AD-1-2012-2013-02-Slides

  • Upload
    tengyan

  • View
    213

  • Download
    0

Embed Size (px)

Citation preview

  • 7/27/2019 AD-1-2012-2013-02-Slides

    1/76

    Airc

    raftD

    esign

    I

    1AD-1-2012-2013-02-Slides

    Surjatin WiriadidjajaDepartment for Aerospace

    Faculty of Engineering

    Universiti Putra Malaysia

    EAS 3703: Lesson-2

    Aerodynamics

    OfThe Airplanes

  • 7/27/2019 AD-1-2012-2013-02-Slides

    2/76

    Airc

    raftD

    esign

    I

    2AD-1-2012-2013-02-Slides

    AtmosphereFight Environment

    In the ocean, pressure andtemperature vary, but density

    nearly constant (submarine).

    In the atmosphere, density,

    pressure, and temperature vary

    with altitude (aircraft).

    Pressure drops as altitude

    increases, while temperature

    follows a series of decreases and

    increases.

    But the atmosphere is a

    dynamically changing system

    depending on season, time of day

    and many other factors.

  • 7/27/2019 AD-1-2012-2013-02-Slides

    3/76

    Airc

    raftD

    esign

    I

    3AD-1-2012-2013-02-Slides

    AtmosphereStandard Atmosphere

    It is defined to relate flight tests, wind tunnel results, airplane design andperformance to a common reference.

    It can be found in most flight related books in form of tables consisting ofmean values ofp, and Tas functions ofaltitudes.

    Altitude:There are six different defined altitudes, i.e., absolute, geometric, geo-potential,

    pressure, temperature, and density altitudes.

    Geometric altitude, hG geometric height above sea level.

    Absolute altitude, ha height above the center of the Earth.

    Geo-potential altitude, h fictious,g = const = g0 is assumed.

    Other defined altitudes obtained from the standard atmosphere byusing measured values of p, T, and in an

    actual flight.

  • 7/27/2019 AD-1-2012-2013-02-Slides

    4/76

    Airc

    raftD

    esign

    I

    4AD-1-2012-2013-02-Slides

    AtmosphereStandard Atmosphere

    Ifris the radius of the Earth andg0is the gravitational acceleration at

    sea level, the Newtons Law of

    gravitation implies, that the local

    gravitational acceleration, g at an

    altitude ha is

    p, , and Tas function of altitude

    through the hydrostatic equationAssuming g=g0for all h :

  • 7/27/2019 AD-1-2012-2013-02-Slides

    5/76

    Airc

    raftD

    esign

    I

    5AD-1-2012-2013-02-Slides

    AtmosphereStandard Atmosphere

    Isothermal Layer:Integration between h1 & p1(at the base

    and h & p above the base.

    Gradient Layer:Integration between h1 & T1(at the base and

    h & Tabove the base, with the lapse rate,

    e.g., or through:

  • 7/27/2019 AD-1-2012-2013-02-Slides

    6/76

    Airc

    raftD

    esign

    I

    6AD-1-2012-2013-02-Slides

    AtmosphereStandard Atmosphere

    Starting at sea level with h=0 andthe defined quantities:

    the atmospheric quantities in the

    first gradient layer can be

    calculated by using.

    Thereafter, the first isothermal

    layer can be found. The quantities

    at the upper layers can also be

    created subsequently.

    With the above steps, the standard

    atmosphere is constructed.

  • 7/27/2019 AD-1-2012-2013-02-Slides

    7/76

    Airc

    raftD

    esign

    I

    7AD-1-2012-2013-02-Slides

    Flight RegimesMach and Re Categories

    Flight regimes can be divided into Mach and Re categories, with Re strongly

    related to the degree of laminar or turbulent flow and Mach number relating

    to compressibility and shocks.

  • 7/27/2019 AD-1-2012-2013-02-Slides

    8/76

    Airc

    raftD

    esign

    I

    8AD-1-2012-2013-02-Slides

    Flow SimilarityReynolds Number & Mach Number

    Re Number:

    Mach Number:

    To match the aircraft physics, we need to match the important physicaldimensionless parameters same geometry and same Re & Ma would give the

    same physics needed for wind tunnel tests.

  • 7/27/2019 AD-1-2012-2013-02-Slides

    9/76

    Airc

    raftD

    esign

    I

    9AD-1-2012-2013-02-Slides

    From the wind tunnel to full scale, it is practically impossible to match both Re andM simultaneously. It is important to do separate experiments, and look at regimes

    where variations in Re or M are small.

    One way: to change test conditions, as done

    in DNW or at ETW.

    Flow SimilarityReynolds Number & Mach Number

  • 7/27/2019 AD-1-2012-2013-02-Slides

    10/76

    Airc

    raftD

    esign

    I

    10AD-1-2012-2013-02-Slides

    Airplane NomenclatureBasic Concept

    If 3.a & 3.b are combined

    in one piece: stabilator

    1. Fuselage2. Wings

    3. Empennage, consisting ofa.Horizontal stabilizer

    b.Elevators,

    c.Vertical stabilizersd.Rudders

  • 7/27/2019 AD-1-2012-2013-02-Slides

    11/76

    Airc

    raftD

    esign

    I

    11AD-1-2012-2013-02-Slides

    Airplane NomenclatureAirfoil and Wings

  • 7/27/2019 AD-1-2012-2013-02-Slides

    12/76

    Airc

    raftD

    esign

    I

    12AD-1-2012-2013-02-Slides

    Airplane NomenclatureStraight-and-Level Flight

  • 7/27/2019 AD-1-2012-2013-02-Slides

    13/76

    AircraftD

    esign

    I

    13AD-1-2012-2013-02-Slides

    Airplane NomenclatureAxes of Control

  • 7/27/2019 AD-1-2012-2013-02-Slides

    14/76

    AircraftD

    esign

    I

    14AD-1-2012-2013-02-Slides

    Airplane NomenclatureThe Turn

  • 7/27/2019 AD-1-2012-2013-02-Slides

    15/76

    AircraftD

    esign

    I

    15AD-1-2012-2013-02-Slides

    Airplane NomenclatureThe Turn

  • 7/27/2019 AD-1-2012-2013-02-Slides

    16/76

    AircraftD

    esign

    I

    16 AD-1-2012-2013-02-Slides

    Airplane FlightThe creation of Lift

  • 7/27/2019 AD-1-2012-2013-02-Slides

    17/76

    AircraftD

    esign

    I

    17 AD-1-2012-2013-02-Slides

    AirplaneAirfoil Pressure Coefficient

  • 7/27/2019 AD-1-2012-2013-02-Slides

    18/76

    AircraftD

    esign

    I

    18 AD-1-2012-2013-02-Slides

    AirplaneForces on Airfoil

    The sources of the aerodynamic forces arethe pressure and shear stress distribution

    integrated over the body.

    2 Forces (lift and drag)

    1 Moment to pitch CW or CCW

  • 7/27/2019 AD-1-2012-2013-02-Slides

    19/76

    AircraftD

    esign

    I

    19 AD-1-2012-2013-02-Slides

    AirplaneAirfoil geometry

  • 7/27/2019 AD-1-2012-2013-02-Slides

    20/76

    AircraftD

    esign

    I

    20 AD-1-2012-2013-02-Slides

    AirplaneLift Coefficient

    o Aerodynamics governs the primary design of any

    aircraft, defining the key forces of lift and drag.

    o The appropriate non-dimensional quantities for lift and

    drag are the lift and drag coefficient, defined as

    o These coefficients are depending onRe andM.

  • 7/27/2019 AD-1-2012-2013-02-Slides

    21/76

    AircraftD

    esign

    I

    21 AD-1-2012-2013-02-Slides

    AirplaneLift, Drag, & Moment

  • 7/27/2019 AD-1-2012-2013-02-Slides

    22/76

    AircraftD

    esign

    I

    22 AD-1-2012-2013-02-Slides

    AirplaneLift, Drag, & Moment

  • 7/27/2019 AD-1-2012-2013-02-Slides

    23/76

    AircraftD

    esign

    I

    23 AD-1-2012-2013-02-Slides

    AirplaneNACA 4-, 5- and 6-Digit Airfoil Series

  • 7/27/2019 AD-1-2012-2013-02-Slides

    24/76

    AircraftD

    esign

    I

    24 AD-1-2012-2013-02-Slides

    AirplaneWing geometry

  • 7/27/2019 AD-1-2012-2013-02-Slides

    25/76

    AircraftD

    esign

    I

    25 AD-1-2012-2013-02-Slides

    AirplaneThe MAC

  • 7/27/2019 AD-1-2012-2013-02-Slides

    26/76

    AircraftD

    esign

    I

    26 AD-1-2012-2013-02-Slides

    AirplaneWing Planform

  • 7/27/2019 AD-1-2012-2013-02-Slides

    27/76

    AircraftD

    esign

    I

    27 AD-1-2012-2013-02-Slides

    AirplaneWing Size

  • 7/27/2019 AD-1-2012-2013-02-Slides

    28/76

    AircraftD

    esign

    I

    28 AD-1-2012-2013-02-Slides

    AirplaneAR and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    29/76

    AircraftD

    esign

    I

    29 AD-1-2012-2013-02-Slides

    AirplaneAR and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    30/76

    AircraftD

    esign

    I

    30 AD-1-2012-2013-02-Slides

    AirplaneAR and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    31/76

    AircraftD

    esign

    I

    31 AD-1-2012-2013-02-Slides

    AirplaneAR and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    32/76

    AircraftD

    esign

    I

    32 AD-1-2012-2013-02-Slides

    AirplaneAR and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    33/76

    AircraftD

    esign

    I

    33 AD-1-2012-2013-02-Slides

    AirplaneAR and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    34/76

    AircraftD

    esign

    I

    34 AD-1-2012-2013-02-Slides

    AirplaneSweep and Lift Efficiency

  • 7/27/2019 AD-1-2012-2013-02-Slides

    35/76

    AircraftD

    esign

    I

    35 AD-1-2012-2013-02-Slides

    AirplaneLift Curve Slope & AR

  • 7/27/2019 AD-1-2012-2013-02-Slides

    36/76

    AircraftD

    esign

    I

    36 AD-1-2012-2013-02-Slides

    AirplaneLift to Drag Ratio

  • 7/27/2019 AD-1-2012-2013-02-Slides

    37/76

    AircraftD

    esign

    I

    37 AD-1-2012-2013-02-Slides

    AirplaneDrag Polar

  • 7/27/2019 AD-1-2012-2013-02-Slides

    38/76

    AircraftD

    esign

    I

    38 AD-1-2012-2013-02-Slides

    AirplaneDrag Coefficient

  • 7/27/2019 AD-1-2012-2013-02-Slides

    39/76

    AircraftD

    esign

    I

    39 AD-1-2012-2013-02-Slides

    AirplaneTypes of Drags

  • 7/27/2019 AD-1-2012-2013-02-Slides

    40/76

    AircraftD

    esign

    I

    40 AD-1-2012-2013-02-Slides

    AirplaneInduced Drags

  • 7/27/2019 AD-1-2012-2013-02-Slides

    41/76

    AircraftD

    esign

    I

    41 AD-1-2012-2013-02-Slides

    AirplaneParasite Drags

  • 7/27/2019 AD-1-2012-2013-02-Slides

    42/76

    AircraftD

    esign

    I

    42 AD-1-2012-2013-02-Slides

    AirplaneStreamlined vs. Bluff Body Drag

    i

  • 7/27/2019 AD-1-2012-2013-02-Slides

    43/76

    AircraftD

    esign

    I

    43 AD-1-2012-2013-02-Slides

    ComparisonCylinders & Spheres

    C i

  • 7/27/2019 AD-1-2012-2013-02-Slides

    44/76

    AircraftD

    esign

    I

    44 AD-1-2012-2013-02-Slides

    ComparisonEffect of Spin

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    45/76

    AircraftD

    esign

    I

    45 AD-1-2012-2013-02-Slides

    AirplaneStreamlining

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    46/76

    AircraftD

    esign

    I

    46 AD-1-2012-2013-02-Slides

    AirplaneStreamlining

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    47/76

    AircraftD

    esign

    I

    47 AD-1-2012-2013-02-Slides

    AirplaneLaminar vs Turbulent

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    48/76

    AircraftD

    esign

    I

    48 AD-1-2012-2013-02-Slides

    AirplaneBoundary Layer Thickness

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    49/76

    AircraftD

    esign

    I

    49 AD-1-2012-2013-02-Slides

    AirplaneTurbulent Boundary Layer

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    50/76

    AircraftD

    esign

    I

    50 AD-1-2012-2013-02-Slides

    AirplaneSeparation and Stall

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    51/76

    AircraftD

    esign

    I

    51 AD-1-2012-2013-02-Slides

    AirplaneSurface Roughness

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    52/76

    AircraftD

    esign

    I

    52 AD-1-2012-2013-02-Slides

    AirplaneSeparation and Bumpy Wing

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    53/76

    AircraftD

    esign

    I

    53 AD-1-2012-2013-02-Slides

    AirplaneTrips

    Ai l

  • 7/27/2019 AD-1-2012-2013-02-Slides

    54/76

    AircraftD

    esign

    I

    54 AD-1-2012-2013-02-Slides

    AirplaneDrag Prediction

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    55/76

    AircraftD

    esign

    I

    55 AD-1-2012-2013-02-Slides

    AirplaneSkin Friction

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    56/76

    AircraftD

    esign

    I

    56 AD-1-2012-2013-02-Slides

    AirplaneDrag Buildup

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    57/76

    AircraftD

    esign

    I

    57 AD-1-2012-2013-02-Slides

    AirplaneDrag for Minimum Speed

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    58/76

    AircraftD

    esign

    I

    58 AD-1-2012-2013-02-Slides

    AirplaneDrag for Minimum Speed

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    59/76

    AircraftD

    esign

    I

    59 AD-1-2012-2013-02-Slides

    AirplaneDrag for Minimum Speed

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    60/76

    AircraftD

    esign

    I

    60 AD-1-2012-2013-02-Slides

    AirplaneDrag for Minimum Speed

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    61/76

    AircraftD

    esign

    I

    61 AD-1-2012-2013-02-Slides

    AirplaneDrag and Power

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    62/76

    AircraftD

    esign

    I

    62 AD-1-2012-2013-02-Slides

    AirplaneBest Speed

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    63/76

    AircraftD

    esign

    I

    63 AD-1-2012-2013-02-Slides

    AirplaneHigh Speed Effects

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    64/76

    AircraftD

    esign

    I

    64 AD-1-2012-2013-02-Slides

    AirplaneHigh Speed Effects

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    65/76

    AircraftD

    esign

    I

    65 AD-1-2012-2013-02-Slides

    AirplaneHigh Speed Swept Wings

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    66/76

    AircraftD

    esign

    I

    66 AD-1-2012-2013-02-Slides

    AirplaneHigh Speed Swept Wings

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    67/76

    AircraftD

    esign

    I

    67 AD-1-2012-2013-02-Slides

    AirplaneArea Ruling

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    68/76

    AircraftD

    esign

    I

    68 AD-1-2012-2013-02-Slides

    AirplaneDelta Wing

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    69/76

    Air

    craftD

    esign

    I

    69 AD-1-2012-2013-02-Slides

    AirplaneDelta Wing

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    70/76

    Air

    craftD

    esign

    I

    70 AD-1-2012-2013-02-Slides

    AirplaneGliding Flight

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    71/76

    Air

    craftD

    esign

    I

    71 AD-1-2012-2013-02-Slides

    AirplaneGlide Slope & Range

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    72/76

    Air

    craftD

    esign

    I

    72 AD-1-2012-2013-02-Slides

    AirplaneThree View Drawing

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    73/76

    Air

    craftD

    esign

    I

    73 AD-1-2012-2013-02-Slides

    CIRRUS SR20-G3 CESSNA 172

    Crew 1 1Capacity 3 3Length 26 272Height 811 811Wingspan 384 361Wing Area 144.9 ft2 174 ft2Wing Aspect Ratio na 7.32Wing Airfoil RONCZ NACA2412Cruise Speed 155 knot 122 knotStall Speed na 47 knotMax. Takeoff Weight 3050 lbs 2450 lbsPowerplant 200 hp, 149 kW 160 hp, 120 kW

    AirplaneCharactristics

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    74/76

    Air

    craftD

    esign

    I

    74 AD-1-2012-2013-02-Slides

    AirplaneAirfoil of Cessna 172

    Airplane

  • 7/27/2019 AD-1-2012-2013-02-Slides

    75/76

    Air

    craftD

    esign

    I

    75 AD-1-2012-2013-02-Slides

    AirplaneWing Lift Slope Summary

  • 7/27/2019 AD-1-2012-2013-02-Slides

    76/76

    Air

    craftD

    esign

    I

    The End