ACI 318-08 Design of Retaining Wall With Counterfort_Rev1.0_08-Apr-2014

Embed Size (px)

Citation preview

  • 8/18/2019 ACI 318-08 Design of Retaining Wall With Counterfort_Rev1.0_08-Apr-2014

    1/2Page 1 of 2

    Retaining Wall with Counterfort Check of Stability & Calculation of Internal forces

    And design sections According ACI 318-08 Rev1.0

    Project :- Designed by:- M. Abu Shady

    Building :- Checked by:- M. Abu Shady

    Element:- Retaining Wall with Counterfort Date:-

    Location:- M.A.S.

    General Input :

    fc'=25 N/mm2 fy=420 N/mm2

    ɣC=25 KN/m3tw= 0.90 m LL=20.0 KN/m2 277.10 m

    µ= 0.58

    qall=150 KN/m2 Active Soil

    Cover=100 mm ɣs=22KN/m3

    Ignore Passive Soil  YES Ka= 0.500

    Ignore Soil wet W 5 YES

    H=2.70m

    275.00 m

    Passive Soil

    Hp=0.60m Kp= 3

    tb= 0.60 m 274.40 m

    0.90m 0.90m

    b= 2.70 m tc= 0.20 m

    d=0.49m

    Lc= 1.75 m

    tc= 0.20 m

    1-Check Stability of Wall: Elevation

    a- Check of Retaining Wall Overturning:

    Calculation of ∑W & Stability Moment ∑M

    Description of loads Loads W kN/m'Dist. From load

    to point O (m)

    Moments M @

    O KN.m/m'Weight of stem

    W147.25 1.350 63.79 = 10.00

    Weight of base slab W2 40.50 1.350 54.68 = 40.10

    Weight of earth over

    Heel slab W341.58 2.250 93.56 = 0.00

    Weight of Counterfort

    W4 using(ɣc-ɣs)1.62 2.100 3.40 = 49.59

    Weight of earth over

    Toe slab W50.00 0.450 0.00

    ∑W=130.95 ∑M=215.42

    = 4.34

    b- Check of Retaining Wall Sliding:

    = 50.10

    = 75.95

    = 1.52

    c- Check of Retaining Wall bearing Capacity:

      finding eccentricity e, take moments @ point O

    = 1.27 m = 0.08 m = 0.450 m

    09-Feb-16

    > 1.5, OK SAFE

    > 1.5, OK SAFE

    OK SAFE < qall

    57.51 KN/m2

    39.49 KN/m2

    45.50 KN/m2

    51.50 KN/m2

    54.77 KN/m2

    Plan

    co

    ℎ  =ɣ

    2

    2

    ℎ  =  

    C , , &

    ⁄. ′

     =  ∑/

    ⁄ ′

    µ∑   ⁄ ′

     =  µ∑ /∑ℎ

     =  

     ±    =  ∑

    1∗ ±   ∗∑

    �∗3

    2

      = ∑

      ± 6∗∑

      =   ∑

    (1 ± 6

    )

       = ∑

    (1 +

    6

    )=

    M@o= 0 = −∑ ∗ x + ∑ − ,∴   ,

       = ∑

    (1 −

    6

    )=

     , =

     , =

    , /6

     , =

    ℎ  =ɣ

    2

    2

     =  ℎ ∗ +ℎ* - ℎ*

     ∑ ℎ  =  ℎ+ ℎ- ℎ

    e ≤ /6 to ignore tension stress

        l   o   n   g   i   t   u    d   i   n   a    l    d   i   r   e   c   t   i   o   n 

    Transverse direction

    -

  • 8/18/2019 ACI 318-08 Design of Retaining Wall With Counterfort_Rev1.0_08-Apr-2014

    2/2Page 2 of 2

    Retaining Wall with Counterfort Check of Stability & Calculation of Internal forces

    And design sections According ACI 318-08 Rev1.0

    Project :- Designed by:- M. Abu Shady

    Building :- Checked by:- M. Abu Shady

    Element:- Retaining Wall with Counterfort Date:-

    Location:- M.A.S.

    09-Feb-16

    2-Internal Forces of Retaining Wall:

    a- Toe Slab Moment and Shear:

      finding net stress on Toe Slab42.5 KN/m2 Upward 39.8 KN/m2 Upward

    36.5 KN/m2 Upward

    24.6KN.m/m BOT. RFT. Use 5 T 18 /m' Tension RFT.

    Q Toe max Ult.  @d dis. From b = 25 KN/m < ΦVc = 312 KN/m Where

     ACI318-08 , Eq 11-3

    b- Heel Slab Moment and Shear:

      finding net stress on Heel Slab

    -18.9 KN/m2 Downward

    -24.9 KN/m2 Downward

    -24.7 KN/m2 Downward

    -13.1KN.m/m TOP RFT. Use 6 T 16 /m' Tension RFT.

    M heel longitudinal Ult. @d -Ve = -11.4KN.m/m TOP RFT. Use 6 T 16 /m' Tension RFT.

    M heel longitudinal Ult. @d +Ve = 9.5KN.m/m BOT. RFT. Use 6 T 16 /m' Tension RFT.

    Q Heel max Transverse Ult.  @d = 32 KN/m < ΦVc = 312 KN/m

    Q Heel max longitudinal Ult.  @d = 33 KN/m < ΦVc = 312 KN/m

    C- Stem Slab Moment and Shear:

    33.10 23.48 10.00 KN/m2

    M stem vertical Ult. @c cant -ve = -15.3KN.m/m Use 9 T 16 /m' Tension RFT.

    M stem longitudinal Ult. @z -Ve = -10.8KN.m/m Use 15 T 12 /m' Tension RFT.

    M stem longitudinal Ult. @z +Ve = 9.0KN.m/m Use 15 T 12 /m' Tension RFT.

    M stem longitudinal Ult. @z0 -Ve = -4.6KN.m/m Use 15 T 12 /m' Tension RFT.

    M stem longitudinal Ult. @z0 +Ve = 3.8KN.m/m Use 15 T 12 /m' Tension RFT.

    Q Stem max Cantilever Ult.  @c = 43 KN/m < ΦVc = 504 KN/m

    Q Stem max longitudinal Ult.  @z = 31 KN/m < ΦVc

    d- Counterfort Moment and Shear:

    = 0.83 m = 1.40 m = 0.70 m

    = 0.55 m = 0.28 m

    3.4KN.m/m Use 1 T 22 Tension RFT.

    17.3KN.m/m Use 1 T 22 Tension RFT.

    58.5KN.m/m Use 2 T 22 Tension RFT.

    65 KN/m < ΦVc = 91 KN/m use 5T10/m E.F

    48 KN/m < ΦVc use 5T10/m E.F

    M heel Transverse Ult. @c -ve =

    OK SAFE

    MToe Transverse max Ult. @b =

    , =  =  =

      = 

    =

    heel Slab behaves as:

    1- a cantilever from point c to x with length Lc/2, supported by stem.

    2- a continuous beam from point x to d in longitudinal direction of Retaining wall

    supported by counterforts

      =

    Stem Slab behaves as:

    1- a cantilever from point c at heel top to point z with length Lc/2, supported by heel Slab.

    2- a continuous beam above point z in longitudinal direction of Retaining wall supported by

    counterforts slab.

      @ =   ,  @=   ,  @ =

    on active side

    on active side

    on passive side

    on active side

    on passive side

    Counterfort Slab behaves as:

    a Tee Beam its flange (is heel & stem slabs) with effective depth dctf, subjected to

    1- max. moment MCfort@c at c point produced from horizontal earth pressure

    2- max horizontal shear VHal Cfort@c at c point produced from horizontal earth

    pressure

    stress   @ on stem slab multiplied by counterfort spacing.

    3- max Vertical shear VVal Cfort@d at d point produced from Vertical net stress  

    dctf 

    MCfort@c =

    VHal Cfort@c =

    VVal Cfort@d =

    hz1 hz2

    MCfort@z2

    MCfort@z1

    dctf @z1dctf @z2