17
Active Fault Tolerant Control of Quad-Rotor Helicopter Professor : Dr. Youmin Zhang 20/11/2010 1 Sara Ghasemi Farzad Baghernezhad

Active Fault Tolerant Control of Quad-Rotor Helicopterymzhang/courses/ENGR691X... · Active Fault Tolerant Control of Quad-Rotor Helicopter ... Mode Control for a Quadrotor Helicopter

Embed Size (px)

Citation preview

Active Fault Tolerant Control of Quad-Rotor Helicopter

Professor :

Dr. Youmin Zhang

20/11/2010 1

Sara Ghasemi

Farzad Baghernezhad

Contents

2/17

Quad-rotor Model

PID Controller

Comparison

Conclusion

Active Fault Tolerant Control

of Quad-Rotor Helicopter

Fault Detection

Sliding Mode Controller

4/8

Quad-rotor ModelActive Fault Tolerant Control

of Quad-Rotor Helicopter

6 degrees of freedom body

4 rotor 4 controllable variables

3/17

• Quad-rotor dynamics

Active Fault Tolerant Control

of Quad-Rotor Helicopter

4/17

X. Zhang, Y. Zhang, “Fault Tolerant Control for Quad-rotor UAV by Employing Lyapunov- based Adaptive

Control Approach”, AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, Aug. 2010.

Quad-rotor Model

failuredanger

Unacceptable

performance

degraded

performance

Normal

system

Fault

occurs

M. Witczak, Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems,

Berlin : Springer, 2007.

Active Fault Tolerant Control

of Quad-Rotor Helicopter

5/17

Fault Detection

Fault Detection

Active Fault Tolerant Control

of Quad-Rotor Helicopter

Residual Generation

oExtended Kalman Filter (EKF)

Residual Evaluation

oThreshold test on the residual value (limit

checking)

6/17

Fault Detection: Residual Generation

• System equation in state space form

7

Active Fault Tolerant Control

of Quad-Rotor Helicopter

Extended Kalman Filter

7/17

Fault detection: Residual Evaluation

8

Time window 10 iterations

Threshold

Active Fault Tolerant Control

of Quad-Rotor Helicopter

8/17

PID ControllerActive Fault Tolerant Control

of Quad-Rotor Helicopter

30 20 24

9/17

PID ControllerActive Fault Tolerant Control

of Quad-Rotor Helicopter

0 1 2 3 4 50

0.5

1

1.5

time

altitude

reference altitude

real altitude

0 1 2 3 4 5-0.04

-0.02

0

0.02

0.04

time

altitude e

rror

altitude error

0 1 2 3 4 50

2

4

6

8

10

time

z C

ontr

olle

r

Z Controller

0 1 2 3 4 50

0.5

1

1.5

time

roto

r outp

ut

rotor output

0 1 2 3 4 5-0.5

0

0.5

1

1.5

time

altitude

reference pitch

real pitch

0 1 2 3 4 5-0.1

-0.05

0

0.05

0.1

time

pitch e

rror

pitch error

0 1 2 3 4 5-1

-0.5

0

0.5

1

time

teta

Contr

olle

r

teta Controller

0 1 2 3 4 50.8

0.85

0.9

0.95

1

time

roto

r outp

ut

rotor output

0 1 2 3 4 5-0.5

0

0.5

1

1.5

time

altitude

reference roll

real roll

0 1 2 3 4 5-0.2

-0.1

0

0.1

0.2

time

roll

err

or

roll error

0 1 2 3 4 5-1

-0.5

0

0.5

1

time

phi C

ontr

olle

r

phi Controller

0 1 2 3 4 50.8

0.85

0.9

0.95

1

time

roto

r outp

ut

rotor output

0 1 2 3 4 5-0.5

0

0.5

1

1.5

time

altitude

reference yaw

real yaw

0 1 2 3 4 5-0.2

-0.1

0

0.1

0.2

time

yaw

err

or

yaw error

0 1 2 3 4 5-2

-1

0

1

2

time

psi C

ontr

olle

r

psi Controller

0 1 2 3 4 5

0.8

1

1.2

1.4

time

roto

r outp

ut

rotor output

10/17

PID controller for quad-rotor helicopter

Active Fault Tolerant Control

of Quad-Rotor HelicopterPID and Reconfigured PID

Controller

30% actuator loss 50% actuator loss

Max Error

after fault

Reconfigured

Time

Max Error

after fault

Reconfigured

Time

PID 0.055 7.0 0.145 8.2

Reconfigured

PID0.012 5.9 0.047 7.2

50% Loss of all rotors30% Loss of all rotors

0 5 10 15 201.9

1.95

2

2.05

2.1

time

real and d

esired a

ltitude

desired altitude

PID

reconfigured PID

0 5 10 15 20-0.05

0

0.05

0.1

0.15

time

err

or

reconfigured PID error

PID error

0 5 10 15 200

1

2

3

time

roto

r outp

ut

PID T

reconfigured PID T

5 10 15 20-3

-2

-1

0

1

time

resid

ual

residual

0 5 10 15 201.9

1.95

2

2.05

2.1

time

real and d

esired a

ltitude

desired altitude

PID

reconfigured PID

0 5 10 15 20-0.05

0

0.05

0.1

0.15

time

err

or

reconfigured PID error

PID error

0 5 10 15 200

1

2

3

time

roto

r outp

ut

PID T

reconfigured PID T

5 10 15 20-2

-1.5

-1

-0.5

0

0.5

time

resid

ual

residual

30% Loss of T1

0 5 10 15 201.8

1.9

2

2.1

2.2

time

real and d

esired a

ltitude

desired altitude

PID

reconfigured PID

0 5 10 15 20-0.05

0

0.05

0.1

0.15

time

err

or

reconfigured PID error

PID error

0 5 10 15 200

1

2

3

time

roto

r outp

ut

PID T

reconfigured PID T

5 10 15 20-6

-4

-2

0

2

time

resid

ual

residual

11/17

Active Fault Tolerant Control

of Quad-Rotor HelicopterSliding Mode Controller

D. Lee, H. J. Kim and S. Sastry. “Feedback Linearization vs. Adaptive Sliding Mode Control for a

Quadrotor Helicopter.” International Journal of Control, Automation, and Systems 2009, PP. 419-428

12/17

Sliding Mode ControllerActive Fault Tolerant Control

of Quad-Rotor Helicopter

1 1 7 5 5 10

0 5 10 15 200

0.5

1

1.5

2

2.5

time

altitude

reference altitude

real altitude

5 10 15 201.9

1.95

2

2.05

2.1

time

altitude

reference altitude

real altitude

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

3

time

each r

oto

r outp

ut

rotor output

13/17

sliding mode control of quad-rotor using sign function

Sliding Mode ControlActive Fault Tolerant Control

of Quad-Rotor Helicopter

Ali J. Koshkouei and Keith J. Burnham. Control of DC Motors Using Proportional Integral Sliding

Mode. Control Theory and Applications Centre, Coventry University, Coventry CV1 5FB, UK.

A. Chamseddine, H. Noura. Control and Sensor Fault Tolerance of Vehicle Active Suspension.

IEEE Transactions on Control Systems Technology, Vol. 16, NO. 3, May 2008, pp. 416- 433.

-5 0 5-1

-0.5

0

0.5

1

S

sat(

s)

sat(s) for phis=1

-5 0 5-1

-0.5

0

0.5

1

S

sat(

s)

sat(s) for phis=0.5

-5 0 5-1

-0.5

0

0.5

1

S

sat(

s)

sat(s) for phis=0.1

-5 0 5-1

-0.5

0

0.5

1

S

sat(

s)

sat(s) for phis=0.01

14/17

0 5 10 15 200

0.5

1

1.5

2

2.5

time

altitude

reference altitude

real altitude

0 5 10 15 201.9

1.95

2

2.05

2.1

time

altitude

reference altitude

real altitude

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

3

time

each r

oto

r outp

ut

rotor output

sliding mode control of quad-rotor using saturation function

Active Fault Tolerant Control

of Quad-Rotor Helicopter

Controller

30% actuator loss 50% actuator loss

Max Error

after fault

Reconfigured

Time

Max Error

after fault

Reconfigured

Time

Reconfigured

PID0.012 5.9 0.047 7.2

Integrated SLM 0.004 2.9 0.011 6.5

0 2 4 6 8 10 12 14 16 18 201.9

1.95

2

2.05

2.1

time

real and d

esired a

ltitude

desired altitude

Integral SLM

reconfigured PID

0 2 4 6 8 10 12 14 16 18 20-0.05

0

0.05

0.1

0.15

time

err

or

reconfigured PID error

Integral SLM error

Reconfigured PID and integral sliding mode controller under 50 % actuator fault

15/17

Comparison

Quad-rotor modeled

PID and Sliding mode controller implemented

PID controller performance in fault tolerant improved by

Extended Kalman filter and gain scheduling

Sliding mode performance improved by adding integral to

sliding surface

Integral sliding mode seems the best between other methods

Active Fault Tolerant Control

of Quad-Rotor HelicopterConclusion

16/17

Active Fault Tolerant Control of Quad-Rotor Helicopter

20/11/2010 17