23
Accurate Simulation of Short-Fiber-Reinforced Automotive Parts Sascha Pazour PART Engineering GmbH [email protected] 0049 2204 30677 26 © PART Engineering GmbH, www.part-gmbh.de

Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

  • Upload
    altair

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Sascha Pazour

PART Engineering [email protected] 2204 30677 26

© PART Engineering GmbH, www.part-gmbh.de

Page 2: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Cologne

Berlin

Frankfurt

Hamburg

Stuttgart

Munich

Wolfsburg

Ingolstadt

Rüsselsheim

• Founded in 1999 as FEM services supplier

• Focus on structural mechanics

• Mission is to provide CAE services and software in

order to add value to our customers‘ CAE chain

• 20 years experience in FEA

• 10 years experience in CAE software development

• Two software products by our own:

• Development partner of major CAE software vendors

Life

Bergisch

Gladbach

PART Engineering – Key Facts

Page 3: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Influence of Fiber Orientation onto Material Properties

Fig. 2

100 100

58

65

0

20

40

60

80

100

120

Stiffness Strength

in flow cross flow

100

350

0

50

100

150

200

250

300

350

400

therm. Expansion

material: PA6+GF30

Page 4: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Fiber Orientations in Short-Fiber-Reinforced Plastics

S1 Shear layer: Fibers oriented parallel to flow direction

S2 Mid layer: Fibers oriented perpendicular to flow direction

Fig. 3

Flow Direction X

X

Cut View XFlow Direction

S1

S2

S1

Example Micrograph Pictures:

Thick

Mid LayerThin

Mid Layer

Page 5: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Degree of Orientation

Fig. 4

33

2322

131211

..

.

a

aa

aaa

000

000

001

33.000

033.00

0033.0

2

31

general case unidirectional quasi-isotropic

-90° +90°-45° +45°0° -90° +90°-45° +45°0°-90° +90°-45° +45°0°

Schmelzeflussrichtung

Schmelzeflussrichtung

2

1

Page 6: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Material Complexity

Fig. 5

Thermo-Mechanical

Simulation

E

α

Young´s Modulus

Poisson´s Ratio

Coeff. of Lin. Therm. Exp.

z

yx

Fiber Orientation

(Local System)

Isotropic

Anisotropic

Temperature Dependant

Page 7: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Material Complexity

Fig. 6

z

yx

Fiber Orientation

(Local System)

(1/0/0)

(0,7/0,2/0,1) (0,5/0,5/0)

(0,33/0,33/0,33)

Degree of Orientation

(Fiber Distribution)

80°C23°C120°C-40°C

Temperature

x

y

z xy yzzx

Local Directions

Page 8: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Material Complexity

Fig. 7

xy

zx

y

E2

α2

x

E1

α1

z

E3

α3

G12 α1212

23°C

yz

G23

α23

23

G31

α31

31

Orthotropic Material ModelNeeds 15 lin.-elastic temp.

dependant material properties:

Coeff. of lin. Therm. Expan.:

α1, α1, α1, α12, α23, α13,

Tensile moduli: E1, E2, E3

Shear moduli: G12, G13, G23

Poisson ratios: 12, 13, 23

Page 9: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Example: Weld Lines

Isotropic ApproachFig. 8

Common Approach:

Isotropic

Schmelzeflussrichtung

Schmelzeflussrichtung

Page 10: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Example: Weld Lines

Anisotropic ApproachFig. 9

CONVERSE Approach:

Anisotropic

Schmelzeflussrichtung

Schmelzeflussrichtung

Page 11: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Fiber Orientation and Anisotropic Material

Fig. 10

Converse Graphical User Interface

[Part: Mann & Hummel]

Page 12: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Mesh Topology

Fig. 11

ConverseIM solver mechanical solver

shell (mid-plane/surface) => shell (tria, quad)

shell (mid-plane/surface) => solid (tet, hex)

solid => solid (tet, hex)

unequal meshes

possible

Page 13: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Fig. 12

Converse Features and Interfaces

Mechanical SolverInjection Moulding

Solver

- Moldex 3D

- Moldflow

- Cadmould

- Sigma

- Fluent

- Simpoe

- 3D Timon

- Optistruct

- femfat

- nCode

- Abaqus

- Ansys

- Marc

- Nastran

- LS-Dyna

Orientations

Pressures

Temperatures

Wall Thicknesses

Residual Stresses

Shrinkage & Warpage

Weldlines

Page 14: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6

Kra

ft [N

]

Verschiebung [mm]

Messung 1

Messung 2

isotrop

orthotrop

Example: Rotary Valve

Material: Grivory HTV 3H1

forc

e [N

]

displacement [mm]

test 1

test 2

FEA isotropic

FEA anisotropic

Fig. 13

[Part: Mann & Hummel]

Page 15: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Example: Air Intake Manifold

Material: Ultramid A3WG6

Fig. 14

[Part: Mann & Hummel]

Page 16: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Eigenfrequencies and Eigenmodes

0

100

200

300

400

500

600

700

800

900

1000

250,00 270,00 290,00 310,00 330,00 350,00 370,00 390,00

eff

ektive M

asse

[g]

Frequenz [Hz]

x-Richtung - isotrop y-Richtung - isotrop z-Richtung - isotrop

x-Richtung - orthotrop y-Richtung - orthotrop z-Richtung - orthotrop

x-direction-isotropic

x-direction-anisotropic

y-direction-isotropic

y-direction-anisotropic

z-direction-isotropic

z-direction-anisotropic

frequency [Hz]

effe

ctive

ma

ss [kg

]

Fig. 15

[Part: Mann & Hummel]

Page 17: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Lens Bracket Example

Fig. 16

Part Geometry Fiber Orientation in Converse

[Valeo Lighting Systems]

Page 18: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Lens Bracket Example

Fig. 17

Frequency correlation – simulation to Xp. modal analysis

+5Hz

+30Hz

Converse

Isotropic

Average error – 4 Modes

Mode Experimental (Hz) Isotropic (Hz) Converse (Hz)

1 44 76 60

2 56 77 62

3 91 114 94

4 224 270 218[Valeo Lighting Systems]

Page 19: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Example: Burst Pressure

Material: PP + GF20

Fig. 18

Page 20: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Influence Of Production on Fiber Orientation

Fig. 19

Supplier 2Supplier 1

• Two suppliers but parts are geometrically up to 95% equal.

• Same material supplier, same mashine settings, etc.

• Different gating location means two completly different engine components!

Water pump housing

Gate location

Gate location

Moldflow results show different orientation

Page 21: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Influence Of Production on Anisotropic Part Stiffness

Fig. 20

Blue – Supplier 1

Red – Supplier 2

Dotted – Isotropic material

fiber orientation and material model by

4. isotropic vs. anisotropic results

∆ - 62%

Untolerable error if homogeneous

isotropic material is used!

3. displacements

1. distributed pressure on sealing contact surface

2. results evaluated on a path

Dis

pla

ce

me

nt

True distance along path

Page 22: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Fig. 21

www.part-gmbh.de What´s New?

Converse Installation

Page 23: Accurate Simulation of Short-Fiber-Reinforced Automotive Parts

Fig. 22

Add Value to Your Mechanical Simulation

consider the real part properties

get better predictions of

strength & deformation

by using data already

available

Thank you for your attention!

Please don´t hesitate to ask a question!