Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Theory and Numerical Simulation).pdf

Embed Size (px)

Citation preview

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 1/8

    Yang-Hann Kim

    Associate Professor.

    Jae Woong Choi

    Research Assistant.

    School of Mechanical and

    Material Engineering,

    Korea Institute of Technology,

    400 Kusung-dong, Yusung-gu, Taejon-shi,

    302-338, Korea

    Byung Duk Lim

    Research Associate.

    Acoustics and Vibration Laboratory,

    Korea Standards Research Institute,

    Taejon-shi,

      302-340, Korea

    Acoustic Characteristics of an

    Expansion Chamber With Constant

    Mass Flow and Steady

    Temperature Gradient (Theory and

    Numerical Simulation)

    The governing equation of acoustic w ave propagation in a circular expansion cham

    ber with me an flow and tempe rature gradient is

     solved.

      T h e

     circular

      chambe r is

    divided into N se gments and the flow spee d and tempe rature are assumed to be

    constant in each segment. T h e solution is obtained in recursive form by applying

    the

     matching condition on

     the

     boundary of adjacent e lements. T h e  solution

     is

     verified

    by comparing it with the experimental results. The results demonstrate that the

    present

     theory

     can  well predict the

     transmission loss

     of an

     expansion chamber which

    h as offset, a twisting angle , mean  flow, and temperature gradient.

    Introduction

    An understanding of acoustic wave propagation through an

    expansion chamber is essential in order to design the silencer

    system of autom obiles, blowers, and other machines. The main

    difficulty of this subject is that the governing wave equation

    is not linear because of the nonuniform mass flow of gas as

    well as the temperature gradient along the chamber.

    Munjal and Prasad [1] applied the perturbation method to

    solve the wave equation which represents the acoustic char

    acteristics of a uniform pipe with mean flow as well as linear

    temperature g radient. The solution shows an unrealistic offset

    of the transmission loss curve. Peat [2] derived the transfer

    matrix considering variable m ean gas density and the velocity

    gradient along uniform pipe, but this result also has the offset

    which cannot be explained in a physical sense. El-Sharkawy

    and Nayfeh [3] successfully analyzed the acoustic character

    istics of an expansion chamber by theory and experiment, but

    the effects of mean flow and tem perature v ariations along the

    chamber on the propagation of acoustic wave were not con

    sidered. Due to the complexity of the wave equation, which

    represents sound wave through an expansion chamber with

    mass flow and tem perature g radient, M unjal [4] tried to solve

    the equation by numerical technique. The drawback is that

    many meshes are required to account for higher order modes.

    Apa rt from this approach , Ih and Lee [5] succeeded in getting

    theoretical results which included higher order modes of a

    circular expansion chamber whose inlet and outlet ports have

    offset and a twisting angle. The temperature effect was not

    considered in their study. Davies [6] discussed the effect of

    sudden expansion and contraction on acoustic wave propa

    gation in terms of

     acoustic

     impedance and the reflection factor.

    Viscothermal loss on the pipe wall was considered by the mod

    ification of the wave number.

    In this study, the general equation for acoustic wave prop

    agation through an expansion chamber, which includes the

    effect of m ean flow and steady tempera ture gradient

     is

     derived.

    The numerical solution of the equation is also introduced.

    Results are compared with the results of experiments which

    were performed by the authors [9]. The numerical solution

    was obtained by dividing the expansion chamber into N cy

    lindrical elements and applying the requirement of pressure

    and velocity continuity between the bound ary of adjacent ele

    ments. It can be assumed that each element had homogeneous

    mass flow and temperature; that is, the governing equation

    for each element has uniform mass flow and convective terms.

    By applying the boundary conditions, the solution was ob

    tained in recursive forms.

    Theoretical Formulation and Solution Method

    A three-dimensional acoustic wave equation for the isen-

    tropic process can be easily derived from momentum, conti

    nuity, and state equations:

    V« - V P + V • ( K • V ) K -

    ±/±_dP\

    dtypc

    2

      dt)

    Contribu ted by the Design Engineering Division for publicatio n in the  JOURNAL

    O F

      VIBRATION AND ACOU STICS.  Manuscript received November 1989.

    PC

    2

    (VP)>V  = 0

    (1)

    The first term represents the variation of the body force.

    4 6 0 / V o l . 1 12 , O C T O B E R 1 9 9 0

    Tra ns a c t ions o f the ASM E

    Copyright © 1990 by ASMEwnloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 2/8

    The second and fou rth term s express the change of energy due

    to the change of velocity and temperature in space. The third

    term is the time rate of change of energy within the system.

    The general solution of this equation has not been found yet.

    O ne of the reasons is that the acoustic velocity and density of

    gas are not constant, varying with respect to a spatial coor

    dinate. For example, temperature (7), density (p), acoustic

    velocity (c), and mean flow velocity

      (W

    0

    )

      of a simple expansion

    chamber which has a l inear temperature gradient (Fig. 1) can

    be expressed as follows:

    T

      _

      T

      ~

    T

    _

    T

      =

     Ti  Tl

    T

    x

      +  T

    2

    '

    T(z) =T,

    p z) =p

    m

    /

    1-T,

    (H

    (2)

    c(z)  = 20 .05  yJT{z)

    W(z)

      =

      W

    m

    - ( H

    But if there is no temperature variation, then the density and

    acoustic velocity are constants . Therefore, equation (1) can be

    simplified as

    V

    2

    P -  -5

    D

    Z

    oP

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 3/8

    The superscripts  + and -  represent  the  wave going  to the

    right and the wave going to the  left, respectively.  The n  rep

    resents the  mode number in the  radial direction  and

     m

     is the

    mode number  in the  circumferential direction. E quation  (6)

    ca n

      be a

      solution

      of

      equa t ion

      (4) for a

      circular expansion

    chamber when there  is uniform tempera ture .

    The boundary condi t ions

      of

      equation

      (4) for the

      circular

    expansion chamber (Fig.  1) can be decomposed as

    90

    dz

    dz

    z=o  oz

    z= i

      dr

    -0  {la)

    z = l

    = VJ

    2

    (r,8),

    30

    dz

    = 0,

    z=o

    dr

    = 0  (lb)

    where  f

    t

    (r,  0) = Heav iside unit step function

    1  at the inlet/ou tlet pipe at

      r

     = 5,

    0 other locations

    C

    It

     can be

      assumed that

      the

     wall

     of the

     cylinder

     is

      acoustically

    rigid, as is expressed in the  third equations  of  equations (7a)

    and (76). Applying  the rigid boundar y con dition in the r di

    rection

      to

      equa t ion

      (6), the

      following equations

      can be ob

    tained.

    ^ ( X

    n m

    ) = 0

    (8)

    The wave number  in the z  direction  can be  obtained  by

    substituting equations  (8) and (6)  into equation (4):

    kf

    nm

     =

     k[ M  =F

      V l - ( l - M

    2

    ) ( f c

    r a m

    / f c )

    2

    / ( l - M

    2

    ) ]  (9)

    where  M = W/c:  Mach number

    k = w/c  :  wave number

    It

     can be

     also assumed th at there

     is no

      energy loss across

     the

    wall. If  there is the viscothermal effect,  the wave num ber will

    be complex  as Davies  [5] suggested.  If  boundary condi t ions,

    equation (7a), are applied on each of  the elements whose tem

    pera ture is uniform (Fig. 1), then the  following matching con

    ditions

     can be

     obta ined.

    Pq-\\l-l

    a

    -Pq\l-l.

    dz

    I->a

    dz

    l-l

    a

    -  d6

    P=jup4>

     +  pW-^-

    dz

    (10)

    ( ID

    (12)

    U s ing  the  second equation  of  equation  (la),  the  relation

    between  R%

    m

     and R^

    m

     can be  found. Then the  matching con

    ditions which  are  expressed  by equa t ions  (10) and (11), lead

    to

     the

      following recursive equa tions.

    K-qnm ~  ^qnm^qnm

    **-qnm  qnmK-(q—\)nm

    (13)

    The coefficients

      S

    qnm

      and

     W

    qnm

      are

      shown

      in

      Appendix

      A.

    With these relations,  we can obtain  the velocity potential for

    the first element as

    n  m \

      a

    /

    (14)

    To apply the first equation

     of

     equation (7a)

     to

     equation (13),

    we must expand f

    x

    (r, 6) in  te rms of the  Fourier-Bessel series

    [7],

      Tha t is

    j  \rf(r,6)J

    n

    (\„

    m

      r

    Acosnddrdd

    V  \mj

    (\m)

    (  -\

    CO S/20  (15)

    where

      n =

     0 ,1 ,2 ,

      . . .

    m = 0 ,1 ,2 ,  . . .; n -  0 and m = 0 should not be as

    signed to  zero simultaneously

    _ ( 1 n = 0

    7

    " ~ ( 2

      n*0

    Hence, th e velocity potentials

     for

     the first

     and

     the last elem ents

    are

    (

    a

    i

      a

    > (

    e

    i

    k+

    izM

    z

     + s

    l00

    e >

    k

    'iz0O

    z

    )

    4>i=JVi

    HzOO

    +

      Sinak]

    100

    ft

    l«00

    2

    ln

     ai/a)J_„  \

    nm

      -A h \

    nm

     ?A

    "  ' (K„

    m

      +

     S

    lznm

    ky

    znm

    )\\-

      ^-\Jl(\

    nm

    )\

    n

    (16)

    (e>* I**™* + S

    lnm

    e >

    k

     w»>>

    z

    )J,

    V~J

    V

    \

    ^iz00

     +

      ino fc

    00«-lz00

    « ( K m ~

    a

    )cosndl

    *& (e

    /k

    y^

    :

      +

      S

    y00

    e

    /k

    y^o

    z

    )

    +EE

    n  m

    2

    7

    „ (a

    1

    / a ) / _„

     (\

    nm

      b

    A J

    {

     (\„

    m

      ^  W

    ynm

      ...W

    2

    ,

    \ K\znm  "i  Inm^lznm   )

    (-£) •

    (

    e

    i

    k

    'yznnfi + s

    ynm

    e

    ik+

    yz'»»

    z

    )J „  (  „

    m

      -  J cosnd

    \

      «/ J

      ( n )

    where  « = 0 ,1 ,2 ,  . . .

    m = 0 , l , 2 ,  . . .; « = 0 and m = 0 should not be as

    signed to  zero simultaneously

    The coefficients

      S and  W

      are shown

      in

     Appendix

     A.

    The mean pressure acting on the  inlet  and  outlet ports of

    the expansion chamber

     can be

     readily obtain ed

     by

     substituting

    equations

      (16) and (17)

     into e qua tion (12). This gives

     P

    x

     and

    P

    y

    .  Integrating these with respect to the area of the inlet and

    outlet ports leads

     to

    5

    »

    =

    i f I

    P

     

    rdrdd=U

    i

    Z

    i

    . - ^ I l ^ y * * - ^ A

    (18)

    £/] ( =  7ra V{) is the volume flow rate of the  inlet p ort.

    By using Graf's a dditional theorem [8] to get the integration,

    Zi

     and Z

    3

     can be obtained . T he details are shown in Appendix

    A .

    Similarly,

      we

     have

     to

      apply

      the

     bou nda ry condition which

    is shown in equa t ion  (lb).  After similar derivation,  the mean

    pressures

     of the

     inlet

     and

      outlet ports

     can be

      obtained.

    1

    Pl2   -  7

    TTOT

    — j

      \P

    l

    rdrde=U

    2

    Z

    2

    l

    '

      Tfl?  j ] '

    (19)

    P

    y

    rdrd6=U

    2

    Z^

    U

    2

    ( = ir a

    2

    V

    2

    ) is the volume flow rate of  the outlet port. P

    it

      P

    y

    ,

    Z

    2

     and Z

    4

     are shown in Appendix B.

    Finally,  the  mean pressures of the inlet  and  outlet ports of

    the expansion chamber

     can be

      obtained from equations

     (18)

    and (19).

    4 6 2 / V o l .  112, OCTOBER 1990

    Transac t ions

     of the

     ASME

    wnloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 4/8

    2.6kHz

    =L3ZJ=

    ,w

    vvW

    a .a   4.a

      s i

    f r e que nc y  CkHz J

    CdBJ

    SB

    L

    1  1

    =H.

      ZGktiz

    nf   \ f \f  If it  l i / \ l / / J  A A* l\

    ...

      1 1

    l_

    r

    IM^

    3 . 2

    f requency

    S.4

    CkHzJ

    ( a ) D = 1 5 0 m m , L = 3 0 0 m m , C e n t er

      to

      C e n t e r

    (

      - :

      E x p e r i m e n t a l r e s u l t .  • • •

     :

      P l a ne w a ve t he n r v

     1

    ( c) D = 1 5 0 m m , L = 4 5 0 m m , C e n t e r

      to

      C e n t e r

    (  - :  E x p e r i m e n t a l r e s u l t , • • • :  P l a ne w a ve t he o r y  )

    JVxWI

    J

    [Mb]

    (b) D=150mm, L=300mm, Cente r  to  Center

    ( Present theory;  1 e l e m e n t , n= 2 , m~7)

    [dB]

    60

    JvL :O TYYYliiklU

    C E E

    s

    J

    1 3  3.2 4.B

    frequency

    (d) D~150mm, L—450mm, Cente r  to  Center

    (Present theory;  1 element, n~ 2, m— 7)

    BA

    Fig . 2 TL  of circular simple expansion chamber w ith the same diameter

    but different lengths (Effect  of  lengths  on the TL of  circular simple

    expansion chamber with the same d iameter)

    P

    l

    =P

    n

    + P

    a

    =U

    l

    Z

    i

      +

     U

    2

    Z

    2

    P

    2

     =

      P

    21

    + P

    22

    =U

    l

    Z

    3

    + U

    2

    Z

    4

    Rewriting equation

      (20) in

      matrix form leads

     to

    where  T

    n

     ••

    T,,=

    T

    22

     —

    M

    M

    n  -

    * ]

    - ^ « - 0

    • 2Jll

    2

      = 0

    l

    ]

      =

    T

    u

    [T

    21

    z

    3

    Z\Z

    4

    z,

    1

    z

    3

    -

    z

    4

    z

    3

    T

    l2

    T

    22

    (20)

    (21)

    These are the  same results  as  those obtained  by Munja l and

    Prasad

      [1] for a

      straight pipe with mean flow. This result

    confirms that  the derived solution  is correct.

    The transmission loss

      of an

      expansion cham ber with

     ane-

    choic termination  can be readily obtained from equation (21)

    by simply regarding that there is no reflective wave  at the outlet

    port

     of the

      chamber . Tha t

     is

    I Tn  + T

    i2

    /Z

    m

      + T

    2l

    Z

    02

      +

     T

    22

    1

    Z ,

    r L

     =

      201og

    w h e r e

    Z

    0

    i=PiCi/(ircr\)

    Z

    02

     =  p

    y

    c/(iraj)

    (23)

    + Z

    2

    Tjj(i

      = 1,2

     and,/ ' =1 , 2 ) are often called four-pole para met ers.

    When there is mean flow along a  uniform pipe , the  four-pole

    parameters  in  equation  (21) for  plane wave are

    T

    n

      =

     e -

    jklM/ii

    -

    M

    \os(kl/(l

      - M

    2

    ) )

    T

    u

      =jpc/(Tra

    1

    )e-J

    klM/

    U-

    M

    \m(lcl/(

      1 -  M

    2

    ))  (22)

    T

    2i

     =jira

    2

    /(pc)e-J

    klM/

    ^-

    M

    \m(kl/(l

      -  M

    2

    ))

    T

    22

     =  e -

    JklMni

    -

    M

    \os(kl/(\-M

    2

    ))

    C ompar i son B e tw e e n N ume r ic a l

      and

     E xpe r ime nta l

     Re-

    sults

    To verify  the  solution which  can account  for the effect  of

    mean flow, temperature gradient, and geometrical parameters

    (length, diameter, offset distance,  and  twisting angle) on the

    acoustic wave propagation  in a  circular expansion chamber,

    comparisons between  the  numerical solutions and the  exper

    imental results  [9] are performed.  For the numerical simula

    t ion , a  simple expansion chamber depicted in Fig. 1 was u sed.

    Transmission  Loss  Without  Me a n  Flow).  Figure  2  shows

    the transmission loss curves  for  expansion chambers whose

    lengths are 300 mm and 45 0 mm and whose diameters are the

    same (300 mm). Figure 2(a) demonstrates that the experimental

    result and the result ob tained  by the  plane wave theory agree

    well in the low frequency range . Transmission loss of the ex-

    Journal of Vibration and Acou stics

    OCTOBER 1990, Vol. 112 / 463

    wnloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 5/8

    Exper imenta l resul t

    : P resent theory( l e lement , n=2, m=7)

    Fig . 3 TL of circular simple expansion chamb er (D = 300 mm , L = 450

    mm,   center to center)

    1 . 6 3 . 2

    frequency

    : Exper imenta l resul t

    4 . a 6 . 4

    CkHi l

    : P resent theory( l e lement , n=5, m=7)

    Fig .

     4 Effect of offset of Inlet/ou tlet port to TL (D = 150 mm , L = 300

    mm;  twisting ang le = 0°, offset to offset (50 mm each))

    Exper imenta l resul t

    —.—.— : Present theory fl elemen t, n= 5, m= 7)

    (a) Twisting ang le= 120°, O ffset to O ffset(50mm each)

    : Exper imenta l resul t

    : P resent theory( l e lement , n=5, m=7)

    (b) Twisting an gle= 180°, Offset to O ffset(50mm each)

    Fig .

     5 Effect of twisting ang le of inlet/outlet port to TL (D = 150 mm,

    L = 300 mm)

    pansion chamber based on the plane wave theory can be ex

    pressed by

    7Z,= 101og

    I(

    1

     +

    R )

    sin

    2

    W

    in which

      a

      is the area ratio between the expansion chamber

    and the inlet-outlet ports, that is (D/df,  I is the length of the

    expansion chamber, and  k  is the wave number.

    For the high frequency range, in this case over 2.6KHz,

    where higher order modes start to participate in the transmis

    sion loss, the plane w ave theory is no longer valid as Fig.  2(a)

    demonstrates. Figure 2(b) shows the comparison between the

    results of the present theory and the plane wave theory. This

    confirms th at the present theo ry predicts the transmission loss

    exactly the same as the plane wave theory does in the low

    frequency range.

    For the high frequency range, the results obtained by the

    present theory do not coincide with the experimental results

    [Figs.

      2(a) and  2(b)].  The sharp peak above 3.2KHz is pro

    foundly evident in Fig. 2(b), but no t in Fig. 2(a). This is because

    the resolution of Fig. 2(a), which is about 25Hz, is much lower

    than that of Fig. 2(b). This can be readily verified by carefully

    observing each hump and bump of Figs. 2(a) and   2(b). The

    trend is quite similar but not the magnitude. Comparing Figs.

    2(c) and 2(d) also reveals similar results. These conclude tha t

    the developed theory can predict the transmission loss of an

    expansion chamber whose inlet and outlet ports do not have

    offset and a twisting angle. Figure 3 also confirms the ability

    to predict the characteristics of

     wave

     propagation

     in

     the circular

    expansion chamber.

    The effect of offset between inlet and outlet ports of an

    expansion chamber on the transmission loss is well demon

    strated in Fig. 4. Comparing Fig. 4 with Figs. 2(a) and

     2(b),

    we can see that the occurrence of the modes in the radial

    direction essentially m akes a different transmission curve. The

    first radial mode is observed at

     1.33KHz

     which satisfies X

    0

    i =

    1,84.

    The presence of a twisting angle between the inlet and outlet

    ports controls the transm ission loss in a high frequency region.

    This can be understood by Fig. 4 and Fig. 5.

    Transmission Loss in the Presence of Mean Flow and Tem

    perature G radient. Figure 6 shows the transmission loss of an

    expansion chamber whose diameter and length are 150 mm

    and 450 mm, respectively. In this case, the flow velocity is 50

    m/s which corresponds to M ach number 0.14. Com paring Figs.

    2(c) and

      2(d)

      with Fig. 6 does not reveal the effect of mean

    flow on the transmission loss. The presence of mean flow

    modifies the wave number inversely propo rtional to

     (1

      - M

    2

    )

    as can be seen in equation (22). Mach number 0.14, which is

    the case in Fig. 6, only modifies a wave number of 2 percen t.

    464 / Vol. 112, O CTO BER 1990

    Transact ions of the ASME

    wnloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 6/8

    "L

    _r

    mm

    3 -t.S

    frequency [kH

    : Experimental result(Mean flow velocity—50m/s)

    : Present theory(Mean flow velocity=50m/s,

    1 e lement , n=2, m~7)

    Fig . 6 Effect of mean flow to TL of circular simple expansion cham ber

    with concentric inlet and outlet port (D = 150 mm , L = 450 mm, center

    to center)

    Fig . 7 Effect of mean flow on TL of simple expansion chamber withou t

    temperature gradient (Tr = 0; D = 150 mm , L = 300 mm; 6 elem ents,

    n = 5, m = 7)

    This is the reason why

     Figs.

     2(c) and 2(d), and Fig. 6 are almost

    identical.

    The effect of mean flow is demonstrated better in Fig. 7

    than Fig. 6. In the low frequency range, the frequency shift

    due to the presence of mean flow can be observed easily. In

    the high frequency range where higher order modes control

    the transmission loss, the mean flow modifies the curve of

    transmission loss in a more complicated way than it does in

    the low frequency range [equation   (22)].

    The effect of temperature gradient on transmission loss is

    shown in Fig. 8. As the temperature gradient increases, so do

    the amplitude of transmission loss and the cutoff frequency.

    Acoustic impedance is inversely proportional to   \pT.  There

    fore,

      the acoustic impedance of the outlet port is higher than

    that of the inlet port. This introduces a higher transmission

    loss in magnitude.

    It is very difficult and expensive to obtain a high mach

    number and meaningful temperature gradient in the experi

    ment. Also, the measurement of transmission loss of an ex

    pansion chamber in the presence of a high Mach number and

    temperature gradient has many difficulties [9]. Noise due to

    the turbulence of the flow must be properly handled, and

    special sensors which can be operated in hot gas must be de

    signed or obtained. The numerical solution does not have these

    limitations.

    The number of elements which were required for conver

    gence was 6 to 9 in most cases. The number of modes for

    convergence was always less than 10. In most cases, it was 8,

    as can be found in all of the figures.

    frequency Dti9s]

    Fig . 8 Effect of temperature gradient on TL of simple expansion cham

    ber without mean flow (M = 0; D = 150 mm, L = 300 mm; 6 elements,

    n = 5, m = 7)

    Conclusions

    The solution of the acoustic wave equation which governs

    the acoustic wave propagation in a circular expansion chamber

    in the presence of mean flow and temperature gradient was

    derived in recursive form. The solution was verified by nu

    merical simulation. The num erical results of transmission loss

    were compared with the experimental results. We found that

    the suggested numerical solution well predicted the transmis

    sion loss of an expansion chamber. The number of elements

    and number of modes in radial and circumferential directions,

    which are required for convergence, are sufficiently small

    enough to extend this scheme to more general cases; i.e., an

    elliptic expansion chamber, pulsating gas flow, etc.

    References

    1 Munja l , M. L. , and Prasad, M. G. , 1986, "O n P lane Wave Propaga t ion

    in a Uniform Pipe in the Presence of a Mean Flow and a Tem perature Gra dien t, ' '

    Journal oflheAcoust. Soc. Am.,

      Vol. 80, No . 5, pp . 1501-1506, Nov .

    2 P eat, K. S., 1988, "T he Transfer M atrix of a U niform Duct with a Linear

    Tempera ture Gradient ,"  Journal of Sound and Vibration,  Vol. 123, No . 1, pp.

    43-53 .

    3 El-sharkawy, A. I . , and Nayfes, Ali H., 1978, "Effect of an Expansion

    Chamber on the Propaga t ion of Sound in Circula r Duc t , ' '

      Journal oftheAcoust.

    Soc. Am.,  Vol . 63, No. 3 , pp. 667-674, Mar .

    4 Munja l , M .L . , 1987, "A S imple Numer ica l Method for Three Dimensiona l

    Analysis of Simple Expansion Chamber Mufflers of Rectangular as well as

    Circular Cross Section with a Stationary Medium,"   Journal of Sound and

    Vibration,

      Vol. 116, No. 1, pp. 71-88.

    5 Ih , J eong-Gu on, and Lee , Byung-Ho, 1985, "Analysis of Higher O rder

    Mode Effects in the Circular Expansion Chamber with Mean Flow,"   Journal

    oftheAcoust. Soc. Am.,  Vol. 77, No . 4, pp . 1377-1388, April.

    6 Davies , P . O . A. L. , 1988, "Prac t ica l F low Duct Acoust ics ,"   Journal of

    Sound and Vibration,

      Vol. 124, No . 1, pp . 91-1 15.

    7 Hildebrand, F. B., 1976, Advance d Calculus for Application,  Prentice Inc.,

    C ha p .

      5.

    8 Watson, 1966,

     A Treat ise on the Th eory of Bessel Functions,

      Cambr idge

    U niv. Press , Chap. 6 .

    9 Kim, Y.-H., Lim, B. D., Kim, S. H., and Kwak, Y. K., 1989, "Experimental

    Study on Acoustic Wave Propagation in Circular Expansion Chamber with Mean

    Flows," ASME Paper 89-WA/NCA-7, a lso presented a t the Winte r Annua l

    Meeting, San Francisco, California. December 10-15, 1989.

    A P P E N D I X A

    3

    (q-\)nm'

    w =

    Tr

     qnm

    Xq \

      \Xq22  —  X

    qn

    X

    q

    2\

    .e

    ik

    \q~\)zmn^  + - • • + / (? -1) )

    Xq2lQ(q- \)nm ~  X

    q

    \

    2

    k(

    q

    -  \)

    znm

    X„ \  \X

    a

    Y>   —  X„i

    2

    X,

    ^q\\

    A

    qTL q\2

    A

    ql\

    • e ' ' '

    r

    ( ? - l ) « « m ( ' l

    +

    - -

      . +

     ' ( 8 - 1 ) )

    wnere t i

    qn m

      =

     o

    qnm

    K

    qnm

    ^ynm

    e/(*;

    Journal of V ibrat ion and Acoust ics

    OCTOBER 1990, Vol . 1 12 /46 5

    wnloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

    http://xq22/http://xq22/http://xq22/

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 7/8

    Qi

    nm

    =p

    q

    ^^W

    q

    k^

    nm

    )

    Xqn

      =e/*5w«('i+ - •  •

    +

    ' (» -

    1

    )

    )

    G ,

    +

    m

     + S,

    nm

    e * ? W ' i + - • • + ' < « - i ) > g -

    n f f l

    ^ 2 .

      ^ w ^ ^ - • •

    + / ( < ?

    -

    i ) )

    +s ,

    n m

    ^„

    m

    * , = y * 2

    (a

    2

    /a)

    2

    kyzOO + SyaAyzOO

    ( /

    -

    z )

    ) . /

    n

    (x „

    m

    0cosn0

    Z i = -

    Pi

    «i/«)

    2

    •UE

    ^ 0 2 2

      " - { g - l ^ n m

    1 7  w

     

    2y„(.a

    2

    /a)J_„(

      X

    nm

      -^\

    7, (X„

    m

      -^ j

    '  ^yznm "* ^ynm^yznm)  \* ~~

      -v

     2  I « 

    ">"

     «

    T « l  W z OO +SlOO^ljOO

    [co l+S

    100

    )

    ( e

    i

    ' K -

    l

    ' -

      l

      + S . / j « " -

      l

    ) / ,

    "\

    X

    "

    r a

     a)

    cosn9

    + ^i(*i

    +

    zoo + Sioo*iloo)]

    4 7 „ A „ ( x „

    m

    ^ 7 ^ X ^

    "

      m

      Knm  + S\

    nm

    kunm)\A~  r̂)

      fyKn,)H

    [u(l + S

    lnm

    ) + W

    l

    (kt

    z

    nm +

    nm

    where n = 0,1,2, . . .

    m = 0,1,2, . . .; n = 0 and m = 0 should not be assigned

    to zero simultaneously

    - 1 ) 0 0

    TTtfJ

     C ^jOO

     +

    ^OO^VzOO

    [co(e

    /

    *W '

    )

     + S

    100

    e'* i*

    )o(

    '

    )

    )

    - ̂ "»

    l

    +Sy„

    m

    e >

    k

    yz">»

    1

    ) +  J¥y(k+

     

    ,„

    m

    e >

    k

    yz»»i

    l

    +

      S

    ynm

    ky

    Z

    m

    e

    ik

    yznmi)}

    where  n = 0,1,2, . . .

    /« = 0,1,2, . . .;« = 0 and w = 0 should not be assigned

    to zero simultaneously

    z

    4 =  L +  /̂f̂ - [«(1 + S>oo) -*W*x> + W£ oo ) l

    7T0£  lAj/tfX) +Z>y00

    K

    yz00

    -EE-

    A P P E N D I X

      B

    «>./•-.(»•.;) 4 * )

    ( -£) •

    V z n m  ^ynm'^yznm.

    -  90i

    P ,  =76)00 +p*P,

     —

    [Cl)(l +Sy„

    m

    ) —  Wy(ky

    Z

    m

    + Sy„

    m

    ky

    Z

    m

    )]

    Py=jWp(j>y + pWy

    dz

    ^ynm)

      rr

    yK^ywrn'

      LJ

    ynm'

    y

    yznm

    where « = 0,1,2, . . .

    m

     =

     0,l,2,

     . .

    .; « = 0 and  m

     =

     0  should not be assigned

    to zero simultaneously

    y"K

    2

    (a

    2

    /a)

    2

    W

    m

    .  ..W,

    K

    yzWS ~r 'JyOoKyzM

    ( J

      °°  ( ^ I J O O C - ^

      +

      ^ ^ I Z O O C - - ^ )

    X?2 lQ( ?+ l)nm + X?llk(

    9

    +

     1)znm

    X

    9

    n ^ ? 2 2

     —

     XtfuX^i

    ,&

    k

      ( ? + l ) z n m ( ' - ' l  (?)>

    « m

    2

    7

    „(«

    2

    /a) (/_„  (\

    nm

     ^ 7, (̂ X„

    m

     ̂ W

    lnm

     ...W,

    y~\)nm

      W

    1 m

    \ Kyznm  ~i~ ^ynm^yznm )

    ( -  w ^

    K

    X

    g 2 2 Q ( g +

      l)«m ~

    X

    g l 2 k (

    +

    g

    + j)

    znm

      + ( , _ / , _ .  ,, ,,,

    tgl"  (q+iyznm

    1

    -

    1

      1 ' ( 9 -1 ) )

    X

    « l  1

    X

    ?2 2 ~

    X

    9 l 2

    X

    9

    2 1

    466/Vol. 112, OCTOBER 1990

    Transactions of the ASME

    wnloaded From: http://vibrationacoustics.asmedigitalcollection.asme.org/ on 01/29/2016 Terms of Use: http://www.asme.org/about-asme/terms-of-use

  • 8/18/2019 Acoustic Characteristics of an Expansion Chamber With Constant Mass Flow and Steady Temperature Gradient (Th…

    http:///reader/full/acousticcharacteristicsofanexpansionchamberwithconstantmassflowandsteadytemperaturegradie… 8/8

    Kqnm ^qnm^-qnm

    X

    qn

    =-^

    k

    ig

    +

    Dznm(l-n lg)Q-

    q +

    \)nm

    ^ \ 7

    Iznm

    3

    lnm

    Iznm k  i

    znm

    )l

    H-lznm

    Xql\~

    k^fii^vmii-'i

      — - / , ) +

     S

    qn m

    k-

    znm

    e

    k

    ~^^-n

     - -lq)

    < l l  —

    ~lq)

    ••

      • "

    U.S. Postal Sorvico

    STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION

    Required  by 39  U.S.C.  3685)

    1A. T i t le  of  Pub l i ca t ion

    T R A N S A C T I O N S  OF THE   A S M E

    J O U R N A L

      OF

      V I B R A T I O N

      A ND

      A C O U S T I C S

    3. Frequency  of  Issue

    Q U A R T E R L Y

    1B .

      P U B L I C A T I ON NO.

    4 1 2 0

    3 0

    3A .  No. of  Issues Pub l i shed

    A n n u a l l y

    F O U R

    2.

      D o t e  of  Fil ing

    9 / 1 1 / 9 0

    3B .

      An nue l Subscr ip t ion P r ice

    $ 1 1 0 . 0 0

    4,   Com p le te Ma i l ing Address  of  K n o w n O f f i c e  of  Pub l i ca t ion  (Street,  City,  County, Slate andZIP+4 Code) (Not primers)

    3 4 5 E a s t 4 7 t h S t r e e t ,

      New

     York,

      NY 10017

    5 . Comp le te Ma i l ing Address

     of the

      Headquar te rs

      of

      Genera l Business Off i ces

      of the

     Pub l i she r  (Not printer)

    3 45 E a s t 4 7 t h S t r e e t ,

      New

     Y o r k ,

      NY 10017

    6. Fu l l Names  and C o m p l e t e M a i l i n g A d d r e s s  of  Pub l i she r , Ed i to r ,  and  Manag ing Ed i to r  (This item MUST  NOTbe blank)

    Pub l ishe r  (Name andComplete Mailing Address)

    T h e A m e r i c a n S o c i e t y

      of

      M e c h a n i c a l E n g i n e e r s

    3 4 5 E a s t 4 7 t h S t r e e t ,

      New

     Y o r k ,

      NY 10017

    Ed i to r  (Name

     and

    Complete Mailing Address)

    D a n i e l

      J .

      I nman, Genera l Engrg . Dept . , SUNY

      at

      B u f f a l o

    1013 F urnas

      H a l l ,

      A m h e r s t ,  NY  14260

    Manag ing Ed i to r  (Name andComplete Mailing A ddress)

    Corne l i a Monahan, ASME,

      345

      E a s t 4 7 t h S t r e e t ,

      New

     Y o r k ,

      NY 10017

    7 . Ow n e r  If owned by a  corporation,  its name and address must be stated  and also immediately thereunder the names and addresses  of stockholders owning  or  holding

    1 percent  or  more of total am ount of stock.  If  not owned by a  corporation, the names and addresses  of  the individual owners must be given.  If  owned by a  partnership

    or other unincorporated firm,

      its

    name

     and

    address,

     as

    well as that

     o f

      each individual must be given.

      If

      the publication

      is

    published

      by a

      nonprofit organization,

      its

    name and address must be stated.) (Item must be completed.)

    Fu l l   N a m e

    T h e A m e r i c a n S o c i e t y

      o f

    M e c h a n i c a l E n q i n e e r s

    C o m p l e t e M a i l i n g A d d r e s s

    3 4 5 E a s t 4 7 t h S t r e e t

    H e w Y o r k .

      NY 10 01 7

    8 . K n o w n B o n d h o l d e r s , M o r t g a g e e s ,  and Othe r Secur i ty Ho lde rs Ow n ing   or  Ho ld ing  1  Percen t  or  M o r e  of  T o t a l A m o u n t  of  B o n d s , M o r t g a g e s  or  Othe r

    Secur i t ies   If  there are none, so state)

    Fu l t

      N a m e

    NONE

    Complete Mailing Address

    NONE

    9.   For C o m p l e t i o n  by  N o n p r o f i t O r g a n i z a t i o n s A u t h o r i z e d  To M a i l  at  Specia l Ra tes  DMMSection 423.12 only)

    T h e p u r p o s e , f u n c t i o n ,  and nonpro f i t s ta tus  of  th is o rgan iza t ion  and the  e x e m p t s t a t u s  for  Federa l income  tax  pu rposes  (Check one)

    111  .21

    1— |  Has   Not Changed Dur ing  i—j  Has Changed Dur ing  If  changed, publisher must submit explanation  of

    LKJ P reced ing

      1

     2  M o n t h s  1

      1

     P reced ing

      1

     2  M o n t h s  change with this statement.)

    ^ ' E x te n t  and Na tu re  of  C i rcu la t ion

    (See instructions  on reverse side)

    A . T o t a l  No. Cop ies  (Net Press Run)

    B. Pa id and /o r Requested Ci rcu la t ion

    1.

      Sa les th roug h dea le rs  and ca r r ie rs , s t ree t vendors  and coun te r sa les

    2.   Ma i l Subscr ip t ion

    (Paid and/or requested)

    C. T o ta l Pa id and /o r Requested Ci rcu la t ion

    (Sum or ]0Bi and WB2)

    D. Free Dis tr ibu t ion   by  M a l l ,  Car r ie r  or  Othe r Means

    S a m p l e s , C o m p l i m e n t a r y ,  and Othe r Free Cop ies

    E . To ta l D is tr ibu t ion  (Sum ofCandD)

    F. Cop ies  Not D i s t r i b u t e d

    1,  Off i ce use , le f t ove r , unaccou n ted , spo i led a f te r p r in t ing

    2.

      Re tu rn f rom News Agen ts

    G . T OT A L  (Sum ofE, Fl and 2—should equal net press run shown In A)

    V I .

    1 cert i fy th at

      the

     statemen ts made

     by

    me above are correct and complete

    Average No. Copies Eech Issue During

    Preceding 12 Months

    2 , 4 2 0

    -

    1 , 6 3 8

    1 , 6 3 8

    4 2 8

    2 , 0 6 6

    3 5 4

    _

    2 , 4 2 0

    A c t u a l   No. Cop ies  of  Single Iss ue

    Pub l ished Nearest  to   F i l ing Da te

    2 , 3 7 1

    -

    1,812

    1,812

    2 3 1

    2,083

    3 2 8

    _

    2 , 3 7 1

    Signa tu re   and T i t le  of  Ed i to r , Pub l i she r , Business Manager ,  or  Ow n e r

    P u b l i s h e r

    PS Form 3 62 6 ,   Feb.

      1989

    Journal

     of

     Vibration and Acous tics

    OCTOBER 1990, Vol. 112 / 467