Active SLAM : a Framework My, on-going, PhD Research Henry Carrillo Lindado Advised by: José A. Castellanos

Embed Size (px)

Citation preview

  • Slide 1
  • Active SLAM : a Framework My, on-going, PhD Research Henry Carrillo Lindado Advised by: Jos A. Castellanos
  • Slide 2
  • Bio Academic Background Name: Name: Henry David Carrillo Lindado. Hometown Hometown : Barranquilla Colombia. Academic: PhD in Computer Science and System Engineering (2010 -2014) University of Zaragoza - Spain M.Sc. in Computer Science and System Engineering M.Sc. in Electronics Engineering B.Eng. in Electronics Engineering Funding: Funding: FPI scholarship by the Ministry of Science and Innovation of Spain. 2010-2014. Contact: Here: 0.59 Cartesium [email protected] http://webdiis.unizar.es/~hcarri/pmwiki/pmwiki.php 1
  • Slide 3
  • So, What is my PhD about? Objective: Objective: To build an active SLAM framework. Why? Why? : Where should I go in order to improve my localization and map representation? If I go from A to B, will I be lost (e.g. Unable to localize)? X What movements should I make in order to keep my metrical error below X mm? Aim at: Metrical representations. Topological representations. Metrical+Topological representations. 2
  • Slide 4
  • What have I done? Metrical 3
  • Slide 5
  • Preliminaries SLAM H 0 : H 0 : A model of the operative environment is an essential requirement for an autonomous mobile robot. Three basic tasks: Where am I? What does the world look like? Where do I go? SLAM => Joint of two tasks. SLAM => Does not define the path-trajectory of the robot. Integrated approach => On the way to autonomy. 4 Exploration and Mapping with Mobile Robots. Cyrill Stachniss. 2006.
  • Slide 6
  • Preliminaries Active SLAM (I) Active SLAM => To integrate path planning into a SLAM process. To explorer more area. Navigate safely. Reduce uncertainty. Algorithms 1 Alg. [Feder, Leonard](99) Active perception [Bajacksy](86) Infinite Horizon and MPC [Leung, Dissanayake](06) 5
  • Slide 7
  • Preliminaries Active SLAM (II) 6
  • Slide 8
  • 6
  • Slide 9
  • 6J1J2J3J4J5 11,51,90,83
  • Slide 10
  • Preliminaries Active SLAM (II) 6J1J2J3J4J5 11,51,90,83
  • Slide 11
  • Uncertainty Criteria for Active SLAM (I) 7 Theory of Optimal Experiment Design (A-opt, D-opt, E-opt). Information Theory ( Entropy, MI).
  • Slide 12
  • Uncertainty Criteria for Active SLAM (II) Some possible uncertainty criteria for active SLAM are: Previous works ([Sim and Roy, 2005], [Mihaylova and De Schutter, 2003]) report A-opt as the best criterion and that D-opt gives null values. A-opt, widely used: [Kollar2008] [MartinezCantin2008] [Meger2008] [Dissanayake2006]. Although D-opt is commonly used in the TOED because it is optimal. 8 Determinant (D-opt) Trace (A-opt) Max (E-opt)
  • Slide 13
  • Uncertainty Criteria for Active SLAM (III) It is indeed possible to use D-opt in the Active SLAM context: The structure of the problem needs to be taken into account (i.e. The covariance matrix varies with time). ll mm. It is not informative to compare the determinant of a matrix l x l with a m x m. det(l x l) is homogeneous of grade l. The computation of the determinant of a highly correlated matrix (e.g. SLAM) is prone to round-off errors. Processing in the logarithm space D-opt for a l x l covariance matrix: Stem from [Kiefer, 1974] : 9
  • Slide 14
  • First experiment First experiment: on the computation Is it possible to compute D-opt from a robot doing SLAM? Execute a SLAM algorithm (e.g. EKF-SLAM, iSAM). Compute in each step: A-opt, E-opt, D-opt, Determinant, entropy and mutual Information. Simulated Robot indoor environment : MRPT/C++ Real Robot indoor environment : Pioneer 3 DX - Ad-hoc Real Robot indoor environment : DLR dataset Real Robot outdoor environment : Victoria Park dataset 10
  • Slide 15
  • 1E - Simulated Robot indoor environment (I) Scenario: Area of 25x25 m 2D EKF-SLAM Sensor: Odometry + Camera (360 - 3m range) 180 landmarks - DA Known. Gaussian errors: Odometry + Sensors 11
  • Slide 16
  • 1E-Simulated Robot indoor environment (II) Qualitative results (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI. 12
  • Slide 17
  • 1E-Real Robot indoor environment @ DLR Scenario: Area 60x40 m Sensor: Odometry + Camera 2D EKF-SLAM 576 landmarks DA known. 13
  • Slide 18
  • 1E-Real Robot indoor environment @ DLR Qualitative results (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI. 14
  • Slide 19
  • First experiment Quantitative analysis Average correlation between the uncertainty criteria: Variance: A-E (0,0002) / A-D (0,0540) / D-E (0,0481). A-opt y E-opt => High correlation. E-opt is guided by a single eigenvalue. A-opt y D-opt => Medium correlation. H 0 : D-opt take into account more components than A-opt. A-optE-optD-opt A-opt10,98720,6003 E-opt0,987210,5903 D-opt0,60030,59031 15
  • Slide 20
  • Second Experiment Simulated Robot with unitary horizon: MRPT / C++ 16
  • Slide 21
  • 2E-Simulated Robot indoor environment (I) Scenario: Area of 20x20m and 30x30m 2D EKF-SLAM Sensor: Odometry + Camera (360 - 3m range) Gaussian errors: Odometry + sensors. Path planner: Discrete (A*) and continuous (Attract-Repel). 17
  • Slide 22
  • 2E-Simulated Robot indoor environment (II) Resulting paths for each uncertainty criterion: (a) D-opt, (b) A-opt y (c) Entropy. Each colour represents an executed path. 20 x 20 m map. Qualitative analysis 18
  • Slide 23
  • 2E-Simulated Robot indoor environment (III) Resulting trajectories for 10000 steps active SLAM simulation. (a). Initial trajectory. (b) A-opt. (c). D-opt. Qualitative analysis. 19
  • Slide 24
  • 2E Quantitative Analysis 30x30 m Evolution of MSE ((a)-(c)) y chi2 ((d)-(f)) ratio. Average of 10 MC simulations. 20
  • Slide 25
  • Take home message D-opt is the optimum criterion to measure uncertainty according to the TOED (i.e. better than A-opt (Trace)). It is possible to obtain useful information regarding the uncertainty of a SLAM process with D-opt. D-opt shows better performance than A-opt in our simulated experiments of active SLAM. To compute D-opt in the context of a SLAM process => use the formulation presented here. 21
  • Slide 26
  • What have I done? Metrical: an example using D-opt 22
  • Slide 27
  • FaMUS: Fast Minimum Uncertainty Search 17 AB Minimum uncertainty path between A to B in a graph. Exhaustive search.
  • Slide 28
  • FaMUS: Fast Minimum Uncertainty Search 17 AB Minimum uncertainty path between A to B in a graph. Exhaustive search.
  • Slide 29
  • FaMUS: Fast Minimum Uncertainty Search 24 minimum uncertainty path shortest path Experiment: Are the minimum uncertainty path and the shortest path necessarily equal? Select two points A and B, and compare the final uncertainty. 1000 times x 4 datasets. (Biccoca, Intel, New colleges and Manhattan).
  • Slide 30
  • FaMUS: Fast Minimum Uncertainty Search 25 Examples of paths.
  • Slide 31
  • FaMUS: Fast Minimum Uncertainty Search 26 Summary of results 50% Improvement of a least 50% in timing respect to the state of the art. [Valencia2011]
  • Slide 32
  • What have I done? Topological 27
  • Slide 33
  • Topological Guiding question: Where should I go in order to improve my topological map? Challenges: well-posed and egocentric images. Execute a SLAM algorithm (e.g. EKF-SLAM, iSAM). Compute in each step: A-opt, E-opt, D-opt, Determinant, entropy and mutual Information. 28
  • Slide 34
  • Topological One solution: Textons (a.k.a gist)- Undelaying Structure- Probabilistic decision 29
  • Slide 35
  • What have I done? TBD 30
  • Slide 36
  • TBD Which are the confidence intervals in the active predictions? When do I stop the active behaviour? Find a relationship between uncertainty and metrical error. Use other constraints other than uncertainty. Speed up the decision process. Real experiments. 31
  • Slide 37
  • Active SLAM : a Framework My, on-going, PhD Research Thanks!!! [email protected] http://webdiis.unizar.es/~hcarri 32
  • Slide 38
  • Experimentos Primer experimento : acerca del clculo Segundo experimento : SLAM activo Robot simulado ambiente interior : MRPT / C++ Robot real ambiente interior : Pioneer 3 DX - Ad-hoc Robot real ambiente interior : DLR dataset Robot real ambiente exterior : Victoria Park dataset Robot simulado con horizonte unitario : MRPT / C++ 7
  • Slide 39
  • 1E-Robot en ambiente exterior @ VP (I) Escenario: rea de 350 x 350 m iSAM Sensor: Odometra + Laser 150 landmarks DA conocida. 13
  • Slide 40
  • 1E-Robot en ambiente exterior @ VP (II) Resultados cualitativos (a)-(f) A-opt, E-opt, D-opt, determinante, entropa y MI. 14
  • Slide 41
  • 1E-Robot en ambiente interior ad-hoc (I) Escenario: rea 6x4 m 2D EKF-SLAM Sensor: Odometra + Kinect 5 landmarks DA conocida 15
  • Slide 42
  • 1E-Robot en ambiente interior ad-hoc (II) Resultados cualitativos (a)-(f) A-opt, E-opt, D-opt, determinante, entropa y MI. 16
  • Slide 43
  • 2E - Anlisis cuantitativo 20x20 m Evolucin del MSE ((a)-(c)) y chi2 ((d)-(f)). Promedio de 10 MC. 18
  • Slide 44
  • Determinante 15
  • Slide 45
  • Artculos Experimental Comparison of Optimum Criteria for Active SLAM. Oral presentation in the III Workshop de Robtica: Robtica Experimental (ROBOT11). On the Comparison of Uncertainty Criteria for Active SLAM. Submitted to ICRA12. Planning Minimum Uncertainty Paths Over Pose/Feature Graphs Constructed Via SLAM. Submitted to ICRA12. 18
  • Slide 46
  • On the Comparison of Uncertainty Criteria for Active SLAM Thanks!!! [email protected] http://webdiis.unizar.es/~hcarri 19
  • Slide 47
  • FaMUS: Fast Minimum Uncertainty Search 17