high-wind renewable scenarios, the interface with the significant congestion price reduction is “P27 Intermountain Power Project DC Line” that is in the neighboring area of PSHs “Castaic” and “Eagle Mountain”.

In the CA simulations, the CA average transmission congestion prices are reduced from $3.51/MWh in the case of no PSHs to $0.4/MWh in the case of with FS PSHs, and further to $0.24/MWh in the case of with FS&AS PSHs in the based renewable scenario. The CA average transmission congestion prices are reduced from $1.79/MWh in the case of no PSHs to $0.56/MWh in the case of with FS PSHs, and further to $0.37/MWh in the case of with FS&AS PSHs in the high-wind renewable scenario. The lower transmission congestion price in the high-wind renewable scenario is due to the transmission expansion assumptions for the high-wind renewable scenario. Again, in both the base and high-wind renewable scenarios, the interface with the significant congestion price reduction is “P27 Intermountain Power Project DC Line” that is the neighboring area of PSHs “Castaic” and “Eagle Mountain”.

Page 123: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

123 | P a g e

The transmission congestion price is an indicator of transmission congestion in the transmission grid. The lower transmission congestion prices with PSHs indicate that PSHs helps mitigating the transmission congestion.

6.10 Transmission Deferral

In the base renewable scenario, PSHs help reducing the transmission congestion for some interfaces in the Southern California. The interface with the most congestion price reduction is “P27 Intermountain Power Project DC Line” after the PSHs are introduced to the system.    

In the high-wind renewable scenario, the interface with the most congestion price reduction is “P27 Intermountain Power Project DC Line” after the PSHs are introduced to the system, though the preliminary transmission expansion is performed to deliver the renewable generation to the load centers.

This study shows that PSHs can help reduce the transmission congestion or defer the transmission build-out in the neighboring areas where the PSHs are located.

Page 124: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

124 | P a g e

7 Appendix – Transmission Expansion Assumptions for High-wind Renewable Scenario

Line  From Bus From Bus Region  To Bus 

To Bus Region 

Capacity (MW) 

ARR___PS_11014 to ARROYO_11017 1 1  11014_ARR___PS  EPE  11017_ARROYO  EPE  275

ARR___PS_11014 to ARROYO_11017 1 2  11014_ARR___PS  EPE  11017_ARROYO  EPE  275

B‐A_10025 to GUADLUPE_10116 1 1  10025_B‐A  PNM  10116_GUADLUPE  PNM  1076

B‐A_10025 to GUADLUPE_10116 1 2  10025_B‐A  PNM  10116_GUADLUPE  PNM  1076

BILINGS_62082 to BLGS PHA_62045 1 1  62082_BILINGS  NWMT  62045_BLGS PHA  NWMT  300

BILINGS_62082 to BLGS PHA_62045 1 2  62082_BILINGS  NWMT  62045_BLGS PHA  NWMT  300

BONANZA_65193 to MONA_65995 1 1  65193_BONANZA  PACE_UT  65995_MONA  PACE_UT  725

CBK 500_50791 to CR_NEST1_54458 1  1  50791_CBK 500  BCH  54458_CR_NEST1  AESO  940

CBK 500_50791 to CR_NEST1_54458 1  2  50791_CBK 500  BCH  54458_CR_NEST1  AESO  940

FLAGSTAF_79024 to PINPKBRB_79053 1 1  79024_FLAGSTAF  WALC  79053_PINPKBRB  WALC  747

GATES_30055 to MIDWAY_30060 1 1  30055_GATES  PG&E_VLY  30060_MIDWAY  PG&E_VLY  1931.2

GLENCANY_79032 to GLENCANY_79031 1 1  79032_GLENCANY  WALC  79031_GLENCANY  WALC  300

GLENCANY_79032 to GLENCANY_79031 1 2  79032_GLENCANY  WALC  79031_GLENCANY  WALC  300

GLENCANY_79032 to GLENCANY_79031 2 1  79032_GLENCANY  WALC  79031_GLENCANY  WALC  300

H ALLEN_18001 to H ALLEN_18019 1 1  18001_H ALLEN  NEVP  18019_H ALLEN  NEVP  300

H ALLEN_18001 to H ALLEN_18019 1 2  18001_H ALLEN  NEVP  18019_H ALLEN  NEVP  300

H ALLEN_18001 to H ALLEN_18019 1 3  18001_H ALLEN  NEVP  18019_H ALLEN  NEVP  300

H ALLEN_18001 to H ALLEN_18019 1 4  18001_H ALLEN  NEVP  18019_H ALLEN  NEVP  300

HA PS_18002 to H ALLEN_18001 1 1  18002_HA PS  NEVP  18001_H ALLEN  NEVP  300

HA PS_18002 to H ALLEN_18001 1 2  18002_HA PS  NEVP  18001_H ALLEN  NEVP  300

HA PS_18002 to H ALLEN_18001 2 1  18002_HA PS  NEVP  18001_H ALLEN  NEVP  300

LANGDON2_54158 to CR_NEST1_54458 01  1  54158_LANGDON2  AESO  54458_CR_NEST1  AESO  940

LANGDON2_54158 to CR_NEST1_54458 01  2  54158_LANGDON2  AESO  54458_CR_NEST1  AESO  940

Page 125: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

125 | P a g e

Line  From Bus From Bus Region  To Bus 

To Bus Region 

Capacity (MW) 

LANGDON2_54158 to CR_NEST1_54458 01  3  54158_LANGDON2  AESO  54458_CR_NEST1  AESO  940

LANGDON2_54158 to LANGDOB9_58158 T1  1  54158_LANGDON2  AESO  58158_LANGDOB9  AESO  1200

LANGDON2_54158 to LANGDOB9_58158 T1  2  54158_LANGDON2  AESO  58158_LANGDOB9  AESO  1200

LANGDON2_54158 to LANGDOB9_58158 T1  3  54158_LANGDON2  AESO  58158_LANGDOB9  AESO  1200

LAR.RIVR_73107 to LAR.RIVR_73108 1 1  73107_LAR.RIVR  WACM  73108_LAR.RIVR  WACM  600

MATLB1_54451 to MATL AB_56451 T1 1  54451_MATLB1  AESO  56451_MATL AB  AESO  330

NEWMAN_11111 to NEWMAN_B_11204 1  1  11111_NEWMAN  EPE  11204_NEWMAN_B  EPE  184

NEWMAN_11111 to NEWMAN_B_11204 1  2  11111_NEWMAN  EPE  11204_NEWMAN_B  EPE  184

NEWMAN_11111 to NEWMAN_B_11204 1  3  11111_NEWMAN  EPE  11204_NEWMAN_B  EPE  184

NLY 230_50784 to NLY 2PS2_50822 2 1  50784_NLY 230  BCH  50822_NLY 2PS2  BCH  400

NLY 230_50784 to NLY 2PS2_50822 2 2  50784_NLY 230  BCH  50822_NLY 2PS2  BCH  400

NLY 230_50784 to NLY 2PS2_50822 2 3  50784_NLY 230  BCH  50822_NLY 2PS2  BCH  400

OJO_10232 to TAOS_12082 1 1  10232_OJO  PNM  12082_TAOS  PNM  299

OJO_10232 to TAOS_12082 1 2  10232_OJO  PNM  12082_TAOS  PNM  299

PINPKBRB_79053 to PINPK_19062 1 1  79053_PINPKBRB  WALC  19062_PINPK  WALC  600

REDBUTTE_66280 to UTAH‐NEV_67657 1 1  66280_REDBUTTE  PACE_UT  67657_UTAH‐NEV  PACE_UT  300

REDBUTTE_66280 to UTAH‐NEV_67657 1 2  66280_REDBUTTE  PACE_UT  67657_UTAH‐NEV  PACE_UT  300

REDBUTTE_66280 to UTAH‐NEV_67657 1 3  66280_REDBUTTE  PACE_UT  67657_UTAH‐NEV  PACE_UT  300

REDBUTTE_66280 to UTAH‐NEV_67657 1 4  66280_REDBUTTE  PACE_UT  67657_UTAH‐NEV  PACE_UT  300

RIOPUERC_10390 to B‐A_10025 2 1  10390_RIOPUERC  PNM  10025_B‐A  PNM  1195.1

RIOPUERC_10390 to WESTMESA_10369 1 1  10390_RIOPUERC  PNM  10369_WESTMESA  PNM  1195.1

SANJN PS_79060 to SAN_JUAN_10292 1 1  79060_SANJN PS  WACM  10292_SAN_JUAN  PNM  600

UTAH‐NEV_67657 to HA PS_18002 1 1  67657_UTAH‐NEV  PACE_UT  18002_HA PS  NEVP  300

UTAH‐NEV_67657 to HA PS_18002 1 2  67657_UTAH‐NEV  PACE_UT  18002_HA PS  NEVP  300

UTAH‐NEV_67657 to HA PS_18002 1 3  67657_UTAH‐NEV  PACE_UT  18002_HA PS  NEVP  300

UTAH‐NEV_67657 to HA PS_18002 1 4  67657_UTAH‐NEV  PACE_UT  18002_HA PS  NEVP  300

Page 126: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

126 | P a g e

Line  From Bus From Bus Region  To Bus 

To Bus Region 

Capacity (MW) 

WABAMUN9_54134 to CARVEL02_55364 96  1  54134_WABAMUN9 AESO  55364_CARVEL02  AESO  121

WABAMUN9_54134 to CARVEL02_55364 96  2  54134_WABAMUN9 AESO  55364_CARVEL02  AESO  121Table 6.10‐1 Transmission line expansion for high‐wind renewable scenario 

   Before Expansion  After Expansion 

Row Labels  Max Flow  Min Flow  Max Flow  Min Flow

Interstate AB‐MT  325 ‐300 325  ‐600

Interstate WA‐BC East  400 ‐400 2400  ‐400

Interstate WA‐BC West  3000 ‐2850 3000  ‐3850

Intrastate CA PDCI South  2780 ‐3100 3780  ‐3100

P01 Alberta‐British Columbia  700 ‐720 700  ‐2160

P03 Northwest‐British Columbia  3000 ‐3150 3000  ‐4150

P18 Montana‐Idaho  337 ‐256 674  ‐256

P24 PG&E‐Sierra  160 ‐150 160  ‐300

P26 Northern‐Southern California  4000 ‐3000 4000  ‐4000

P31 TOT 2A  690 ‐690 1380  ‐690

P35 TOT 2C  600 ‐580 2400  ‐1160

P36 TOT 3  1680 ‐1680 2680  ‐1680

P38 TOT 4B  829 ‐829 1658  ‐829

P40 TOT 7  890 ‐890 1335  ‐890

P45 SDG&E‐CFE  408 ‐800 2448  ‐800

P48 Northern New Mexico (NM2)  1970 ‐1970 1970  ‐2970

P52 Silver Peak‐Control 55 kV  17 ‐17 34  ‐170

P59 WALC Blythe ‐ SCE Blythe 161 kV Sub  218 ‐218 436  ‐218

P80 Montana Southeast  600 ‐600 600  ‐1200Table 6.10‐2 Transmission interface expansion for high‐wind renewable scenario 

Page 127: Ad Pu nerator (PSH) EXOS...10 Portfolio effects PSH revenue 11 Reduced cycling of thermal units Societal Benefit 12 Reduced transmission congestion Societal Benefit 13 Reduced environmental

127 | P a g e

8 References

[1] WECC TEPPC, “Assumptions Matrix for the 2020 TEPPC Dataset.pdf”, 2020

[2] WECC TEPPC, “2022_CommonCase_InputAssumptions.doc”, 2022

[3] Department of Market Monitoring, CAISO, “2012 Annual Report on Market Issues and Performance”, April 2013, http://www.caiso.com/Documents/2012AnnualReport-MarketIssues-Performance.htm

[4] D. Lew and G. Brinkman, National Renewable Energy Laboratory, N. Kumar, P. Besuner, D. Agan, and S. Lefton, Intertek APTECH, “Impacts of Wind and Solar on Fossil-Fueled Generators”, Presented at IEEE Power and Energy Society General Meeting, San Diego, California July 22–26, 2012

[5] Lew, D., Brinkman, G., Ibanez, E., Florita, A., Heaney, M., Hodge, B.-M., Hummon, M., Stark, G., King, J., Lefton, S., Kumar, N., Agan, D., Jordan, G., Venkataraman, S. (2013). “The Western Wind and Solar Integration Study Phase 2”, NREL/TP-5500-55588. Golden, CO: National Renewable Energy Laboratory.

[6] Matt Hunsaker, Nader Samaan, Michael Milligan, Tao Guo, Guangjuan Liu, Jake Toolson, “Balancing Authority Cooperation Concepts to Reduce Variable Generation Integration Costs in the Western Interconnection: Intra-Hour Scheduling”, WECC Variable Generation Subcommittee project report, March 29, 2013