Achutas Viva

Embed Size (px)

Citation preview

  • 8/14/2019 Achutas Viva

    1/61

    OMPARITIVE STUDY OF SKEW DECK SLABS&ITH ORTHOGONAL PARALLELOGRAMESHES OF GRILLAGE ANALOGY

    ACHUTHA.oll No 05011D 2002

    GUIDED BY.MRS P SRI LAKSHMI

    DEPT OF CIVIL ENGINEERING,JNTU HYDERABAD

  • 8/14/2019 Achutas Viva

    2/61

  • 8/14/2019 Achutas Viva

    3/61

    YPES OF BRIDGE DECKS

    hallow type bridge decks Slab type

    Beam and slab type

    Voided slab bridge

    ellular type bridge decks Single cell bridge

    Multiple cell bridge

    Multispan bridge with steel boxesMultispan bridge with concrete boxes

  • 8/14/2019 Achutas Viva

    4/61

    OADING ON BRIDGE:ead Loads ( , ,Permanent stationary loads wearing coat kerb parapets

    .,)etc :ive Loads IRC Class A Loading single Lane and Two Lanes

    IRC Class 70R Loading

    ,0R train loading weighing 100 tones through seven axles one,xle of 8 tones two axles of 12 tones each and four axles of

    .7 tones each:mpact loading

    Value of impact load is a percent of live load depending upon

    the material used in the construction of the deck of the

    ,bridge type of loading and bridge span

    , , :oot Way Kerb Railing and Parapet Live Load .For effective span of 7 5 m or less the foot way live load

    considered is 400 kg m-2

  • 8/14/2019 Achutas Viva

    5/61

    TEPS FOLLOWED IN THEETHOD OF GRILLAGE ANALYSISIdealisation of physical deck into equivalent

    grillage

    Evaluation of equivalent elastic inertia of members

    of grillage

    Application and transfer of loads to various nodes

    of grillage

    Determination of force responses and design

    envelopes and

    Interpretation of results

  • 8/14/2019 Achutas Viva

    6/61

    DEALIZATION OF PHYSICAL DECK INTOQUIVALENT GRILLAGE.1 Direction of longitudinal grid line is parallel to free edge of

    .deck

    .2 .Longitudinal grid lines at either edge placed 0 3 D from the edge

    , .for slab bridges where D is the depth of the deck

    .3 .Longitudinal gird lines are placed along the centre of each bearing

    .4 .Minimum of five grid lines are adopted in each direction

    .5 .Grid lines are taken at right angles

    .6 .Grid lines in general should coincide with the CG of the section

    , , .Some shift if it simplifies the idealisation can be made

    .7 ,For better results the ratio of the grid spacing in the

    .longitudinal and transverse directions should lie between 1 0 to

    . .2 0

  • 8/14/2019 Achutas Viva

    7/61

    b/d 1 1.2 1.5 2 2.5 3 4 5 10 0.141 0.166 0.196 0.229 0.249 0.263 0.281 0.291 0.312 0.333

    or rectangular sections = bd >here b d

  • 8/14/2019 Achutas Viva

    8/61

    UMERICAL ANALYSISNPUT DATAridge data

    Deck slab thickness 200 mm

    - -Girder to girder spacing .1 875 m

    Road width .7 5 m

    Effective span 20 m

  • 8/14/2019 Achutas Viva

    9/61

    Longitudinal Girders1880

    800 200

    70 150

    70

    250 1500

    760

    70

    250

    300

    S.NO AREA B H K KBH3 IZZ Y AY AY2

    1 120000 800 150 0.294 7.937E+08 2.250E+08 75 9000000 675000000

    2 4900 70 70 0.123 2.961E+06 1.334E+06 173 849333.3333 147217777.8

    3 225000 250 900 0.275 3.867E+09 1.519E+10 600 135000000 81000000000

    4 1750 25 70 0.258 2.826E+05 4.764E+05 1027 1796666.667 1844577778

    5 75000 300 250 0.158 7.422E+08 3.906E+08 1175 88125000 1.03547E+11

    426650 IXX= 5.406E+09 1.580E+10 3050 234771000 1.87214E+11

    YC=A*Z/A = 550 mm Ig=Iself+A*Y2 = 0.2030m4

    Y_TOP = 550 mm IN.A(ZZ) =IG-A*YC2 = 0.0738m4

    Y_BOTTOM = 750 mm Ixx = 0.0054m4

    I = 0.0738m4

    Z_TOP = 0.1342m3

    Z_BOTTOM= 0.0985m3

    PROPERTIES FOR GRILLAGE ANALYSIS

    COMPONENT

    800x 150

    70x 70

    250x 900

    25x 70

    300x 250

    1880

    800

    70

    70

    70

    1500

    150

    760

    250

    200

    300

    250

  • 8/14/2019 Achutas Viva

    10/61

    Composite section

    S.NO AREA B H K KBH3 IZZ Y AY AY2

    1 376000 1880 200 0.311 4.677E+09 1.253E+09 100 37600000 3760000000

    2 120000 800 150 0.294 7.937E+08 2.250E+08 275 33000000 9075000000

    3 4900 70 70 0.123 2.961E+06 1.334E+06 373 1829333.333 682951111.1

    4 225000 250 900 0.275 3.867E+09 1.519E+10 800 180000000 1.44E+11

    5 1750 25 70 0.258 2.826E+05 4.764E+05 1227 2146666.667 2633244444

    6 75000 300 250 0.158 7.422E+08 3.906E+08 1375 103125000 1.41797E+11

    802650 IXX= 1.008E+10 1.706E+10 4150 357701000 3.01948E+11

    YC=A*Z/A = 446 mm Ig=Iself+A*Y2 = 0.3190 m4

    YTS 446 mm IN.A(ZZ) =IG-A*YC2 = 0.1596 m4 Y_TOP = 246 mm Ixx = 0.0101 m4

    Y_BOTTOM 1054 mm

    I C = 0.1596 m4

    Z_TS= 0.3581 m3

    Z_TOP = 0.6497 m3

    Z_BOTTOM= 0.1514 m3

    Intermediate slab members

    1.8800

    A = 0.3760 m2 0.200

    Iz = 1.8800 x 0.2003 =

    0.00125m412

    Ix = 2 x 0.00125 = 0.00251 m4

    PROPERTIES FOR GRILLAGE ANALYSIS

    300x 250

    COMPONENT

    1880x 200

    800x 150

    70x 70

    250x 900

    25x 70

  • 8/14/2019 Achutas Viva

    11/61

    End slab members0.940

    A = 0.1880 m2 0.200

    Iz = 0.9400 x 0.200 3 = 0.00063 m4

    12

    Ix = 2 x 0.00063 = 0.00125 m4

    Transverse Members

    End Crossgirder 1.000

    0.200

    A Yt Ayt Ayt2 Iself

    0.2000 0.1000 0.0200 0.0020 0.0007 1.050

    0.3150 0.7250 0.2284 0.1656 0.0289

    0.5150 0.2484 0.1676 0.0296

    0.300

    Yt = 0.2484 = 0.4823 m

    0.5150

    Iz = 0.0296 + 0.1676 - 0.2484 x 0.4823 = 0.0774 m4

    Ix = 0.276 x 1.000 x 0.200 3

    + 0.294 x 1.050 x 0.300 3

    = 0.0105 m4

    PROPERTIES FOR GRILLAGE ANALYSIS

  • 8/14/2019 Achutas Viva

    12/61

    Intermediate Crossgirder 2.0000.200

    A Yt Ayt Ayt2 Iself

    0.4000 0.1000 0.0400 0.0040 0.0013 1.0500.3150 0.7250 0.2284 0.1656 0.0289

    0.7150 0.2684 0.1696 0.0303

    0.300

    Yt = 0.2684 = 0.3753 m

    0.7150

    Iz = 0.0303 + 0.1696 - 0.2684 x 0.3753

    = 0.0991 m4

    Ix = 0.276 x 2.000 x 0.200 3

    + 0.294 x 1.050 x 0.300 3

    = 0.0128 m4

    Slab members

    2.000

    A = 0.400 m2 0.200

    Iz = 2.000 x 0.200 3 = 0.00133 m4

    12

    Ix = 2 x 0.00133 = 0.00267 m4

    PROPERTIES FOR GRILLAGE ANALYSIS

  • 8/14/2019 Achutas Viva

    13/61

    LASSIFICATION OF GRILLAGEMODELLING

    15 degree skew parallelogram mesh 15 degree skew orthogonal mesh

    30 degree skew parallelogram mesh30 degree skew orthogonal mesh

    45 degree skew parallelogram mesh 45 degree skew orthogonal mesh

    arallelogram mesh rthogonal meshOADING DATA CONSIDERED

    RC Class 70 R train loading weighing 000 KN wo lanes of IRC Class A loading each weighing 54 KN

  • 8/14/2019 Achutas Viva

    14/61

    OUTPUT ( ), ( )Decks are evaluated for bending moment BM shear force SF and

    ( )torsional moment TM for parallelogram and orthogonal meshes

    , ,Variation of BM SF TM for skew angles 00, 50 , 150 , 300, 45 0

    studied

  • 8/14/2019 Achutas Viva

    15/61

    ESULTS ANDDISCUSSION

  • 8/14/2019 Achutas Viva

    16/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 0 i Variation of Bending Moment values as a function of span fordifferent Girders for skew angle 00 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    17/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 1 i Variation of Bending Moment values as a function of span fordifferent Girders for skew angle 50 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    18/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 2 i Variation of Bending Moment values as a function of span fordifferent Girders for skew angle 150 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    19/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 3 i Variation of Bending Moment values as a function of span fordifferent Girders for skew angle 300 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    20/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 4 i Variation of Bending Moment values as a function of span fordifferent Girders for skew angle 450 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    21/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 0 ii Variation of Shear Force as a function of span for differentGirders for skew angle 00 in parallelogram mesh with IRC Class 70R wheel

    loading

  • 8/14/2019 Achutas Viva

    22/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 1 ii Variation of Shear Force as a function of span for differentGirders for skew angle 50in parallelogram mesh with IRC Class 70R wheel

    loading

  • 8/14/2019 Achutas Viva

    23/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 2 ii Variation of Shear Force as a function of span for differentGirders for skew angle 150in parallelogram mesh with IRC Class 70R wheel

    loading

  • 8/14/2019 Achutas Viva

    24/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 3 ii Variation of Shear Force as a function of span for differentGirders for skew angle 300 in parallelogram mesh with IRC Class 70R wheel

    loading

  • 8/14/2019 Achutas Viva

    25/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 4 ii Variation of Shear Force as a function of span for differentGirders for skew angle 450 in parallelogram mesh with IRC Class 70R wheel

    loading

  • 8/14/2019 Achutas Viva

    26/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 0 iii Variation of TorsoinalMoment as a function of span fordifferent Girders for skew angle 00 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    27/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 1 iii Variation of TorsoinalMoment as a function of span fordifferent Girders for skew angle 50 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    28/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 2 iii Variation of TorsoinalMoment as a function of span fordifferent Girders for skew angle 150 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    29/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 3 iii Variation of TorsoinalMoment as a function of span for differentGirders for skew angle 300 in parallelogram mesh with IRC Class 70R wheel

    loading

  • 8/14/2019 Achutas Viva

    30/61

    DENTIFICATION OF CRITICALGIRDER

    . ( ) :Fig 5 4 iii Variation of TorsoinalMoment as a function of span fordifferent Girders for skew angle 400 in parallelogram mesh with IRC Class

    70R wheel loading

  • 8/14/2019 Achutas Viva

    31/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 5 i Shows Bending Moment values for two lanes of IRC Class A loadingand IRC Class 70R wheel loading for skew angle 00 parallelogram mesh

  • 8/14/2019 Achutas Viva

    32/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 6 i Shows Bending Moment values for two lanes of IRC Class A loadingand IRC Class 70R wheel loading for skew angle 50parallelogram mesh

  • 8/14/2019 Achutas Viva

    33/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 7 i Shows Bending Moment values for two lanes of IRC Class A loadingand IRC Class 70R wheel loading for skew angle 150parallelogram mesh

  • 8/14/2019 Achutas Viva

    34/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 8 i Shows Bending Moment values for two lanes of IRC Class A loadingand IRC Class 70R wheel loading for skew angle 150 parallelogram mesh

  • 8/14/2019 Achutas Viva

    35/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 9 i Shows Bending Moment values for two lanes of IRC Class A loadingand IRC Class 70R wheel loading for skew angle 150parallelogram mesh

  • 8/14/2019 Achutas Viva

    36/61

    DENTIFICATION OF LOADS

    . ( ) :Fig 5 5 ii Shows the variation of Shear Force for IRC Class 70R wheelloading and two lanes of IRC Class A loading for skew angle 00parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    37/61

    DENTIFICATION OF LOADS

    . ( ) :Fig 5 6 ii Shows the variation of Shear Force for IRC Class 70R wheelloading and two lanes of IRC Class A loading for skew angle 50parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    38/61

    DENTIFICATION OF LOADS

    . ( ) :Fig 5 7 ii Shows the variation of Shear Force for IRC Class 70R wheelloading and two lanes of IRC Class A loading for skew angle 150parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    39/61

    DENTIFICATION OF LOADS

    . ( ) :Fig 5 8 ii Shows the variation of Shear Force for IRC Class 70R wheelloading and two lanes of IRC Class A loading for skew angle 300parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    40/61

    DENTIFICATION OF LOADS

    . ( ) :Fig 5 9 ii Shows the variation of Shear Force for IRC Class 70R wheelloading and two lanes of IRC Class A loading for skew angle 450parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    41/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 5 iii Shows the variation of Shear Force for two lanes of IRC Class Aloading and IRC Class 70R wheel loading for skew angle 00parallelogram mesh

  • 8/14/2019 Achutas Viva

    42/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 6 iii Shows the variation of Shear Force for two lanes of IRC ClassA loading and IRC Class 70R wheel loading for skew angle 50parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    43/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 7 iii Shows the variation of Shear Force for two lanes of IRC Class Aloading and IRC Class 70R wheel loading for skew angle 150parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    44/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 8 iii Shows the variation of Shear Force for two lanes of IRC Class Aloading and IRC Class 70R wheel loading for skew angle 300parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    45/61

    DENTIFICATION OF LOADS

    . . ( ) :Fig 5 9 iii Shows the variation of Shear Force for two lanes of IRC Class Aloading and IRC Class 70R wheel loading for skew angle 450parallelogram

    mesh

  • 8/14/2019 Achutas Viva

    46/61

    UANTITATIVE COMPARISON SHEAR FORCEOR PARALLOGRAM MESH AND ORTHOGONALMESH

    . ( ):Fig 5 10 ii Shows the variation of Shear Force for parallogrammesh andorthogonal mesh for skew angle

    50

  • 8/14/2019 Achutas Viva

    47/61

    UANTITATIVE COMPARISON TORSIONALOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

    . ( ):Fig 5 10 ii Shows the Variation of TorsionalMoment for parallogram mesh andorthogonal mesh for skew angle 50

  • 8/14/2019 Achutas Viva

    48/61

    UANTITATIVE COMPARISON BENDINGOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

    . ( ):Fig 5 10 i Shows variation of the Bending Moment for parallogram mesh andorthogonal mesh for skew angle 50

  • 8/14/2019 Achutas Viva

    49/61

    UANTITATIVE COMPARISON SHEAR FORCEOR PARALLOGRAM MESH AND ORTHOGONALMESH

    . ( ):Fig 5 11 ii Shows the variation of Shear Force for parallogram mesh andorthogonal mesh for skew angle 150

  • 8/14/2019 Achutas Viva

    50/61

    . ( ):Fig 5 11 iii Shows the variation of TorsionalMoment for parallogram mesh andorthogonal mesh for skew angle 150

    UANTITATIVE COMPARISON TORSIONALOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

  • 8/14/2019 Achutas Viva

    51/61

    . ( ):Fig 5 11 i Shows the variation of Bending Moment for parallogram mesh andorthogonal mesh for skew angle 150

    UANTITATIVE COMPARISON BENDINGOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

  • 8/14/2019 Achutas Viva

    52/61

    UANTITATIVE COMPARISON SHEAR FORCEOR PARALLOGRAM MESH AND ORTHOGONALMESH

    . ( ):Fig 5 12 ii Shows the variation of Shear Force for parallogram mesh andorthogonal mesh for skew angle 300

  • 8/14/2019 Achutas Viva

    53/61

    . ( ):Fig 5 12 iii Shows the variation of TorsionalMoment for parallogram mesh andorthogonal mesh for skew angle 300

    UANTITATIVE COMPARISON TORSIONALOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

  • 8/14/2019 Achutas Viva

    54/61

    . ( ):Fig 5 12 i Shows the variation of Bending Moment for parallogram mesh andorthogonal mesh for skew angle 300

    UANTITATIVE COMPARISON BENDINGOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

  • 8/14/2019 Achutas Viva

    55/61

    UANTITATIVE COMPARISON SHEAR FORCEOR PARALLOGRAM MESH AND ORTHOGONALMESH

    . ( ):Fig 5 13 ii Shows the variation of Shear Force for parallogrammesh andorthogonal mesh for skew angle 450

  • 8/14/2019 Achutas Viva

    56/61

    . ( ):Fig 5 13 iii Shows the variation of TorsionalMoment for parallogram mesh andorthogonal mesh for skew angle 450

    UANTITATIVE COMPARISON TORSIONALOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

  • 8/14/2019 Achutas Viva

    57/61

    UANTITATIVE COMPARISON BENDINGOMENT FOR PARALLOGRAM MESH ANDRTHOGONAL MESH

    . ( ):Fig 5 13 i Shows the variation of Bending Moment for parallogram mesh andorthogonal mesh for skew angle 450

  • 8/14/2019 Achutas Viva

    58/61

    , ,UANTITATIVE COMPARISON OF BM TM SFOR PARALLELOGRAM AND ORTHOGONALMESHES

    . ( ):Table 5 15 ii Values of Shear Force with respect to skew angels fororthogonal mesh

  • 8/14/2019 Achutas Viva

    59/61

    . ( ):Table 5 15 iii Values of Torsional Moment with respect to skew angels fororthogonal mesh

    , ,UANTITATIVE COMPARISON OF BM TM SFOR PARALLELOGRAM AND ORTHOGONALMESHES

  • 8/14/2019 Achutas Viva

    60/61

    . ( ):Fig 5 15 i Shows the variation of Bending Moment with respect to skew angles for IRC70R wheel loading

    , ,UANTITATIVE COMPARISON OF BM TM SFOR PARALLELOGRAM AND ORTHOGONALMESHES

  • 8/14/2019 Achutas Viva

    61/61

    UMMARY AND CONCLUSIONS

    Girder 1 closest to the kerb is the critical girder

    Amongst the two loads considered IRC 70R wheel loading is

    chosen for further analysis

    , , ( %)Values of BM TM SF are same within 2 to 3 for skew angles

    less than 150 .both for parallelogram and orthogonal meshesHence parallogram mesh should be considered for further

    .analysis

    For skew angles greater than 150 orthogonal mesh should be

    , ,chosen for further analysis since the values for BM TM SF are( %) .higher 8 to 30 for parallogrammesh Such choice ensures

    .safety and economy